Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.175
Filter
1.
J Biochem Mol Toxicol ; 38(7): e23752, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923759

ABSTRACT

Oral squamous cell carcinoma (OSCC) requires an in-depth exploration of its molecular mechanisms. The Warburg effect, along with the oncogenes enolase 2 (ENO2) and homeobox C6 (HOXC6), plays a central role in cancer. However, the specific interaction between ENO2 and HOXC6 in driving the Warburg effect and OSCC progression remains poorly understood. Through differential gene expression analysis in head and neck squamous cell carcinomas using Gene Expression Profiling Interactive Analysis, we identified upregulated ENO2 in OSCC. Silencing ENO2 in OSCC cells revealed its involvement in migration, invasion, and aerobic glycolysis of OSCC cells. Further exploration of ENO2's regulatory network identified HOXC6 as a potential transcriptional regulator. Subsequently, HOXC6 was silenced in OSCC cells, and expressions of ENO2 were assessed to validate its relationship with ENO2. Chromatin Immunoprecipitation and luciferase assays were utilized to investigate the direct transcriptional activation of ENO2 by HOXC6. A rescue assay co-overexpressing ENO2 and silencing HOXC6 in OSCC cells affirmed HOXC6's role in ENO2-associated glycolysis. High ENO2 expression in OSCC was validated through quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry analyses, which correlated with poor patient survival. Functional assays demonstrated that ENO2 silencing inhibited glycolysis and attenuated the aggressiveness of OSCC cells. In vivo studies confirmed the oncogenic role of ENO2 in OSCC growth. Notably, HOXC6 exhibited a positive correlation with ENO2 expression in clinical samples. Mechanistically, HOXC6 was identified as a direct transcriptional activator of ENO2, orchestrating the Warburg effect in OSCC cells. This study reveals the intricate link between HOXC6-mediated ENO2 transcriptional activation and the Warburg effect in OSCC, offering a potential therapeutic target for treating OSCC patients.


Subject(s)
Homeodomain Proteins , Mouth Neoplasms , Phosphopyruvate Hydratase , Transcriptional Activation , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cell Line, Tumor , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/genetics , Warburg Effect, Oncologic , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Animals , Gene Expression Regulation, Neoplastic , Disease Progression , Mice , Mice, Nude , Male , Female , Glycolysis , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
2.
Genes (Basel) ; 15(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38927636

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma. The oncogene product Tax of HTLV-I is thought to play crucial roles in leukemogenesis by promoting proliferation of the virus-infected cells through activation of growth-promoting genes. These genes code for growth factors and their receptors, cytokines, cell adhesion molecules, growth signal transducers, transcription factors and cell cycle regulators. We show here that Tax activates the gene coding for coactivator-associated arginine methyltransferase 1 (CARM1), which epigenetically enhances gene expression through methylation of histones. Tax activated the Carm1 gene and increased protein expression, not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs). Tax increased R17-methylated histone H3 on the target gene IL-2Rα, concomitant with increased expression of CARM1. Short hairpin RNA (shRNA)-mediated knockdown of CARM1 decreased Tax-mediated induction of IL-2Rα and Cyclin D2 gene expression, reduced E2F activation and inhibited cell cycle progression. Tax acted via response elements in intron 1 of the Carm1 gene, through the NF-κB pathway. These results suggest that Tax-mediated activation of the Carm1 gene contributes to leukemogenic target-gene expression and cell cycle progression, identifying the first epigenetic target gene for Tax-mediated trans-activation in cell growth promotion.


Subject(s)
Gene Products, tax , Human T-lymphotropic virus 1 , Protein-Arginine N-Methyltransferases , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Gene Products, tax/genetics , Gene Products, tax/metabolism , Human T-lymphotropic virus 1/genetics , Cyclin D2/genetics , Cyclin D2/metabolism , Transcriptional Activation , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Histones/metabolism , Histones/genetics , Epigenesis, Genetic , Jurkat Cells
3.
Sci Rep ; 14(1): 14080, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890442

ABSTRACT

Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation, the DNA methylation status in FPDMM remains unknown, largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here, using genome editing techniques, we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks), consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs, with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1, an ETS family member, was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation, and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 2 Subunit , DNA Methylation , Induced Pluripotent Stem Cells , Megakaryocytes , Mutation , Proto-Oncogene Protein c-fli-1 , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Megakaryocytes/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Cell Differentiation/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Blood Platelet Disorders/genetics , Blood Platelet Disorders/metabolism , Blood Platelet Disorders/pathology , Transcriptional Activation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Leukemia, Myeloid, Acute , Blood Coagulation Disorders, Inherited
4.
Biol Direct ; 19(1): 42, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831379

ABSTRACT

Triple-negative breast cancer (TNBC) is more aggressive and has a higher metastasis rate compared with other subtypes of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is now the only available systemic treatment for TNBC. However, some patients might still develop drug resistance and have poor prognosis. Therefore, novel molecular biomarkers and new treatment targets are urgently needed for patients with TNBC. To provide molecular insights into TNBC progression, we investigated the function and the underlying mechanism of Defective in cullin neddylation 1 domain containing 5 (DCUN1D5) in the regulation of TNBC. By TCGA dataset and surgical specimens with immunohistochemical (IHC) staining method, DCUN1D5 was identified to be significantly upregulated in TNBC tumor tissues and negatively associated with prognosis. A series of in vitro and in vivo experiments were performed to confirm the oncogenic role of DCUN1D5 in TNBC. Overexpression of FN1 or PI3K/AKT activator IGF-1 could restore the proliferative and invasive ability induced by DCUN1D5 knockdown and DCUN1D5 could act as a novel transcriptional target of transcription factor Yin Yang 1 (YY1). In conclusion, YY1-enhanced DCUN1D5 expression could promote TNBC progression by FN1/PI3K/AKT pathway and DCUN1D5 might be a potential prognostic biomarker and therapeutic target for TNBC treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms , YY1 Transcription Factor , Animals , Female , Humans , Mice , Cell Line, Tumor , Disease Progression , Fibronectins , Gene Expression Regulation, Neoplastic , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Transcriptional Activation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics
5.
Nat Commun ; 15(1): 4749, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834569

ABSTRACT

Gene Transfer Agents (GTAs) are phage-like particles that cannot self-multiply and be infectious. Caulobacter crescentus, a bacterium best known as a model organism to study bacterial cell biology and cell cycle regulation, has recently been demonstrated to produce bona fide GTA particles (CcGTA). Since C. crescentus ultimately die to release GTA particles, the production of GTA particles must be tightly regulated and integrated with the host physiology to prevent a collapse in cell population. Two direct activators of the CcGTA biosynthetic gene cluster, GafY and GafZ, have been identified, however, it is unknown how GafYZ controls transcription or how they coordinate gene expression of the CcGTA gene cluster with other accessory genes elsewhere on the genome for complete CcGTA production. Here, we show that the CcGTA gene cluster is transcriptionally co-activated by GafY, integration host factor (IHF), and by GafZ-mediated transcription anti-termination. We present evidence that GafZ is a transcription anti-terminator that likely forms an anti-termination complex with RNA polymerase, NusA, NusG, and NusE to bypass transcription terminators within the 14 kb CcGTA cluster. Overall, we reveal a two-tier regulation that coordinates the synthesis of GTA particles in C. crescentus.


Subject(s)
Bacterial Proteins , Caulobacter crescentus , Gene Expression Regulation, Bacterial , Multigene Family , Transcriptional Activation , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacteriophages/genetics , Transcription, Genetic , Transcription Termination, Genetic
6.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892166

ABSTRACT

Pertuzumab (Perjeta®), a humanized antibody binding to the dimerization arm of HER2 (Human epidermal growth factor receptor-2), has failed as a monotherapy agent in HER2 overexpressing malignancies. Since the molecular interaction of HER2 with ligand-bound EGFR (epidermal growth factor receptor) has been implied in mitogenic signaling and malignant proliferation, we hypothesized that this interaction, rather than HER2 expression and oligomerization alone, could be a potential molecular target and predictor of the efficacy of pertuzumab treatment. Therefore, we investigated static and dynamic interactions between HER2 and EGFR molecules upon EGF stimulus in the presence and absence of pertuzumab in HER2+ EGFR+ SK-BR-3 breast tumor cells using Förster resonance energy transfer (FRET) microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS). The consequential activation of signaling and changes in cell proliferation were measured by Western blotting and MTT assay. The autocorrelation functions of HER2 diffusion were best fitted by a three-component model corrected for triplet formation, and among these components the slowly diffusing membrane component revealed aggregation induced by EGFR ligand binding, as evidenced by photon-counting histograms and co-diffusing fractions. This aggregation has efficiently been prevented by pertuzumab treatment, which also inhibited the post-stimulus interaction of EGFR and HER2, as monitored by changes in FRET efficiency. Overall, the data demonstrated that pertuzumab, by hindering post-stimulus interaction between EGFR and HER2, inhibits EGFR-evoked HER2 aggregation and phosphorylation and leads to a dose-dependent decrease in cell proliferation, particularly when higher amounts of EGF are present. Consequently, we propose that EGFR expression on HER2-positive tumors could be taken into consideration as a potential biomarker when predicting the outcome of pertuzumab treatment.


Subject(s)
Antibodies, Monoclonal, Humanized , Breast Neoplasms , Cell Proliferation , ErbB Receptors , Receptor, ErbB-2 , Signal Transduction , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , ErbB Receptors/metabolism , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Signal Transduction/drug effects , Female , Cell Proliferation/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Fluorescence Resonance Energy Transfer , Transcriptional Activation/drug effects , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use
7.
Biomolecules ; 14(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927123

ABSTRACT

Zygotic genome activation (ZGA) is a pivotal event in mammalian embryogenesis, marking the transition from maternal to zygotic control of development. During the ZGA process that is characterized by the intricate cascade of gene expression, who tipped the first domino in a meticulously arranged sequence is a subject of paramount interest. Recently, Dux, Obox and Nr5a2 were identified as pioneer transcription factors that reside at the top of transcriptional hierarchy. Through co-option of retrotransposon elements as hubs for transcriptional activation, these pioneer transcription factors rewire the gene regulatory network, thus initiating ZGA. In this review, we provide a snapshot of the mechanisms underlying the functions of these pioneer transcription factors. We propose that ZGA is the starting point where the embryo's own genome begins to influence development trajectory, therefore in-depth dissecting the functions of pioneer transcription factors during ZGA will form a cornerstone of our understanding for early embryonic development, which will pave the way for advancing our grasp of mammalian developmental biology and optimizing in vitro production (IVP) techniques.


Subject(s)
Genome , Transcription Factors , Zygote , Zygote/metabolism , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Gene Expression Regulation, Developmental , Embryonic Development/genetics , Retroelements/genetics , Transcriptional Activation/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
8.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38878278

ABSTRACT

Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that deposits asymmetrical dimethylation marks on both histone and nonhistone substrates. The regulatory role of CARM1 in transcription was first identified in estrogen receptor positive (ER+) breast cancer. Since then, the mechanism of CARM1 in activating ER-target genes has been further interrogated. CARM1 is expressed at the highest level in ER negative (ER-) breast cancer and higher expression correlates with poor prognosis, suggesting an oncogenic role of CARM1. Indeed, in ER- breast cancer, CARM1 can promote proliferation and metastasis at least partly through methylation of proteins and activation of oncogenes. In this review, we summarize the mechanisms of transcriptional activation by CARM1 in breast cancer. The methyltransferase activity of CARM1 is important for many of its functions; here, we also highlight the nonenzymatic roles of CARM1. We also cover the biological processes regulated by CARM1 that are often deregulated in cancer and the ways to harness CARM1 in cancer treatment.


Subject(s)
Breast Neoplasms , Protein-Arginine N-Methyltransferases , Humans , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Transcriptional Activation , Animals
9.
Physiol Plant ; 176(3): e14371, 2024.
Article in English | MEDLINE | ID: mdl-38837414

ABSTRACT

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ethylenes , Gene Expression Regulation, Plant , Lyases , Plant Roots , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Ethylenes/metabolism , Ethylenes/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Lyases/genetics , Lyases/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Promoter Regions, Genetic/genetics , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics , Transcriptional Activation/genetics
10.
Plant Mol Biol ; 114(3): 54, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714535

ABSTRACT

Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and ß-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Ipomoea batatas , Plant Proteins , Promoter Regions, Genetic , Transcription Factors , beta-Amylase , Arabidopsis/genetics , Arabidopsis/metabolism , beta-Amylase/genetics , beta-Amylase/metabolism , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/genetics
11.
Sci China Life Sci ; 67(7): 1468-1478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703348

ABSTRACT

Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.


Subject(s)
Aflatoxin B1 , Chickens , Cytochrome P-450 CYP1A1 , Cytochrome P-450 CYP2A6 , Liver , Promoter Regions, Genetic , Sp1 Transcription Factor , Transcription Factor AP-1 , Animals , Aflatoxin B1/metabolism , Chickens/metabolism , Liver/metabolism , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 CYP2A6/genetics , Transcriptional Activation
12.
Nat Genet ; 56(6): 1181-1192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769457

ABSTRACT

Eukaryotic transcription factors (TFs) activate gene expression by recruiting cofactors to promoters. However, the relationships between TFs, promoters and their associated cofactors remain poorly understood. Here we combine GAL4-transactivation assays with comparative CRISPR-Cas9 screens to identify the cofactors used by nine different TFs and core promoters in human cells. Using this dataset, we associate TFs with cofactors, classify cofactors as ubiquitous or specific and discover transcriptional co-dependencies. Through a reductionistic, comparative approach, we demonstrate that TFs do not display discrete mechanisms of activation. Instead, each TF depends on a unique combination of cofactors, which influences distinct steps in transcription. By contrast, the influence of core promoters appears relatively discrete. Different promoter classes are constrained by either initiation or pause-release, which influences their dynamic range and compatibility with cofactors. Overall, our comparative cofactor screens characterize the interplay between TFs, cofactors and core promoters, identifying general principles by which they influence transcription.


Subject(s)
Promoter Regions, Genetic , Transcription Factors , Transcriptional Activation , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , CRISPR-Cas Systems , Transcription, Genetic , Gene Expression Regulation
13.
Cell Rep ; 43(5): 114170, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38700983

ABSTRACT

During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.


Subject(s)
Cellular Reprogramming , Chromatin Assembly and Disassembly , Histones , Humans , Cellular Reprogramming/genetics , Histones/metabolism , Single-Cell Analysis , Transcriptional Activation , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Chromatin/metabolism , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology
14.
Biochim Biophys Acta Mol Cell Res ; 1871(6): 119755, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768927

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent malignant tumors with limited treatment options. Therefore, there is an urgent need to investigate new therapeutic targets against CRC. Ubiquitous Kruppel-like factor (UKLF) is involved in various cancer processes, but its effect and detailed molecular mechanism in CRC are not yet fully understood. Here, this study aimed to investigate the function and mechanism of UKLF in the development of CRC. The results showed that UKLF was highly expressed in CRC tissues from clinical patients and its high expression was related to poor prognosis. UKLF promoted cell proliferation, migration and invasion, and inhibited cell apoptosis. The promotion effect of UKLF on tumor growth was further confirmed in vivo. As far as the mechanism was concerned, poly (C) binding protein 2 (PCBP2) was verified to bind to the 3'-UTR of UKLF mRNA and enhance its mRNA stability. Moreover, UKLF modulated the expression of solute carrier family 39 member 4 (SLC39A4) at the transcriptional level. Taken together, these findings elucidated the regulatory mechanism of UKLF and uncovered the importance of the PCBP2/UKLF/SLC39A4 pathway. The targeting of UKLF may be a novel direction for molecular-targeted CRC therapy.


Subject(s)
Cation Transport Proteins , Cell Proliferation , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins , Animals , Female , Humans , Male , Mice , Apoptosis/genetics , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Mice, Nude , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcriptional Activation
15.
Clin Transl Med ; 14(5): e1680, 2024 May.
Article in English | MEDLINE | ID: mdl-38769668

ABSTRACT

BACKGROUND: A series of studies have demonstrated the emerging involvement of transfer RNA (tRNA) processing during the progression of tumours. Nevertheless, the roles and regulating mechanisms of tRNA processing genes in neuroblastoma (NB), the prevalent malignant tumour outside the brain in children, are yet unknown. METHODS: Analysis of multi-omics results was conducted to identify crucial regulators of downstream tRNA processing genes. Co-immunoprecipitation and mass spectrometry methods were utilised to measure interaction between proteins. The impact of transcriptional regulators on expression of downstream genes was measured by dual-luciferase reporter, chromatin immunoprecipitation, western blotting and real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) methods. Studies have been conducted to reveal impact and mechanisms of transcriptional regulators on biological processes of NB. Survival differences were analysed using the log-rank test. RESULTS: c-Myc was identified as a transcription factor driving tRNA processing gene expression and subsequent malate-aspartate shuttle (MAS) in NB cells. Mechanistically, c-Myc directly promoted the expression of glutamyl-prolyl-tRNA synthetase (EPRS) and leucyl-tRNA synthetase (LARS), resulting in translational up-regulation of glutamic-oxaloacetic transaminase 1 (GOT1) as well as malate dehydrogenase 1 (MDH1) via inhibiting general control nonrepressed 2 or activating mechanistic target of rapamycin signalling. Meanwhile, lamin A (LMNA) inhibited c-Myc transactivation via physical interaction, leading to suppression of MAS, aerobic glycolysis, tumourigenesis and aggressiveness. Pre-clinically, lobeline was discovered as a LMNA-binding compound to facilitate its interaction with c-Myc, which inhibited aminoacyl-tRNA synthetase expression, MAS and tumour progression of NB, as well as growth of organoid derived from c-Myc knock-in mice. Low levels of LMNA or elevated expression of c-Myc, EPRS, LARS, GOT1 or MDH1 were linked to a worse outcome and a shorter survival time of clinical NB patients. CONCLUSIONS: These results suggest that targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for MAS and tumour progression.


Subject(s)
Proto-Oncogene Proteins c-myc , Humans , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Aspartic Acid/metabolism , Malates/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Neuroblastoma/metabolism , Neuroblastoma/genetics , Disease Progression , Transcriptional Activation/genetics , Cell Line, Tumor , Disease Models, Animal
16.
J Virol ; 98(6): e0042324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38771044

ABSTRACT

Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE: Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 1, Bovine , Promoter Regions, Genetic , Receptors, Glucocorticoid , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/physiology , Animals , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Cattle , Transcriptional Activation , Viral Proteins/metabolism , Viral Proteins/genetics , Dexamethasone/pharmacology , Virus Activation , Virus Latency , Cell Line , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Herpesviridae Infections/veterinary , Herpesviridae Infections/genetics , Mice , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Response Elements , Binding Sites , Trans-Activators , Ubiquitin-Protein Ligases
17.
Anticancer Res ; 44(6): 2349-2358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821628

ABSTRACT

BACKGROUND/AIM: Approximately 50% of melanomas harbor the BRAF V600E mutation and targeted therapies using BRAF inhibitors improve patient outcomes. Nonetheless, resistance to BRAF inhibitors develops rapidly and remains a challenge in melanoma treatment. In this study, we attempted to isolate long noncoding RNAs (lncRNAs) involved in BRAF inhibitor resistance using a comprehensive screening method. MATERIALS AND METHODS: We used a CRISPR-Cas9 synergistic activation mediator (SAM) protein complex in a genome-scale transcriptional activation assay to screen for candidate lncRNA genes related to BRAF inhibitor resistance. Correlation analysis was performed between expression levels of isolated lncRNA genes and IC50 of dabrafenib in a BRAF-mutated melanoma cell line. Next, online databases were used to construct the lncRNA-miRNA-mRNA regulatory network. Finally, we evaluated the significance of the expression levels of these lncRNAs and mRNAs as biomarkers using clinical specimens. RESULTS: We isolated three BRAF inhibitor resistance-associated lncRNA genes, namely SNHG16, NDUFV2-AS1, and LINC01502. We constructed a lncRNA-miRNA-mRNA network of 13 nodes consisting of three lncRNAs, six miRNAs, and four mRNAs. The lncRNAs and target mRNAs from each regulatory axis significantly and positively correlated with each other. Finally, Kaplan-Meier analysis showed that higher expression levels of MITF, which was up-regulated by LINC01502, were significantly associated with worse prognosis in BRAF V600E-mutated melanoma. CONCLUSION: The identification of these BRAF inhibitor resistance-associated lncRNA genes at the genomic scale and the establishment of the lncRNA-miRNA-mRNA regulatory network provides new insights into the underlying mechanisms of BRAF inhibitor resistance in melanoma.


Subject(s)
CRISPR-Cas Systems , Drug Resistance, Neoplasm , Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , RNA, Long Noncoding , Transcriptional Activation , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , RNA, Long Noncoding/genetics , Drug Resistance, Neoplasm/genetics , Melanoma/genetics , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Imidazoles/pharmacology , Mutation , Oximes/pharmacology , RNA, Messenger/genetics , Gene Regulatory Networks
18.
Proc Natl Acad Sci U S A ; 121(21): e2318591121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739802

ABSTRACT

The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73ß, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73ß's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73ß's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73ß isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73ß to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.


Subject(s)
Cell Proliferation , Protein Domains , Transcriptional Activation , Tumor Protein p73 , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , Humans , Cell Movement/genetics , Mutation , Cell Line, Tumor , Protein Isoforms/metabolism , Protein Isoforms/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Phosphorylation , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
19.
PLoS Genet ; 20(5): e1011277, 2024 May.
Article in English | MEDLINE | ID: mdl-38781242

ABSTRACT

How enhancers regulate their target genes in the context of 3D chromatin organization is extensively studied and models which do not require direct enhancer-promoter contact have recently emerged. Here, we use the activation of estrogen receptor-dependent enhancers in a breast cancer cell line to study enhancer-promoter communication at two loci. This allows high temporal resolution tracking of molecular events from hormone stimulation to efficient gene activation. We examine how both enhancer-promoter spatial proximity assayed by DNA fluorescence in situ hybridization, and contact frequencies resulting from chromatin in situ fragmentation and proximity ligation, change dynamically during enhancer-driven gene activation. These orthogonal methods produce seemingly paradoxical results: upon enhancer activation enhancer-promoter contact frequencies increase while spatial proximity decreases. We explore this apparent discrepancy using different estrogen receptor ligands and transcription inhibitors. Our data demonstrate that enhancer-promoter contact frequencies are transcription independent whereas altered enhancer-promoter proximity depends on transcription. Our results emphasize that the relationship between contact frequencies and physical distance in the nucleus, especially over short genomic distances, is not always a simple one.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Estrogens , Promoter Regions, Genetic , Humans , Chromatin/genetics , Chromatin/metabolism , Estrogens/metabolism , Transcription, Genetic , MCF-7 Cells , Breast Neoplasms/genetics , Female , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Transcriptional Activation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism
20.
J Oral Pathol Med ; 53(6): 404-413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797866

ABSTRACT

BACKGROUND: Some studies confirmed that erythroblast transformation-specific-related gene (ERG) may be a pathogenic factor of oral squamous cell carcinoma (OSCC). However, the undergoing molecular mechanism has not been elucidated yet. OBJECTIVE: In this study, the investigation will focus on how the transcription factor ERG modulates the biological behaviors of OSCC. METHODS: In this study, cancer tissue specimens and corresponding paracancer tissues were collected from 54 patients. Real-time polymerase chain reaction analysis and Western blots were employed to detect the expression of multiple genes. Cell proliferation assays, Transwell, and flow cytometry assay were utilized to detect the proliferation, invasion, and apoptosis of OSCC cell, respectively. Dual luciferase reporter gene and chromatin immunoprecipitation assays were conducted to verify the regulation of ERG on PRDX1. RESULTS: ERG exhibits high expression levels in OSCC. Inhibition of ERG has been shown to effectively suppress the malignant growth of OSCC cells. Moreover, ERG has been found to transcriptionally upregulate the expression of PRDX1. The knockdown of PRDX1 has demonstrated its ability to inhibit the malignant growth of OSCC cells. Interestingly, when PRDX1 is overexpressed, it attenuates the inhibitory effect of si-ERG on the malignant growth of OSCC cells. This suggests that PRDX1 may play a crucial role in mediating the impact of ERG on malignancy in OSCC cells. CONCLUSION: The transcription factor ERG promotes the expression of PRDX1, which could enhance the proliferation and invasion while inhibiting the apoptosis of OSCC cells.


Subject(s)
Carcinoma, Squamous Cell , Cell Proliferation , Mouth Neoplasms , Peroxiredoxins , Transcriptional Regulator ERG , Up-Regulation , Humans , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism , Apoptosis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Neoplasm Invasiveness , Transcriptional Activation , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...