Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.118
1.
Sci Rep ; 14(1): 13698, 2024 06 13.
Article En | MEDLINE | ID: mdl-38871780

Seaweed consumption has gained popularity due to its nutritional value and potential health benefits. However, concerns regarding the bioaccumulation of several trace elements highlight the need for comprehensive studies on exposure associated with seaweed consumption. To address this gap in knowledge, we carried out a feeding intervention study of three common edible seaweeds (Nori, Kombu, and Wakame) in 11 volunteers, aiming to elucidate the extent of both beneficial and harmful trace element exposure through seaweed consumption in humans. Concentrations of total arsenic, cobalt, copper, cadmium, iodine, molybdenum, selenium, and zinc were measured in urine samples before and following seaweed consumption. Elements concentrations were also measured in the seaweeds provided for the study. Descriptive analysis for each element were conducted and we used quantile g-computation approach to assess the association between the 8-element mixture and seaweed consumption. Differences in urine element concentrations and seaweed consumption were analyzed using generalized estimating equations (GEE). Urinary concentrations of iodine and total arsenic increased after seaweed consumption. When we analyze the 8-element mixture, the largest weight was observed for iodine after Kombu consumption while for total arsenic was observed after Wakame consumption. Similar results were observed when we compared the mean differences between the elements before and after seaweed consumption through the GEE. Seaweed consumption relates with increased urinary iodine and total arsenic concentrations, particularly after Kombu and Wakame consumption.


Iodine , Seaweed , Trace Elements , Seaweed/chemistry , Seaweed/metabolism , Humans , Iodine/urine , Iodine/analysis , Trace Elements/urine , Trace Elements/analysis , Female , Male , Adult , Arsenic/urine , Arsenic/analysis , Middle Aged , Selenium/urine , Selenium/analysis
2.
Sci Rep ; 14(1): 14167, 2024 06 19.
Article En | MEDLINE | ID: mdl-38898103

A nationwide survey of inorganic components of tap water all over Japan was conducted from 2019 to 2024. In this survey, 1564 tap water samples were collected, and an additional 194 tap water samples were collected from 33 other countries. The water samples were analyzed for 27 dissolved inorganic components, with a primary focus on the distribution of major and trace components, including Ca, Mg, K, Na, Cl-, NO3-, SO42-, total-hardness, Al, Fe, Cu, Mn, and Zn. The Japanese tap water hardness was 50.5 ± 30.2 (± 1σ SD) mg/L, classified as soft water according to the World Health Organization (WHO) classification. The average content of each major component in Japanese tap water tended to be lower than those in other countries. Furthermore, Piper trilinear diagrams were used to categorize Japanese tap water types. The dominating water types were the Ca-HCO3 and mixed types, which had a nationwide distribution. Japanese tap water generally complied with Japanese and WHO drinking water criteria, with only 1% (17/1564 sites) of the samples exceeding water quality standards. Observations of water quality changes for 2 years at three household faucets revealed that fluctuations in major components and trace metals (Al, Fe, Cu, Mn, and Zn) varied in different patterns. This suggests that the behavior of trace metal elements is influenced by local infrastructure, such as supply pipes, distinct from the variability in source water quality.


Drinking Water , Japan , Drinking Water/analysis , Drinking Water/chemistry , Water Quality , Water Pollutants, Chemical/analysis , Water Supply , Surveys and Questionnaires , Trace Elements/analysis , Environmental Monitoring/methods , Inorganic Chemicals/analysis , East Asian People
3.
Environ Monit Assess ; 196(7): 593, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829441

Coal power activities could cause regional fluctuations of trace elements, but the distribution information of these trace elements in arid and semi-arid areas is insufficient. In this study, the soil trace elements (As, B, Be, Cd, Co, Cr, Cu, Fe, Ga, Ge, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, and Zn) of Ningdong Coal Power Production Base in China were monitored. Results showed that the concentrations of B, Tl, Mn, Pb, Cr, K, Cu, and Co exceeded background values. The maximum risk index reached 265.66, while the trace elements posed a cancer risk to children. Combining correlation analyses (CA), principal component analysis (PCA), and positive matrix factorization (PMF) techniques, it indicated that trace elements were mainly coming from coal combustion (34.15%), livestock farming (17.44%), traffic emissions (12.42%), and natural factors (35.99%). This study reveals the sources and potential ecological risks of soil trace elements in the Ningdong Coal and Power Production Base. It provides a scientific basis for developing targeted environmental management measures and reducing human health risks.


Coal , Environmental Monitoring , Soil Pollutants , Soil , Trace Elements , China , Trace Elements/analysis , Soil Pollutants/analysis , Soil/chemistry , Power Plants , Humans
4.
Wei Sheng Yan Jiu ; 53(3): 472-486, 2024 May.
Article Zh | MEDLINE | ID: mdl-38839590

OBJECTIVE: To comprehensively analyze the trace nutrient contents in take-away meals, the simultaneous detection method of common vitamins in take-away meals were explored based on the samples' matrix, and the content of trace nutrients in take-away meals was analyzed combined with inductively coupled plasma-mass spectrometry(ICP-MS) detection of common elements. METHODS: Fifty-seven take-away meals were collected randomly and analyzed. Vitamins were determined by high performance liquid chromatography-ultraviolet detector tandem fluorescence detector after pretreatment of samples including enzymatic digestion, hydrolysis and extraction. The separation was performed on a C_(18) column(250 mm×4.6 mm, 5 µm) with ion-pair acid reagents as the mobile phase for water-soluble vitamins and methanol for fat-soluble vitamins. Vitamin B_1, vitamin B_2, nicotinic acid, nicotinamide and vitamin A were detected by ultraviolet detector(UVD), while vitamin B_6 and E by fluorescence detector(FLD). Elemental analysis of calcium, magnesium, sodium, potassium, zinc, selenium and copper in the take-away meals was carried out according to GB 5009.268-2016 by ICP-MS to comprehensively evaluate the contents of micronutrients. RESULTS: Through optimization of chromatography and sample pretreatment conditions, the sensitivity of the established detection method can meet the needs of micronutrient evaluation with the detection limits and quantification limits of vitamins in the range of 0.002-0.098 mg/100 g and 0.007-0.327 mg/100 g, respectively. Good precision was obtained(<10%). The spiked recovery rates were 80.5%-103.8%(n=6). The result showed that the contents of micronutrients in take-away meals were generally low. The detection rates of vitamins ranged from 21.1% to 98.2%. CONCLUSION: The proposed method is simple and sensitive, and the contents of vitamins and elements determined were low in the collected take-away meals.


Micronutrients , Micronutrients/analysis , Chromatography, High Pressure Liquid/methods , Vitamins/analysis , Mass Spectrometry/methods , Food Analysis/methods , Trace Elements/analysis , Meals
5.
Mar Pollut Bull ; 204: 116537, 2024 Jul.
Article En | MEDLINE | ID: mdl-38838391

Procellariiform seabirds can accumulate high levels of plastic in their gastrointestinal tracts, which can cause physical damage and potentially provides a contamination route for trace elements. We examined plastic ingestion and trace element contamination of fledgling Manx shearwaters Puffinus puffinus that were harvested for human consumption in 2003 and 2018 on Skúvoy, Faroe Islands (North Atlantic Ocean). Overall, 88% of fledglings contained plastic in their gastrointestinal tracts, with a mean (± SD) of 7.2 ± 6.6 items weighing 0.007 ± 0.016 g. Though the incidence was similar, fledglings ingested significantly more plastic in 2018 compared to 2003. Hepatic trace element concentrations were unrelated to plastic ingestion. Hepatic carbon (δ13C) and nitrogen (δ15N) stable isotope values were significantly lower in birds sampled in 2018 versus 2003, potentially reflecting further offshore feeding at lower trophic levels. Future research is needed to understand the extent of plastic ingestion by Faroe Islands seabirds.


Birds , Environmental Monitoring , Plastics , Trace Elements , Water Pollutants, Chemical , Animals , Trace Elements/analysis , Plastics/analysis , Water Pollutants, Chemical/analysis , Nitrogen Isotopes/analysis , Eating , Islands , Carbon Isotopes/analysis
6.
Nutrients ; 16(11)2024 May 22.
Article En | MEDLINE | ID: mdl-38892501

During lactation, heavy metals and trace elements can be mobilised from the maternal body stores and excreted via human milk. A total of 66 mature human milk samples were collected from lactating women in Latvia between 2016 and 2017 to analyse the content of As, Cd, Pb, Al, Sn, and Ni. Additionally, 50 mature human milk samples were collected between 2022 and 2023 to analyse the content of Cd and Pb. The content of heavy metals and trace elements in human milk was determined using ICP-MS. Only two individual human milk samples contained heavy metals above the method's detection limit-one with an arsenic content of 0.009 mg kg-1 and one with a lead content of 0.047 mg kg-1. The preliminary data show that human milk among lactating women in Latvia contains only insignificant amounts of heavy metals and trace elements. Concern over such content should not be a reason to choose formula feeding over breastfeeding. Nevertheless, heavy metals, trace elements and other pollutants in human milk should be continuously monitored.


Metals, Heavy , Milk, Human , Trace Elements , Humans , Milk, Human/chemistry , Metals, Heavy/analysis , Latvia , Female , Trace Elements/analysis , Adult , Lactation , Arsenic/analysis , Breast Feeding , Young Adult , Environmental Pollutants/analysis
7.
Environ Sci Pollut Res Int ; 31(28): 40995-41012, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837029

Groundwater quality in Wadi Fatimah is evaluated and demarcated for agriculture utilities using comprehensive approaches namely, international standards, agricultural water quality (AWQ) indices, irrigation water quality index (IWQI), and trace metals. Groundwater samples were collected (n = 59) and analysed for EC, pH, major and minor ions and trace metals. According to FAO recommendations, 42% of samples (EC > 3000 µS/cm) are inappropriate for agricultural uses. AWQ indices including salinity hazard, Kelly's ratio and Na% show that 50%, 19% and 37% of samples, respectively, are unsuitable for agricultural uses. USSL classification reveals that groundwater is preferable only for high-permeability soils and salt-tolerant crops. IWQI suggests that 88% of samples are moderately usable for agriculture. The interrelationship between water salinity and crop yield justified that 73%, 59%, 51% and 25% of samples are desirable to yield 90% in date palm trees, sorghum, rice and citrus fruits, respectively. Groundwater is appropriate for date palm trees except in downstream regions. Boron concentration suggests that 52%, 81% and 92% of samples are suitable for sensitive, semi-tolerant and tolerant crops, respectively. Groundwater in the central part (suitable for sensitive crops), central and upstream regions (semi-tolerant crops) and all regions except downstream (tolerant crops) are suitable for cultivation. Trace metals contents illustrate that 36%, 34%, 22%, 8%, 5% and 100% of samples are inappropriate for agriculture due to high concentrations of Cr, Cu, Ni, V, Mn and Mo, respectively in the groundwater. Further, AWQ indices, IWQI, USSL classifications and trace metals ensure that groundwater in the downstream, and a few pockets in the upstream are unfit for agricultural uses. This study recommends that groundwater in this basin is more suitable for tolerant crops (ie. date palm, sorghum) followed by semi-tolerant and sensitive crops.


Agriculture , Boron , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Water Quality , Groundwater/chemistry , Saudi Arabia , Water Pollutants, Chemical/analysis , Boron/analysis , Metals/analysis , Trace Elements/analysis
8.
J Environ Manage ; 363: 121389, 2024 Jul.
Article En | MEDLINE | ID: mdl-38850923

Understanding the changes in the chemical compositions of dissolved trace elements from source to sink is important for determining their spatiotemporal variations and the contributions from each sub-catchment in the Ganges, Brahmaputra, and Meghna Rivers. To estimate weathering and matter transfer in these Rivers and the Ganges-Brahmaputra-Meghna (G-B-M) Estuary, we measured 15 dissolved trace element concentrations from surface and bottom water samples and exchangeable trace metals from suspended particulate matter (SPM). From December 2019 to January 2020, post-monsoon samples were collected from the upstream of the three rivers and the G-B-M Estuary. Dissolved trace elements in the Ganges and Meghna Rivers exhibited remarkable spatial variations, whereas those in the Brahmaputra River and the G-B-M Estuary were uniform. The dissolved trace elements, basic information (river length and drainage area), and physicochemical parameters (pH, dissolved oxygen, and conductivity) of the three rivers were inconsistent. The sample sites near urban areas and industrial centers had high concentrations of dissolved trace elements. In the G-B-M Estuary, iron and lead concentrations decreased along the salinity gradient, whereas selenium levels gradually increased, which may have been released by the SPM owing to its highly exchangeable trace metals. Compared with historical concentrations, trace elements that entered the G-B Estuary from the Ganges and Brahmaputra Rivers exhibited either decreased or increased metal fluxes due to additional terrigenous sources, suggesting that the inputs of trace element flux from the Ganges and Brahmaputra Rivers into the oceans may need to be re-evaluated. Furthermore, Fe and Pb concentrations and river fluxes in the Ganges and Changjiang have decreased in recent years. Hence, the fluxes of certain trace elements that enter the oceans from large rivers may require re-evaluation.


Environmental Monitoring , Rivers , Trace Elements , Trace Elements/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Oceans and Seas
9.
Mar Pollut Bull ; 203: 116477, 2024 Jun.
Article En | MEDLINE | ID: mdl-38759466

The proliferation of marine invasive species is a mounting concern. While the role of microbial communities in invasive ascidian species is recognized, the role of seasonal shifts in microbiome composition remains largely unexplored. We sampled five individuals of the invasive ascidian Styela plicata quarterly from January 2020 to October 2021 in two harbours, examining gills, tunics, and surrounding water. By analysing Amplicon Sequence Variants (ASVs) and seawater trace elements, we found that compartment (seawater, tunic, or gills) was the primary differentiating factor, followed by harbour. Clear seasonal patterns were evident in seawater bacteria, less so in gills, and absent in tunics. We identified compartment-specific bacteria, as well as seasonal indicator ASVs and ASVs correlated with trace element concentrations. Among these bacteria, we found that Endozoicomonas, Hepatoplasma and Rhodobacteraceae species had reported functions which might be necessary for overcoming seasonality and trace element shifts. This study contributes to understanding microbiome dynamics in invasive holobiont systems, and the patterns found indicate a potential role in adaptation and invasiveness.


Introduced Species , Microbiota , Seawater , Trace Elements , Urochordata , Animals , Trace Elements/analysis , Urochordata/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Symbiosis , Seasons , Gills/microbiology
10.
J Environ Manage ; 361: 121266, 2024 Jun.
Article En | MEDLINE | ID: mdl-38815423

Within the Huaihe River Basin, Guohe River, as its second-largest tributary, serves as a critical water supply source. Recent industrial and agricultural advancements have led to increased trace element contamination, adversely impacting the water quality within Guohe River Basin. Therefore, this study aimed to investigate the distribution characteristics, sources, water quality and risk assessment of trace elements in the surface water, groundwater, and sediments across the basin. The results showed that the spatial distribution of trace elements in the surface water and groundwater of Guohe River Basin was that most of the high concentrations appeared in Qiaocheng District of Bozhou City, the mean concentration of Fe in Guohe River sediments was the highest, the mean concentration of Sb was the lowest. The PMF source analysis results showed that the main source of trace elements in Guohe River Basin was natural geological processes, followed by human activities. The sodium adsorption ratio (SAR) indicated that the surface water samples of Guohe River in two seasons had high sodium and salinity hazards. The water quality index (WQI) showed that surface water and groundwater samples in the northwestern of Guohe River Basin had poor water quality. The results of the risk assessment showed that As and Mn posed great ecological risks to surface water and groundwater, respectively, and that F- was the pollutant with the most potential health risk hazard in the basin. The Geo-accumulation index (Igeo) results showed that Cd, Se and As should be taken seriously as the main contaminants of the sediments in Guohe River Basin. KEYWARDS: Trace elements; Source analysis; Sodium adsorption ratio; Water quality index; Risk assessment; Geo-accumulation index.


Environmental Monitoring , Groundwater , Rivers , Trace Elements , Water Pollutants, Chemical , Water Quality , Risk Assessment , Rivers/chemistry , Trace Elements/analysis , Groundwater/chemistry , Groundwater/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , China
11.
Nutrients ; 16(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38794719

With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.


Biofortification , Food, Fortified , Micronutrients , Humans , Animals , Micronutrients/deficiency , Micronutrients/analysis , Biological Availability , Animal Feed/analysis , Trace Elements/deficiency , Trace Elements/analysis , Deficiency Diseases/prevention & control
12.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733446

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Environmental Monitoring , Phosphorus , Seawater , Trace Elements , Water Pollutants, Chemical , North Sea , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Phosphorus/analysis , Nutrients/analysis , Nitrogen/analysis , Metals/analysis , Eutrophication
13.
Food Res Int ; 187: 114360, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763644

The presence of contaminants in cacao-derived products, especially in chocolates, has raised concerns regarding food safety and human health. The study assessed the concentration variation of 16 elements in 155 chocolate samples from the US market by cacao content and country of geographic origin. The study further examined the potential health risks posed by toxic metals and determined the contribution of essential elements to the Daily Recommended Intake (DRI), estimated based on an ounce (∼28.4 g) of daily chocolate consumption. Dark chocolates with ≥50 % cacao exhibited consecutively increasing mean levels from 1.2 to 391 µg/kg for U, Tl, Th, As, Pb, Se, Cd, and Co. Similarly, Ni, Sr, Cu, Mn, Zn, Fe, Ca, and Mg had mean concentrations from 4.0 to 1890 mg/kg. Dark chocolates sourced from Central and South America exhibited the highest mean levels of Cd, and South America samples also contained elevated Pb, whereas those from West Africa and Asia had low Cd and Pb, respectively. Cacao contents showed increasingly strong association with Cd, Co, Mn, Sr, Ni, Cu, Zn, and Mg (r = 0.60-0.84), and moderately with Se, Fe, As, and Tl (r = 0.35-0.49), indicating these elements are primarily derived from cacao beans. Weak association of cacao contents with Pb, Th, and U levels (r < 0.25), indicates post-harvest contaminations. Hazard Quotient (HQ) > 1 was found only for Cd in 4 dark chocolates, and Hazard Index (HI) > 1 for cumulative risk of Cd, Pb, Ni, As, and U was found in 33 dark chocolates, indicating potential non-carcinogenic risks for 15 kg children but none for 70 kg adults. Dark chocolate also substantially contributed to 47-95 % of the DRI of Cu for children and 50 % for adults. Dark chocolates also provided notable Fe, Mn, Mg, and Zn contributions to the DRI. These essential elements are recognized to reduce the bioavailability of toxic metals such as Cd, Pb, or Ni, thereby potentially lowering associated health risks. This study informs consumers, food industries, and regulatory agencies to target cacao origins or chocolate brands with lower toxic metal contents for food safety and minimizing adverse health effects.


Cacao , Chocolate , Food Contamination , Metals, Heavy , Metals, Heavy/analysis , Risk Assessment , Chocolate/analysis , Humans , Cacao/chemistry , Food Contamination/analysis , United States , Trace Elements/analysis , Recommended Dietary Allowances
14.
Food Res Int ; 187: 114431, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763681

Among the most consumed foods in the world is potato, which occupies the first place as a non-grain commodity, demonstrating the importance of its assessment concerning the population's food safety. In this study, the nutrients Ca, Mg, K, P, Cu, Mn, Fe, and Zn and the potentially toxic trace elements Cd, Cr, and Pb were evaluated considering their total contents, bioaccessible and bioavailable fractions in different potato cultivars, in an unpublished approach in the literature. The in vitro standard gastrointestinal digestion method (INFOGEST) and a model of the intestinal epithelial barrier using the Caco-2 cell line were applied for investigate the presence of metals in potato. For the macroelements, the bioaccessibility (% w/w) varied in the ranges: K (57-72 %), P (59-76 %), Mg (83-103 %), and Ca (30-123 %), whereas for the microelements were: Cu (27-74 %) and Mn (4.22-12.02, 60-119 %). The potentially of trace toxic elements, Cd and Pb, were found in 75 % of the samples, however, all the concentration values were below the maximum levels allowed of 0.10 µg/g. Chromium was determined only in potato peels and has no maximum established level. The bioaccessible and bioavailable fractions of Cd, Cr, and Pb were below the limits of quantification of the spectrometric methods (LOQ - µg/L: 0.063 Cd, 0.65 Cr, and 0.44 Pb). The potato samples were considered safe for consumption regarding the presence of potentially toxic trace elements, with a remarkable nutritional contribution.


Biological Availability , Nutritive Value , Solanum tuberosum , Trace Elements , Solanum tuberosum/chemistry , Trace Elements/analysis , Caco-2 Cells , Humans , Digestion
15.
Sci Rep ; 14(1): 10398, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710769

Pigmented and non-pigmented rice varieties (grown in different areas) were collected in China, Yunnan, to investigate the content of macro-, trace elements and potentially toxic elements (PTEs), and to assess the health risk associated with dietary intake. The order of elemental concentrations in rice was Mn > Zn > Fe > Cu > Se for trace elements, P > K > Mg > Ca > Na for macro elements, and Cr > As > Cd for PTEs. Rice with a high concentration of essential elements also associated with a high content of PTEs. In addition, higher content of Cr, Mn and Na were found in pigmented rice. The health risk assessment showed that the daily intake of all elements was below the tolerable limit (UL). Moreover the intake of Fe, Zn and Se was far from sufficient for the nutrient requirement. The PTEs in rice dominated the health risk. Of concern is that this rice consumption is likely to contribute to carcinogenic risks in the long term and that adults are at higher health risk from pigmented rice compared to non-pigmented rice. This study confirms that the lack of essential micronutrients in rice and the health risk associated with rice diets should remain a concern.


Oryza , Trace Elements , Oryza/chemistry , Trace Elements/analysis , Trace Elements/toxicity , Humans , China , Risk Assessment , Pigmentation
16.
J Trace Elem Med Biol ; 84: 127457, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692231

The aim of this paper was the quantitative determination of some macro and trace elements, especially potentially toxic elements in the samples of infant baby formulae and baby food cereals commercially available in Serbia using the inductively coupled plasma optical emission spectrometry (ICP OES) method. Among the macro elements, K is the most abundant in all infant formulae samples, followed by Ca, P, Na and Mg. On the other hand, the analysis of food cereals showed that P is presents in the highest contents, followed by K, Ca, Na, and Mg. Potentially toxic elements As, Pb, Hg, and Cd were not detected in any sample of infant formulae, while Cd was detected and quantified in cereal foods. Also, the calculated values of Estimated Tolerable Weekly Intake (ETWI) as well as the Estimated Tolerable Monthly Intake (ETMI) were lower than recommended values for a tolerable weekly intake (TWI) and provisional tolerable monthly intake (PTMI).


Edible Grain , Infant Food , Infant Formula , Trace Elements , Serbia , Edible Grain/chemistry , Humans , Infant , Trace Elements/analysis , Infant Food/analysis , Infant Formula/analysis , Infant Formula/chemistry
17.
Sci Total Environ ; 932: 173045, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38734098

The main objective of this study was to develop and test a method of separating externally deposited Mn oxyhydroxides and co-precipitated elements from samples of aquatic moss (the moss Fontinalis antipyretica). The method, which uses 0.1 M hydroxylamine to dissolve the oxyhydroxides, was tested with samples collected in rivers with slightly acidic, well­oxygenated waters, where high rates of Mn precipitation occur. The method was effective (it extracted up to 84 % of the Mn) and selective (Fe oxyhydroxides were not extracted). The elements Ba, Cd, Zn and Ni were associated with the Mn oxyhydroxides, while Al, As, Cr, Cu, Fe, Hg and Pb were not. Deposition of Mn therefore increased the concentration of some elements in the moss samples. However, as Mn precipitation depends on Eh and pH, which are independent of the concentrations of the elements in water, the relationship between water and moss element concentrations is not clear (i.e. the data are noisy). This is a problem in biomonitoring studies, which assume a close relationship between element concentrations in moss and water. The value of the proposed extraction method is that it can be used to correct the effect of Mn deposition. We present an example of this correction applied to the Cd concentrations in the test data. We found that the noise introduced by the Mn, including age-related effects (observed by comparing concentrations in 0-2.5 and 2.2-5.0 cm sections from the shoot apex), can be reduced. Additionally, the correction revealed recent increases in Cd concentrations in one site that were not observed in the uncorrected data. Another finding of interest was the low content of total Mn and different extractability (of most elements) observed in moss samples collected in alkaline waters. Finally, we discuss how future studies designed for different environmental scenarios can benefit from application of the proposed method.


Bryophyta , Environmental Monitoring , Trace Elements , Water Pollutants, Chemical , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Bryophyta/chemistry , Manganese/analysis , Bryopsida/chemistry
18.
J Environ Manage ; 359: 120933, 2024 May.
Article En | MEDLINE | ID: mdl-38696848

Groundwater serves as an important resource for drinking and agriculture in many countries, including India. Assessing the quality of groundwater is essential for understanding its chemical characteristics and suitability for consumption. This study aims to explore the factors affecting the hydrogeochemical changes in groundwater within Guwahati City, Assam, India. Groundwater samples were collected and analyzed for major and trace elements, as well as anion concentrations. Concentrations of As, Al, Ba, Cu, F-, Fe, Mn, and Pb exceeded the permissible limits set by both World Health Organization (WHO) and Bureau of Indian Standards (BIS), indicating serious health concerns for the local inhabitants. The distribution pattern of trace elements exceeding the guideline values is intricate, suggesting widespread contamination of groundwater throughout the study area. The Heavy Metal Pollution Index (HPI) and Water Quality Index (WQI) revealed that, except for the central zone, groundwater across the entire study area requires intervention. Piper plot illustrated that the groundwater is predominantly of Ca-HCO3 type, indicating the dominance of alkaline earth and weak acids. Groundwater hydrogeochemistry is mainly controlled by rock-water interaction and evolves through silicate weathering, carbonate weathering, and cation exchange processes. Multivariate statistical analysis identified distinct groups of groundwater based on chemical characteristics, emphasizing the role of both natural processes and anthropogenic activities in influencing groundwater quality. Regular monitoring, management, and intervention of groundwater sources throughout the study area are crucial for long-term use. The findings of this study will assist stakeholders, regulators, and policymakers in formulating strategies for the sustainable use of groundwater.


Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Groundwater/analysis , India , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Trace Elements/analysis , Water Quality
19.
J Environ Manage ; 359: 121008, 2024 May.
Article En | MEDLINE | ID: mdl-38703654

Despite the high potential of seagrass restoration to reverse the trend of marine ecosystem degradation, there are still many limitations, especially when ecosystems are severely degraded. In particular, it is not known whether restoring polluted ecosystems can lead to potentially harmful effects associated with contaminant remobilisation. Here, we aimed to investigate the role of P. oceanica transplanted from a pristine meadow to a polluted site (Augusta Bay, Italy, Mediterranean Sea) in two seasons of the year, as a sink or source of trace elements to the environment. The main results showed i) higher accumulation of chromium (Cr), copper (Cu) and total mercury (THg) in plants transplanted in summer than in winter, as well as an increase in Cr and THg in plants from sites with higher trace element loads; ii) an increase in leaf phenolics and a decrease in rhizome soluble carbohydrates associated with As and THg accumulation, suggesting the occurrence of defence strategies to cope with pollution stress; iii) a different partitioning of trace elements between below- and above-ground tissues, with arsenic (As) and Cr accumulating in roots, whereas Cu and THg in both roots and leaves. These results suggest that P. oceanica transplanted to polluted sites can act as both a sink and a source, sequestering trace elements in the below-ground tissues thus reducing their bioavailability, but also potentially remobilising them. However, the amount of trace elements potentially exported from P. oceanica to the environment through transfer into food webs via leaves and detritus appeared to be low under the specific conditions of the study site. Although further research into seagrass restoration of polluted sites would improve current knowledge to support effective ecosystem-based coastal management, the benefits of restoring polluted sites through seagrass transplantation appear to outweigh the potential costs of inaction over time.


Alismatales , Ecosystem , Trace Elements , Trace Elements/analysis , Mediterranean Sea , Water Pollutants, Chemical , Italy , Arsenic/analysis
20.
Sci Rep ; 14(1): 11288, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760438

Juveniles of three cyprinids with various diets and habitat preferences were collected from the Szamos River (Hungary) during a period of pollution in November 2013: the herbivorous, benthic nase (Chondrostoma nasus), the benthivorous, benthic barbel (Barbus barbus), and the omnivorous, pelagic chub (Squalius cephalus). Our study aimed to assess the accumulation of these elements across species with varying diets and habitat preferences, as well as their potential role in biomonitoring efforts. The Ca, K, Mg, Na, Cd, Cr, Cu, Fe, Mn, Pb, Sr, and Zn concentration was analyzed in muscle, gills, and liver using MP-AES. The muscle and gill concentrations of Cr, Cu, Fe, and Zn increased with trophic level. At the same time, several differences were found among the trace element patterns related to habitat preferences. The trace elements, including Cd, Pb, and Zn, which exceeded threshold concentrations in the water, exhibited higher accumulations mainly in the muscle and gills of the pelagic chub. Furthermore, the elevated concentrations of trace elements in sediments (Cr, Cu, Mn) demonstrated higher accumulation in the benthic nase and barbel. Our findings show habitat preference as a key factor in juvenile bioindicator capability, advocating for the simultaneous use of pelagic and benthic juveniles to assess water and sediment pollution status.


Cyprinidae , Ecosystem , Trace Elements , Water Pollutants, Chemical , Animals , Cyprinidae/metabolism , Water Pollutants, Chemical/analysis , Trace Elements/analysis , Trace Elements/metabolism , Environmental Monitoring/methods , Diet , Gills/metabolism , Rivers , Water Pollution/analysis
...