Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.580
Filter
1.
Front Immunol ; 15: 1428232, 2024.
Article in English | MEDLINE | ID: mdl-39040112

ABSTRACT

In the decades since the discovery, Type I interferon (IFN-I) has been intensively studied for their antiviral activity. However, increasing evidences suggest that it may also play an important role in the infection of Toxoplasma gondii, a model organism for intracellular parasites. Recent studies demonstrated that the induction of IFN-I by the parasite depends on cell type, strain genotype, and mouse strain. IFN-I can inhibit the proliferation of T. gondii, but few studies showed that it is beneficial to the growth of the parasite. Meanwhile, T. gondii also can secrete proteins that impact the pathway of IFN-I production and downstream induced interferon-stimulated genes (ISGs) regulation, thereby escaping immune destruction by the host. This article reviews the major findings and progress in the production, function, and regulation of IFN-I during T. gondii infection, to thoroughly understand the innate immune mechanism of T. gondii infection, which provides a new target for subsequent intervention and treatment.


Subject(s)
Interferon Type I , Toxoplasma , Toxoplasmosis , Toxoplasma/immunology , Animals , Interferon Type I/immunology , Interferon Type I/metabolism , Humans , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Host-Parasite Interactions/immunology , Immunity, Innate , Signal Transduction , Gene Expression Regulation , Mice
2.
Biomed Environ Sci ; 37(6): 647-660, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988115

ABSTRACT

Toxoplasma gondii( T. gondii or Tg), is an obligatory intracellular parasite with humans as its intermediate hosts. In recent years, significant correlations between T. gondii infection and schizophrenia have been reported, including the possible mediating mechanisms. Currently, mechanisms and hypotheses focus on central neurotransmitters, immunity, neuroinflammation, and epigenetics; however, the exact underlying mechanisms remain unclear. In this article, we review the studies related to T. gondii infection and schizophrenia, particularly the latest research progress. Research on dopamine (DA) and other neurotransmitters, the blood-brain barrier, inflammatory factors, disease heterogeneity, and other confounders is also discussed. In addition, we also summarized the results of some new epidemiological investigations.


Subject(s)
Schizophrenia , Toxoplasma , Toxoplasmosis , Schizophrenia/parasitology , Schizophrenia/etiology , Humans , Toxoplasmosis/complications , Toxoplasmosis/epidemiology , Toxoplasmosis/parasitology , Animals
3.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000057

ABSTRACT

Toxoplasma gondii, an important opportunistic pathogen, underscores the necessity of developing novel therapeutic drugs and identifying new drug targets. Our findings indicate that the half-maximal inhibitory concentrations (IC50) of KU60019 and CP466722 (abbreviated as KU and CP) against T. gondii are 0.522 µM and 0.702 µM, respectively, with selection indices (SI) of 68 and 10. Treatment with KU and CP affects the in vitro growth of T. gondii, inducing aberrant division in the daughter parasites. Transmission electron microscopy reveals that KU and CP prompt the anomalous division of T. gondii, accompanied by cellular enlargement, nuclear shrinkage, and an increased dense granule density, suggesting potential damage to parasite vesicle transport. Subsequent investigations unveil their ability to modulate the expression of certain secreted proteins and FAS II (type II fatty acid synthesis) in T. gondii, as well as including the dot-like aggregation of the autophagy-related protein ATG8 (autophagy-related protein 8), thereby expediting programmed death. Leveraging DARTS (drug affinity responsive target stability) in conjunction with 4D-Label-free quantitative proteomics technology, we identified seven target proteins binding to KU, implicated in pivotal biological processes such as the fatty acid metabolism, mitochondrial ATP transmission, microtubule formation, and Golgi proteins transport in T. gondii. Molecular docking predicts their good binding affinity. Furthermore, KU has a slight protective effect on mice infected with T. gondii. Elucidating the function of those target proteins and their mechanism of action with ATM kinase inhibitors may potentially enhance the treatment paradigm for toxoplasmosis.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Protein Kinase Inhibitors , Toxoplasma , Toxoplasma/drug effects , Toxoplasma/enzymology , Animals , Mice , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Toxoplasmosis/drug therapy , Toxoplasmosis/parasitology , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/antagonists & inhibitors , Female
4.
Immun Inflamm Dis ; 12(6): e1329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031850

ABSTRACT

BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan parasite that can invade all mammalian cells. It is well established that natural killer (NK) cells have critical protective roles in innate immunity during infections by intracellular pathogens. In the current study, we conducted an in vitro experiment to evaluate NK cell differentiation and activation from human umbilical cord blood mononuclear cells (UCB-MNCs) after infection with T. gondii tachyzoites. METHODS: UCB-MNCs were infected by fresh tachyzoites of type I (RH) or type II (PTG) strains of T. gondii pre-expanded in mesenchymal stem cells for 2 weeks in a medium enriched with stem cell factor, Flt3, IL-2, and IL-15. Flow cytometry analysis and western blot analysis were performed to measure the CD57+, CD56+, and Granzyme A (GZMA). RESULTS: Data revealed that incubation of UCB-MNCs with NK cell differentiation medium increased the CD57+, CD56+, and GZMA. UCB-MNCs cocultured with PTG tachyzoites showed a significant reduction of CD56+ and GZMA, but nonsignificant changes, in the levels of CD56+ compared to the control UCB-MNCs (p > .05). Noteworthy, 2-week culture of UCB-MNCs with type I (RH) tachyzoites significantly suppressed CD57+, CD56+, and GZMA, showing reduction of NK cell differentiation from cord blood cells. CONCLUSION: Our findings suggest that virulent T. gondii tachyzoites with cytopathic effects inhibit NK cell activation and eliminate innate immune responses during infection, and consequently enable the parasite to continue its survival in the host body.


Subject(s)
Cell Differentiation , Fetal Blood , Killer Cells, Natural , Toxoplasma , Humans , Killer Cells, Natural/immunology , Fetal Blood/cytology , Fetal Blood/immunology , Fetal Blood/parasitology , Cell Differentiation/immunology , Toxoplasma/immunology , Cells, Cultured , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Immunity, Innate , Lymphocyte Activation/immunology , Leukocytes, Mononuclear/immunology
5.
Parasitol Int ; 102: 102922, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38997003

ABSTRACT

BACKGROUND: Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, a food- and water-borne zoonotic protozoan parasite that is able to infect almost all warm-blooded vertebrates. It has a major effect on public health, particularly in underdeveloped nations. Immune-competent individuals typically exhibit no symptoms or experience a mild influenza-like sickness, while there is a possibility of severe manifestation and fatal or high-risk for life-threatening diseases in immunocompromised people like pregnant women and HIV/AIDS patients and lead to severe pathological effects on the fetus. METHOD: We conducted a systematic search of databases (PubMed, Google Scholar, Science Direct, EMBASE, and Scopus) using the PRISMA criteria. We used specific keywords such as Toxoplasma gondii, Toxoplasmosis, pregnant women, prevalence, HIV/AIDS, and worldwide studies published from 2018 to 2022. We use Stata (version 14) software to estimate the pooled prevalence and heterogeneity of toxoplasmosis in pregnant women and HIV-infected people using a random-effects model and the Cochran's Q-test, respectively. The Joanna Briggs Institute Critical Appraisal Instrument and Egger's regression asymmetry test were used to assess study quality and publication bias, respectively, while the single study omission analysis was used to test the robustness of a pooled estimate. RESULTS: We included and analyzed a total of 12,887 individuals in this review. The pooled prevalence of T. gondii in this review was 40% (95% CI = 0.31-0.50). The sub-group analysis revealed that the evaluation included 11,967 pregnant women. In pregnant women, the pooled sero-prevalence was 40% (95% CI = 0.31-0.50). In pregnant women and HIV/AIDS patients, 920 individuals were evaluated, and the pooled sero-prevalence was 41% (95% CI = 0.20-0.61). CONCLUSION: This review identified an overall sero-prevalence of Toxoplasma infection of 40% among pregnant women and HIV/AIDS. The expansion of prevention and control strategies, with a primary focus on enhancing educational initiatives, is necessary to avoid reactivation and stop the spread of infection, so investigative sero-prevalence is important work among pregnant women and HIV patients. In order to achieve a comprehensive explanation of the disease condition and reach this goal, we conducted a systematic review and meta-analysis in Worldwide for future use.


Subject(s)
HIV Infections , Toxoplasma , Toxoplasmosis , Humans , Female , Toxoplasmosis/epidemiology , Toxoplasmosis/parasitology , Pregnancy , Toxoplasma/immunology , HIV Infections/epidemiology , HIV Infections/complications , Prevalence , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/parasitology , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/epidemiology , Global Health , Seroepidemiologic Studies
6.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063076

ABSTRACT

Eukaryotic translation initiation factors (eIFs) are crucial for initiating protein translation and ensuring the correct assembly of mRNA-ribosomal subunit complexes. In this study, we investigated the effects of deleting six eIFs in the apicomplexan parasite Toxoplasma gondii using the CRISPR-Cas9 system. We determined the subcellular localization of these eIFs using C-terminal endogenous tagging and immunofluorescence analysis. Four eIFs (RH::315150-6HA, RH::286090-6HA, RH::249370-6HA, and RH::211410-6HA) were localized in the cytoplasm, while RH::224235-6HA was localized in the apicoplast. Additionally, RH::272640-6HA was found in both the basal complex and the cytoplasm of T. gondii. Functional characterization of the six RHΔeIFs strains was conducted using plaque assay, cell invasion assay, intracellular growth assay and egress assay in vitro, and virulence assay in mice. Disruption of five eIF genes (RHΔ315150, RHΔ272640, RHΔ249370, RHΔ211410, and RHΔ224235) did not affect the ability of the T. gondii RH strain to invade, replicate, form plaques and egress in vitro, or virulence in Kunming mice (p > 0.05). However, the RHΔ286090 strain showed slightly reduced invasion efficiency and virulence (p < 0.01) compared to the other five RHΔeIFs strains and the wild-type strain. The disruption of the TGGT1_286090 gene significantly impaired the ability of tachyzoites to differentiate into bradyzoites in both type I RH and type II Pru strains. These findings reveal that the eukaryotic translation initiation factor TGGT1_286090 is crucial for T. gondii bradyzoite differentiation and may serve as a potential target for drug development and an attenuated vaccine against T. gondii.


Subject(s)
CRISPR-Cas Systems , Eukaryotic Initiation Factors , Protozoan Proteins , Toxoplasma , Toxoplasma/genetics , Toxoplasma/pathogenicity , Toxoplasma/metabolism , Toxoplasma/growth & development , Animals , Mice , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Virulence/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Humans
7.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 304-309, 2024 Jun 07.
Article in Chinese | MEDLINE | ID: mdl-38952318

ABSTRACT

OBJECTIVE: To investigate the development and dynamic changes of cysts in the brain of mice following infection with different forms of Toxoplasma gondii, so as to provide insights into for toxoplasmosis prevention and control. METHODS: ICR mice at ages of 6 to 8 weeks, each weighing 20 to 25 g, were intraperitoneally injected with tachyzoites of the T. gondii PRU strain at a dose of 1 × 105 tachyzoites per mouse, orally administered with cysts at a dose of 20 oocysts per mouse or oocysts at a dose of 200 oocysts per mouse for modeling chronic T. gondii infection in mice, and the clinical symptoms and survival of mice were observed post-infection. Mice were orally infected with T. gondii cysts at doses of 10 (low-dose group), 20 (medium-dose group), 40 cysts per mouse (high-dose group), and the effect of different doses of T. gondii infections on the number of cysts was examined in the mouse brain. Mice were orally administered with T. gondii cysts at a dose of 20 cysts per mouse, and grouped according to gender (female and male) and time points of infections (20, 30, 60, 90, 120, 150, 180 days post-infection), and the effects of gender and time points of infections on the number of cysts was examined in the mouse brain. In addition, mice were divided into the tachyzoite group (Group T), the first-generation cyst group (Group C1), the second-generation cyst group (Group C2), the third-generation cyst (Group C3) and the fourth-generation cyst group (Group C4). Mice in the Group T were intraperitoneally injected with T. gondii tachyzoites at a dose of 1 × 105 tachyzoites per mouse, and the cysts were collected from the mouse brain tissues 30 days post-infection, while mice in the Group C1 were orally infected with the collected cysts at a dose of 30 cysts per mouse. Continuous passage was performed by oral administration with cysts produced by the previous generation in mice, and the effect of continuous passage on the number of cysts was examined in the mouse brain. RESULTS: Following infection with T. gondii tachyzoites, cysts and oocysts in mice, obvious clinical symptoms were observed on days 6 to 13 and mice frequently died on days 7 to 12. The survival rates of mice were 67.0%, 87.0% and 53.0%, and the mean numbers of cysts were (516.0 ± 257.2), (1 203.0 ± 502.0) and (581.0 ± 183.1) in the mouse brain (F = 11.94, P < 0.01) on day 30 post-infection with T. gondii tachyzoites, cysts and oocysts, respectively, and the numbers of cysts in the brain tissues were significantly lower in mice infected with T. gondii tachyzoites and oocysts than in those infected with cysts (all P values < 0.01). The survival rates of mice were 87.0%, 87.0% and 60.0%, and the mean numbers of cysts were (953.0 ± 355.5), (1 084.0 ± 474.3) and (1 113.0 ± 546.0) in the mouse brain in the low-, medium- and high-dose groups on day 30 post-infection, respectively (F = 0.42, P > 0.05). The survival rates of male and female mice were 73.0% and 80.0%, and the mean numbers of cysts were (946.4 ± 411.4) and (932.1 ± 322.4) in the brain tissues of male and female mice, respectively (F = 1.63, P > 0.05). Following continuous passage, the mean numbers of cysts were (516.0 ± 257.2), (1 203.0 ± 502.0), (896.8 ± 332.3), (782.5 ± 423.9) and (829.2 ± 306.0) in the brain tissues of mice in the T, C1, C2, C3 and C4 groups, respectively (F = 4.82, P < 0.01), and the number of cysts was higher in the mouse brain in Group 1 than in Group T (P < 0.01). Following oral administration of 20 T. gondii cysts in mice, cysts were found in the moues brain for the first time on day 20 post-infection, and the number of cysts gradually increased over time, peaked on days 30 and 90 post-infection and then gradually decreased; however, the cysts were still found in the mouse brain on day 180 post-infection. CONCLUSIONS: There is a higher possibility of developing chronic T. gondii infection in mice following infection with cysts than with oocysts or tachyzoites and the most severe chronic infection is seen following infection with cysts. The number of cysts does not correlate with the severity of chronic T. gondii infection, and the number of cysts peaks in the mouse brain on days 30 and 90 post-infection.


Subject(s)
Brain , Mice, Inbred ICR , Toxoplasma , Toxoplasmosis, Animal , Animals , Mice , Female , Male , Brain/parasitology , Chronic Disease , Toxoplasmosis, Animal/parasitology , Toxoplasma/physiology , Toxoplasmosis/parasitology , Disease Models, Animal
8.
Turkiye Parazitol Derg ; 48(2): 128-132, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38958491

ABSTRACT

Toxoplasma gondii (T. gondii) is an obligate intracellular, zoonotic protozoan parasite of interest to physicians and veterinarians with its highly complex structure. It is known to infect about one-third of the world's population. Since it is a zoonotic disease, it is necessary to keep the animal population under control in order to prevent human exposure. Many studies have been conducted on the detection of T. gondii and it has been determined that there are three clonal groups consisting of types 1, 2, 3. Developments in molecular studies have led to changes in the taxonomy and new developments in parasitic diseases. It has helped in diagnosis, treatment, development of antiparasitic drugs and research on resistance. They also provided research on vaccine studies, genetic typing and phylogenetics of parasitic diseases. Conventional polymerase chain reaction (PCR), real-time PCR and genotyping studies conducted today increase our knowledge about T. gondii. Methods such as B1, SAG1, SAG2, GRA1, 529-bp repeat element, OWP genes and 18S rRNAs are mostly used in PCR, and methods such as MS, MLST, PCR-RFLP, RAPD-PCR and HRM are used in genotyping. Toxoplasmosis is a disease that is within the framework of the concept of one health and must attract attention, has not yet been eradicated in the world and needs joint studies for humans, animals and ecosystems to be eradicated. This can only be possible by establishing interdisciplinary groups, conducting surveys and training.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Toxoplasma/genetics , Toxoplasma/classification , Animals , Humans , Toxoplasmosis/parasitology , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/diagnosis , Zoonoses/parasitology , Genotype
9.
Cell Mol Life Sci ; 81(1): 294, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977495

ABSTRACT

The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.


Subject(s)
Cell Movement , Dendritic Cells , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Protozoan Proteins , Toxoplasma , Toxoplasma/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Humans , Mice , rho-Associated Kinases/metabolism , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Toxoplasmosis/pathology , Mice, Inbred C57BL
10.
mSphere ; 9(7): e0036924, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38980070

ABSTRACT

Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistant to available drugs. For its chronic persistence in the brain, the parasite relies on host cells' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustain its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in the accumulation of unfolded protein within the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis. IMPORTANCE: Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii, a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host's autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite's chronic forms. Significantly, our investigation establishes the crucial role of host endoplasmic reticulum (ER)-phagy in the parasite's persistence within the host during latent infection.


Subject(s)
Amino Acids , Autophagy , Endoplasmic Reticulum , Toxoplasma , Toxoplasma/physiology , Amino Acids/metabolism , Animals , Endoplasmic Reticulum/metabolism , Mice , Toxoplasmosis/parasitology , Toxoplasmosis/metabolism , Humans , Brain/parasitology , Host-Parasite Interactions
11.
Acta Trop ; 257: 107283, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955322

ABSTRACT

Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.


Subject(s)
Signal Transduction , Toxoplasma , Toxoplasmosis , Ubiquitin , Toxoplasma/metabolism , Toxoplasma/physiology , Toxoplasma/drug effects , Ubiquitin/metabolism , Humans , Toxoplasmosis/parasitology , Toxoplasmosis/drug therapy , Toxoplasmosis/metabolism , Animals , Protozoan Proteins/metabolism , Ubiquitination , Protein Processing, Post-Translational , Ubiquitins/metabolism , Life Cycle Stages
12.
J Cell Mol Med ; 28(14): e18542, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39046369

ABSTRACT

This study aims to investigate the relationship between toxoplasmosis and this pathway, which may be effective in the formation of epilepsy by acting through the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy. In the study, four different experimental groups were formed by selecting Toxoplasma gondii IgG positive and negative patients with idiopathic epilepsy and healthy controls. Experimental groups were as follows: Group 1: Epilepsy+/Toxo- (E+, T-) (n = 10), Group 2: Epilepsy-/Toxo- (E-, T-) (n = 10), Group 3: Epilepsy-/Toxo+ (E-, T+) (n = 10), Group 4: Epilepsy+/Toxo+ (E+, T+) (n = 10). HMGB1, RAGE, TLR4, TLR1, TLR2, TLR3, IRAK1, IRAK2, IKBKB, IKBKG, BCL3, IL1ß, IL10, 1 L8 and TNFα mRNA expression levels in the HMGB/RAGE/TLR4/NF-κB signalling pathway were determined by quantitative simultaneous PCR (qRT-PCR) after collecting blood samples from all patients in the groups. Statistical analysis was performed by one-way ANOVA followed by LSD post-hoc tests, and p < 0.05 was considered to denote statistical significance. The gene expression levels of HMGB1, TLR4, IL10, IL1B, IL8, and TLR2 were significantly higher in the G1 group than in the other groups (p < 0.05). In the G3 group, RAGE and BCL3 gene expression levels were significantly higher than in the other groups (p < 0.05). In the G4 group, however, IRAK2, IKBKB, and IKBKG gene expression levels were significantly higher than in the other groups (p < 0.05). HMGB1, TLR4, IRAK2, IKBKB, IL10, IL1B, IL1B, and IL8 in this signalling pathway are highly expressed in epilepsy patients in G1 and seizures occur with the stimulation of excitatory mechanisms by acting through this pathway. The signalling pathway in epilepsy may be activated by HMGB1, TLR4, and TLR2, which are considered to increase the level of proinflammatory cytokines. In T. gondii, this pathway is activated by RAGE and BCL3.


Subject(s)
Epilepsy , HMGB1 Protein , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toxoplasmosis , Humans , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Male , Female , Epilepsy/metabolism , Epilepsy/genetics , Epilepsy/parasitology , Adult , Toxoplasmosis/parasitology , Toxoplasmosis/metabolism , Toxoplasmosis/complications , Toxoplasmosis/blood , Toxoplasmosis/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Case-Control Studies , Young Adult , Middle Aged , Antigens, Neoplasm , Mitogen-Activated Protein Kinases
13.
Parasitol Res ; 123(7): 286, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046555

ABSTRACT

Despite being the initial choice for treating toxoplasmosis, sulfadiazine and pyrimethamine have limited effectiveness in eliminating the infection and were linked to a variety of adverse effects. Therefore, the search for new effective therapeutic strategies against toxoplasmosis is still required. The current work is the first research to assess the efficacy of spiramycin-loaded maltodextrin nanoparticles (SPM-loaded MNPs) as a novel alternative drug therapy against toxoplasmosis in a murine model. Fifty laboratory-bred Swiss albino mice were divided into five groups: normal control group (GI, n = 10), positive control group (GII, n = 10), orally treated with spiramycin (SPM) alone (GIII, n = 10), intranasal treated with SPM-loaded MNPs (GIV, n = 10), and orally treated with SPM-loaded MNPs (GV, n = 10). Cysts of Toxoplasma gondii ME-49 strain were used to infect the mice. Tested drugs were administered 2 months after the infection. Drug efficacy was assessed by counting brain cysts, histopathological examination, and measures of serum CD19 by flow cytometer. The orally treated group with SPM-loaded MNPs (GV) showed a marked reduction of brain cyst count (88.7%), histopathological improvement changes, and an increasing mean level of CD19 (80.2%) with significant differences. SPM-loaded MNPs showed potent therapeutic effects against chronic toxoplasmosis. Further research should be conducted to assess it in the treatment of human toxoplasmosis, especially during pregnancy.


Subject(s)
Disease Models, Animal , Nanoparticles , Polysaccharides , Spiramycin , Toxoplasmosis, Animal , Animals , Spiramycin/therapeutic use , Spiramycin/administration & dosage , Mice , Polysaccharides/administration & dosage , Polysaccharides/therapeutic use , Polysaccharides/pharmacology , Nanoparticles/chemistry , Toxoplasmosis, Animal/drug therapy , Toxoplasma/drug effects , Female , Brain/parasitology , Brain/pathology , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/therapeutic use , Toxoplasmosis/drug therapy , Toxoplasmosis/parasitology , Drug Carriers
14.
Proc Natl Acad Sci U S A ; 121(24): e2403054121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838017

ABSTRACT

Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.


Subject(s)
Brain , CD8-Positive T-Lymphocytes , Cell Differentiation , Toxoplasma , Toxoplasmosis , Animals , CD8-Positive T-Lymphocytes/immunology , Toxoplasma/immunology , Mice , Brain/immunology , Brain/parasitology , Cell Differentiation/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Latent Infection/immunology , Latent Infection/parasitology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , Mice, Inbred C57BL , Female
15.
Parasit Vectors ; 17(1): 247, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835064

ABSTRACT

BACKGROUND: The interplay between Toxoplasma gondii infection and tumor development is intriguing and not yet fully understood. Some studies showed that T. gondii reversed tumor immune suppression, while some reported the opposite, stating that T. gondii infection promoted tumor growth. METHODS: We created three mouse models to investigate the interplay between T. gondii and tumor. Model I aimed to study the effect of tumor growth on T. gondii infection by measuring cyst number and size. Models II and III were used to investigate the effect of different stages of T. gondii infection on tumor development via flow cytometry and bioluminescent imaging. Mouse strains (Kunming, BALB/c, and C57BL/6J) with varying susceptibilities to tumors were used in the study. RESULTS: The size and number of brain cysts in the tumor-infected group were significantly higher, indicating that tumor presence promotes T. gondii growth in the brain. Acute T. gondii infection, before or after tumor cell introduction, decreased tumor growth manifested by reduced bioluminescent signal and tumor size and weight. In the tumor microenvironment, CD4+ and CD8+ T cell number, including their subpopulations (cytotoxic CD8+ T cells and Th1 cells) had a time-dependent increase in the group with acute T. gondii infection compared with the group without infection. However, in the peripheral blood, the increase of T cells, including cytotoxic CD8+ T cells and Th1 cells, persisted 25 days after Lewis lung carcinoma (LLC) cell injection in the group with acute T. gondii. Chronic T. gondii infection enhanced tumor growth as reflected by increase in tumor size and weight. The LLC group with chronic T. gondii infection exhibited decreased percentages of cytotoxic CD8+ T cells and Th1 cells 25 days post-LLC injection as compared with the LLC group without T. gondii infection. At week 4 post-LLC injection, chronic T. gondii infection increased tumor formation rate [odds ratio (OR) 1.71] in both KM and BALB/c mice. CONCLUSIONS: Our research elucidates the dynamics between T. gondii infection and tumorigenesis. Tumor-induced immune suppression promoted T. gondii replication in the brain. Acute and chronic T. gondii infection had opposing effects on tumor development.


Subject(s)
Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Toxoplasma , Animals , Mice , Toxoplasma/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Female , CD8-Positive T-Lymphocytes/immunology , Brain/parasitology , Brain/pathology , Chronic Disease , Tumor Microenvironment , Neoplasms/parasitology , Acute Disease
16.
Sci Rep ; 14(1): 13600, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38866852

ABSTRACT

We aimed to assess salivary and seroprevalence of Toxoplasma immunoglobulins in risky populations and evaluate drug docking targeting TgERP. A cross-sectional study was conducted in Alexandria University hospitals' outpatient clinics. 192 participants were enrolled from September 2022 to November 2023. Anti-Toxoplasma IgG and IgM were determined in serum and saliva by ELISA. An in-Silico study examined TgERP's protein-protein interactions (PPIs) with pro-inflammatory cytokine receptors, anti-inflammatory cytokine, cell cycle progression regulatory proteins, a proliferation marker, and nuclear envelope integrity-related protein Lamin B1. Our findings revealed that anti-T. gondii IgG were detected in serum (66.1%) and saliva (54.7%), with 2.1% of both samples were positive for IgM. Salivary IgG had 75.59% sensitivity, 86.15% specificity, 91.40% PPV, 64.40% NPP, 79.17% accuracy and fair agreement with serum IgG. On the other hand, the sensitivity, specificity, PPV, NPV, and accuracy in detecting salivary IgM were 75.0%, 99.47%, 75.0%, 99.47%, and 98.96%. AUC 0.859 indicates good discriminatory power. Examined synthetic drugs and natural products can target specific amino acids residues of TgERP that lie at the same binding interface with LB1 and Ki67, subsequently, hindering their interaction. Hence, salivary samples can be a promising diagnostic approach. The studied drugs can counteract the pro-inflammatory action of TgERP.


Subject(s)
Immunoglobulin G , Immunoglobulin M , Inflammation , Saliva , Toxoplasma , Toxoplasmosis , Humans , Male , Saliva/metabolism , Female , Adult , Toxoplasmosis/drug therapy , Toxoplasmosis/blood , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Immunoglobulin G/blood , Cross-Sectional Studies , Inflammation/metabolism , Immunoglobulin M/blood , Immunoglobulin M/metabolism , Middle Aged , Young Adult , Antibodies, Protozoan/immunology , Computer Simulation , Seroepidemiologic Studies , Adolescent , Molecular Docking Simulation
17.
PLoS Pathog ; 20(6): e1011979, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900808

ABSTRACT

The cell surface of Toxoplasma gondii is rich in glycoconjugates which hold diverse and vital functions in the lytic cycle of this obligate intracellular parasite. Additionally, the cyst wall of bradyzoites, that shields the persistent form responsible for chronic infection from the immune system, is heavily glycosylated. Formation of glycoconjugates relies on activated sugar nucleotides, such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The glucosamine-phosphate-N-acetyltransferase (GNA1) generates N-acetylglucosamine-6-phosphate critical to produce UDP-GlcNAc. Here, we demonstrate that downregulation of T. gondii GNA1 results in a severe reduction of UDP-GlcNAc and a concomitant drop in glycosylphosphatidylinositols (GPIs), leading to impairment of the parasite's ability to invade and replicate in the host cell. Surprisingly, attempts to rescue this defect through exogenous GlcNAc supplementation fail to completely restore these vital functions. In depth metabolomic analyses elucidate diverse causes underlying the failed rescue: utilization of GlcNAc is inefficient under glucose-replete conditions and fails to restore UDP-GlcNAc levels in GNA1-depleted parasites. In contrast, GlcNAc-supplementation under glucose-deplete conditions fully restores UDP-GlcNAc levels but fails to rescue the defects associated with GNA1 depletion. Our results underscore the importance of glucosamine-6-phosphate acetylation in governing T. gondii replication and invasion and highlight the potential of the evolutionary divergent GNA1 in Apicomplexa as a target for the development of much-needed new therapeutic strategies.


Subject(s)
Acetylglucosamine , Glucose-6-Phosphate , Toxoplasma , Toxoplasma/metabolism , Glucose-6-Phosphate/metabolism , Glucose-6-Phosphate/analogs & derivatives , Acetylglucosamine/metabolism , Acetylation , Animals , Glucosamine 6-Phosphate N-Acetyltransferase/metabolism , Humans , Glucosamine/metabolism , Glucosamine/analogs & derivatives , Mice , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
18.
PLoS Biol ; 22(6): e3002690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857298

ABSTRACT

As Toxoplasma gondii disseminates through its host, the parasite must sense and adapt to its environment and scavenge nutrients. Oxygen (O2) is one such environmental factor and cytoplasmic prolyl 4-hydroxylases (PHDs) are evolutionarily conserved O2 cellular sensing proteins that regulate responses to changes in O2 availability. Toxoplasma expresses 2 PHDs. One of them, TgPHYa hydroxylates SKP1, a subunit of the SCF-E3 ubiquitin ligase complex. In vitro, TgPHYa is important for growth at low O2 levels. However, studies have yet to examine the role that TgPHYa or any other pathogen-encoded PHD plays in virulence and disease. Using a type II ME49 Toxoplasma TgPHYa knockout, we report that TgPHYa is important for Toxoplasma virulence and brain cyst formation in mice. We further find that while TgPHYa mutant parasites can establish an infection in the gut, they are unable to efficiently disseminate to peripheral tissues because the mutant parasites are unable to survive within recruited immune cells. Since this phenotype was abrogated in IFNγ knockout mice, we studied how TgPHYa mediates survival in IFNγ-treated cells. We find that TgPHYa is not required for release of parasite-encoded effectors into host cells that neutralize anti-parasitic processes induced by IFNγ. In contrast, we find that TgPHYa is required for the parasite to scavenge tryptophan, which is an amino acid whose levels are decreased after IFNγ up-regulates the tryptophan-catabolizing enzyme, indoleamine dioxygenase (IDO). We further find, relative to wild-type mice, that IDO knockout mice display increased morbidity when infected with TgPHYa knockout parasites. Together, these data identify the first parasite mechanism for evading IFNγ-induced nutritional immunity and highlight a novel role that oxygen-sensing proteins play in pathogen growth and virulence.


Subject(s)
Interferon-gamma , Oxygen , Protozoan Proteins , Toxoplasma , Animals , Toxoplasma/pathogenicity , Interferon-gamma/metabolism , Mice , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Oxygen/metabolism , Mice, Inbred C57BL , Virulence , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Female , Brain/parasitology , Brain/metabolism , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/metabolism , Toxoplasmosis, Animal/parasitology , Toxoplasmosis/immunology , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology
19.
PLoS Negl Trop Dis ; 18(6): e0012281, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905319

ABSTRACT

BACKGROUND: Pathogens can impact host RNA modification machinery to establish a favorable cellular environment for their replication. In the present study, we investigated the effect of Toxoplasma gondii infection on host RNA modification profiles and explored how these modifications may influence the host-parasite interaction. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the modification levels of ∼ 80 nt tRNA and 17-50 nt sncRNAs in mouse liver, spleen, and serum using liquid chromatography and tandem mass spectrometry analysis. The results revealed alterations in RNA modification profiles, particularly during acute infection. The liver exhibited more differentially abundant RNA modifications than the spleen. RNA modification levels in serum were mostly downregulated during acute infection compared to control mice. Correlations were detected between different RNA modifications in the liver and spleen during infection and between several RNA modifications and many cytokines. Alterations in RNA modifications affected tRNA stability and protein translation. CONCLUSIONS/SIGNIFICANCE: These findings provide new insight into the role of RNA modifications in mediating the murine host response to T. gondii infection.


Subject(s)
Liver , RNA, Transfer , Spleen , Toxoplasma , Animals , Toxoplasma/genetics , Liver/parasitology , Mice , Spleen/parasitology , Spleen/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA Processing, Post-Transcriptional , Female , Host-Parasite Interactions , RNA/genetics , RNA/metabolism , Toxoplasmosis, Animal/parasitology , Toxoplasmosis/parasitology , Mice, Inbred C57BL
20.
Front Cell Infect Microbiol ; 14: 1359888, 2024.
Article in English | MEDLINE | ID: mdl-38828265

ABSTRACT

Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Although Toxoplasma secretory proteins during acute infection (tachyzoite, which divides rapidly and causes inflammation) have been extensively characterized, those involved in chronic infection (bradyzoite, which divides slowly and is surrounded by a cyst wall) remain uncertain. Regulation of the cyst wall is essential to the parasite life cycle, and polysaccharides, such as chitin, in the cyst wall are necessary to sustain latent infection. Toxoplasma secretory proteins during the bradyzoite stage may have important roles in regulating the cyst wall via polysaccharides. Here, we focused on characterizing the hypothetical T. gondii chitinase, chitinase-like protein 1 (TgCLP1). We found that the chitinase-like domain containing TgCLP1 is partially present in the bradyzoite microneme and confirmed, albeit partially, its previous identification in the tachyzoite microneme. Furthermore, although parasites lacking TgCLP1 could convert from tachyzoites to bradyzoites and make an intact cyst wall, they failed to convert from bradyzoites to tachyzoites, indicating that TgCLP1 is necessary for bradyzoite reactivation. Taken together, our findings deepen our understanding of the molecular basis of recrudescence and could contribute to the development of novel strategies for the control of toxoplasmosis.


Subject(s)
Chitinases , Protozoan Proteins , Toxoplasma , Toxoplasmosis , Animals , Humans , Mice , Chitinases/metabolism , Chitinases/genetics , Life Cycle Stages , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Toxoplasma/enzymology , Toxoplasma/genetics , Toxoplasma/growth & development , Toxoplasma/metabolism , Toxoplasmosis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL