Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.465
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2407066121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959038

ABSTRACT

Mammalian transglutaminases, a family of Ca2+-dependent proteins, are implicated in a variety of diseases. For example, celiac disease (CeD) is an autoimmune disorder whose pathogenesis requires transglutaminase 2 (TG2) to deamidate select glutamine residues in diet-derived gluten peptides. Deamidation involves the formation of transient γ-glutamyl thioester intermediates. Recent studies have revealed that in addition to the deamidated gluten peptides themselves, their corresponding thioester intermediates are also pathogenically relevant. A mechanistic understanding of this relevance is hindered by the absence of any structure of Ca2+-bound TG2. We report the X-ray crystallographic structure of human TG2 bound to an inhibitory gluten peptidomimetic and two Ca2+ ions in sites previously designated as S1 and S3. Together with additional structure-guided experiments, this structure provides a mechanistic explanation for how S1 regulates formation of an inhibitory disulfide bond in TG2, while also establishing that S3 is essential for γ-glutamyl thioester formation. Furthermore, our crystallographic findings and associated analyses have revealed that i) two interacting residues, H305 and E363, play a critical role in resolving the thioester intermediate into an isopeptide bond (transamidation) but not in thioester hydrolysis (deamidation); and ii) residues N333 and K176 stabilize preferred TG2 substrates and inhibitors via hydrogen bonding to nonreactive backbone atoms. Overall, the intermediate-state conformer of TG2 reported here represents a superior model to previously characterized conformers for both transition states of the TG2-catalyzed reaction.


Subject(s)
Calcium , GTP-Binding Proteins , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Transglutaminases/metabolism , Transglutaminases/chemistry , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Humans , Calcium/metabolism , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/chemistry , Crystallography, X-Ray , Glutens/metabolism , Glutens/chemistry , Models, Molecular , Protein Conformation , Celiac Disease/metabolism , Protein Binding
2.
J Food Sci ; 89(7): 4389-4402, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957134

ABSTRACT

Previously, we showed that water extract (soymilk, except pH was increased to 8 from 6.5) of whole soybean could be used directly as a raw material for producing edible soy films by deposition of the film-forming solution (soy extract with enhancers). However, the strength of such soy films needed improvement because they were weak. The purpose of this study was to investigate how transglutaminase (TG) cross-linking reactions and film enhancers, including pectin (low- and high-methoxyl pectin), whey protein isolate (WPI), and soy protein isolate (SPI), improve the physical properties of soy films. Soy films prepared with TG had tensile strength (TS) of 3.01 MPa and puncture strength (PS) of 0.78 MPa, which were higher by as much as 51% and 30% than that of soy films without TG treatment, respectively. Pectin showed significant effects on the mechanical properties of TG-added soy films in terms of TS, PS, and % elongation. On the other hand, only TS and PS were increased by the addition of WPI or SPI. Heat curing had a significant effect on soy film's physical properties. TG treatment significantly reduced film solubility when soaked in water and various levels of acid (vinegar) and base (baking soda) solutions. Under the experimental conditions of 35 unit TG and 28 min of reaction, the degrees of cross-linking were evidenced by the disappearance of individual protein subunits, except the basic subunit of glycinin, and the reduction of 21% of lysine residues of the proteins. HIGHLIGHTS: Edible soy films were made with transglutaminase and about 21% lysine cross-linked. The mechanical strength of soy films was increased by incorporating film enhancers. Transglutaminase enhanced the mechanical properties of soy films.


Subject(s)
Pectins , Soybean Proteins , Tensile Strength , Transglutaminases , Transglutaminases/chemistry , Transglutaminases/metabolism , Pectins/chemistry , Soybean Proteins/chemistry , Solubility , Whey Proteins/chemistry , Food Packaging/methods , Cross-Linking Reagents/chemistry , Glycine max/chemistry , Edible Films , Hydrogen-Ion Concentration , Soy Milk/chemistry
4.
Physiol Rep ; 12(12): e16012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38959068

ABSTRACT

Pulmonary fibrosis is an interstitial scarring disease of the lung characterized by poor prognosis and limited treatment options. Tissue transglutaminase 2 (TG2) is believed to promote lung fibrosis by crosslinking extracellular matrix components and activating latent TGFß. This study assessed physiologic pulmonary function and metabolic alterations in the mouse bleomycin model with TG2 genetic deletion. TG2-deficient mice demonstrated attenuated the fibrosis and preservation of lung function, with significant reduction in elastance and increases in compliance and inspiratory capacity compared to control mice treated with bleomycin. Bleomycin induced metabolic changes in the mouse lung that were consistent with increased aerobic glycolysis, including increased expression of lactate dehydrogenase A and increased production of lactate, as well as increased glutamine, glutamate, and aspartate. TG2-deficient mice treated with bleomycin exhibited similar metabolic changes but with reduced magnitude. Our results demonstrate that TG2 is required for a typical fibrosis response to injury. In the absence of TG2, the fibrotic response is biochemically similar to wild-type, but lesions are smaller and lung function is preserved. We also show for the first time that profibrotic pathways of tissue stiffening and metabolic reprogramming are interconnected, and that metabolic disruptions in fibrosis go beyond glycolysis.


Subject(s)
Bleomycin , Lung , Mice, Knockout , Protein Glutamine gamma Glutamyltransferase 2 , Pulmonary Fibrosis , Transglutaminases , Animals , Bleomycin/toxicity , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Transglutaminases/metabolism , Transglutaminases/genetics , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Mice , Lung/pathology , Lung/metabolism , Lung/drug effects , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Mice, Inbred C57BL , Glycolysis , Male
5.
Biol Pharm Bull ; 47(6): 1231-1238, 2024.
Article in English | MEDLINE | ID: mdl-38945844

ABSTRACT

Porcine placental extract (PPE) is commonly used in various health foods and cosmetics. PPE use in cosmetics predominantly consist of the water-soluble fraction derived from the entire placenta. In this report, we examined the effect of the hydrophobic constituents of the PPE, specifically the sphingolipid-enriched fraction designated as the sphingolipid-enriched porcine placental extract (SLPPE), on the expression of genes associated with skin function in cultured normal human epidermal keratinocytes. Using quantitative RT-PCR (qRT-PCR) analysis, we found that SLPPE concentrations ranging from 25 to 100 µg/mL upregulated the gene expression of key components associated with the cornified envelope structure (filaggrin (FLG), involucrin (IVL) and loricrin (LOR)), cornification enzymes (transglutaminase 1 (TGM1) and TGM5) and the desquamation enzymes (kallikrein 5 (KLK5) and KLK7). Additionally, KLK5p and FLG protein (FLGp) were detected in the culture supernatants of keratinocytes treated with SLPPE at these concentrations. These findings suggest that SLPPE is possible to promote the cornification and desquamation in epidermal keratinocytes, and it may offer potential benefits in cosmetics.


Subject(s)
Filaggrin Proteins , Kallikreins , Keratinocytes , Sphingolipids , Transglutaminases , Keratinocytes/drug effects , Keratinocytes/metabolism , Humans , Animals , Transglutaminases/metabolism , Transglutaminases/genetics , Swine , Sphingolipids/metabolism , Kallikreins/metabolism , Kallikreins/genetics , Placental Extracts/pharmacology , Cells, Cultured , Female , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , Pregnancy
6.
J Agric Food Chem ; 72(25): 14302-14314, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865607

ABSTRACT

In this work, lactoferrin (LF)-chitosan (CS) composite hydrogels with good loading capacity of thermosensitive bioactive substances were successfully obtained by microbial transglutaminase (MTG)-induced cross-linking. We evaluated the rheological, textural, and microstructural characteristics of the composite hydrogels under different conditions. The results demonstrated that the concentrations of LF and CS as well as the amount of MTG could regulate the textural properties, rheological properties, and water holding capability. The results of FTIR and fluorescence spectroscopy indicated that the main interactions within the composite gel were hydrogen and isopeptide bonds. Additionally, in vitro digestion simulation results verified that riboflavin kept stable in stomach due to the protection of LF-CS composite hydrogels and was released in small intestine. These results suggested that thermosensitive bioactive substance could be encapsulated and delivered by the LF-CS composite hydrogel, which could be applied in lots of potential applications in functional food as a new material.


Subject(s)
Chitosan , Hydrogels , Lactoferrin , Rheology , Transglutaminases , Transglutaminases/chemistry , Transglutaminases/metabolism , Hydrogels/chemistry , Chitosan/chemistry , Lactoferrin/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Delivery Systems , Drug Carriers/chemistry , Digestion
7.
J Proteome Res ; 23(7): 2651-2660, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38838187

ABSTRACT

Histone dopaminylation is a newly identified epigenetic mark that plays a role in the regulation of gene transcription, where an isopeptide bond is formed between the fifth amino acid of H3 (i.e., glutamine) and dopamine. Recently, we developed a chemical probe to specifically label and enrich histone dopaminylation via bioorthogonal chemistry. Given this powerful tool, we found that histone H3 glutamine 5 dopaminylation (H3Q5dop) was highly enriched in colorectal tumors, which could be attributed to the high expression level of its regulator, transglutaminase 2 (TGM2), in colon cancer cells. Due to the enzyme promiscuity of TGM2, nonhistone proteins have also been identified as dopaminylation targets; however, the dopaminylated proteome in cancer cells still remains elusive. Here, we utilized our chemical probe to enrich dopaminylated proteins from colorectal cancer cells in a bioorthogonal manner and performed the chemical proteomics analysis. Therefore, 425 dopaminylated proteins were identified, many of which are involved in nucleic acid metabolism and transcription pathways. More importantly, a number of dopaminylation sites were identified and attributed to the successful application of our chemical probe. Overall, these findings shed light on the significant association between cellular protein dopaminylation and cancer development, further suggesting that targeting these pathways may become a promising anticancer strategy.


Subject(s)
Colorectal Neoplasms , Histones , Protein Glutamine gamma Glutamyltransferase 2 , Proteomics , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Proteomics/methods , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Histones/metabolism , Transglutaminases/metabolism , Transglutaminases/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Cell Line, Tumor , Proteome/analysis , Proteome/metabolism , Protein Processing, Post-Translational , Glutamine/metabolism , Glutamine/chemistry , Epigenesis, Genetic
8.
Food Chem ; 454: 139590, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38823202

ABSTRACT

This study aimed to improve mung bean protein's gelation qualities via microbial transglutaminase (mTGase) cross-linking. The mTGase treatment significantly improved gel hardness and storage modulus (G') at higher enzyme levels (2 IU/g), peaking hardness at 3 h. The scanning electron microscopy imaging demonstrated more cross-linked structures at 2 IU/g, evolving into a dense network by 3 h. The water-holding capacity for mTGase-treated samples (2 IU/g, 3 h, 55 °C) tripled to 3.77 ± 0.06 g/g versus control (1.24 ± 0.02 g/g), alongside a 15 % decrease in zeta potential (-30.84 ± 0.901 mV versus control's -26.63 ± 0.497 mV) and an increase in emulsifying activity index to 4.519 ± 0.004 m2/g from 3.79 ± 0.01 m2/g (control). The confocal images showed a more uniform lipid droplet distribution in mTGase-treated samples, suggesting enhanced emulsifying activity. Thus, mTGase treatment significantly improved gel strength and emulsifying properties, making it ideal for plant-based seafood products.


Subject(s)
Gels , Plant Proteins , Transglutaminases , Vigna , Transglutaminases/chemistry , Transglutaminases/metabolism , Gels/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Vigna/chemistry , Vigna/enzymology , Emulsions/chemistry
9.
Int J Biol Macromol ; 273(Pt 1): 133054, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862054

ABSTRACT

Given the severe protein denaturation and self-aggregation during the high-temperature desolubilization, denatured soy meal (DSM) is limited by its low reactivity, high viscosity, and poor water solubility. Preparing low-cost and high-performance adhesives with DSM as the key feedstock is still challenging. Herein, this study reveals a double-enzyme co-activation method targeting DSM with the glycosidic bonds in protein-carbohydrate complexes and partial amide bonds in protein, increasing the protein dispersion index from 10.2 % to 75.1 % improves the reactivity of DSM. The green crosslinker transglutaminase (TGase) constructs a robust adhesive isopeptide bond network with high water-resistant bonding strength comparable to chemical crosslinkers. The adhesive has demonstrated high dry/wet shear strength (2.56 and 0.93 MPa) for plywood. After molecular recombination by enzyme strategy, the adhesive had the proper viscosity, high reactivity, and strong water resistance. This research showcases a novel perspective on developing a DSM-based adhesive and blazes new avenues for changes in protein structural function and adhesive performance.


Subject(s)
Adhesives , Glycine max , Transglutaminases , Transglutaminases/chemistry , Transglutaminases/metabolism , Adhesives/chemistry , Glycine max/chemistry , Glycine max/enzymology , Enzyme Activation , Viscosity , Protein Denaturation , Biomass , Soybean Proteins/chemistry
10.
Int J Biol Macromol ; 273(Pt 1): 133066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866294

ABSTRACT

To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.


Subject(s)
Metals, Heavy , Muramidase , Wastewater , Metals, Heavy/chemistry , Wastewater/chemistry , Animals , Muramidase/chemistry , Muramidase/isolation & purification , Muramidase/metabolism , Transglutaminases/chemistry , Transglutaminases/metabolism , Transglutaminases/isolation & purification , Wool/chemistry , Water Purification/methods , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Adsorption , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/isolation & purification , Amyloidogenic Proteins/metabolism , Wool Fiber , Protein Aggregates , Amyloid/chemistry
11.
Int J Biol Macromol ; 273(Pt 2): 133113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885870

ABSTRACT

Transglutaminase (TGase) from Streptomyces mobaraensis commonly used to improve protein-based foods due to its unique enzymatic reactions, which imply considerable attention in its production. Recently, TGase exhibit broad market potential in non-food industries. However, achieving efficient synthesis of TGase remains a significant challenge. Herein, we achieved a substantial amount of a fully functional and kinetically stable TGase produced by Komagataella phaffii (Pichia pastoris) using multiple strategies including Geneticin (G418) screening, combinatorial mutations, promoter optimization, and co-expression. The active TGase expression reached a maximum of 10.1 U mL-1 in shake flask upon 96 h of induction, which was 3.8-fold of the wild type. Also, the engineered strain exhibited a 6.4-fold increase in half-life and a 2-fold increase in specific activity, reaching 172.67 min at 60 °C (t1/2(60 °C)) and 65.3 U mg-1, respectively. Moreover, the high-cell density cultivation in 5-L fermenter was also applied to test the productivity at large scale. Following optimization at a fermenter, the secretory yield of TGase reached 47.96 U mL-1 in the culture supernatant. Given the complexity inherent in protein expression and secretion, our research is of great significance and offers a comprehensive guide for improving the production of a wide range of heterologous proteins.


Subject(s)
Streptomyces , Transglutaminases , Streptomyces/genetics , Streptomyces/enzymology , Transglutaminases/genetics , Transglutaminases/metabolism , Transglutaminases/biosynthesis , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Fermentation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis , Kinetics , Promoter Regions, Genetic
12.
Nat Immunol ; 25(7): 1218-1230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38914866

ABSTRACT

Transglutaminase 2 (TG2) plays a pivotal role in the pathogenesis of celiac disease (CeD) by deamidating dietary gluten peptides, which facilitates antigenic presentation and a strong anti-gluten T cell response. Here, we elucidate the molecular mechanisms underlying the efficacy of the TG2 inhibitor ZED1227 by performing transcriptional analysis of duodenal biopsies from individuals with CeD on a long-term gluten-free diet before and after a 6-week gluten challenge combined with 100 mg per day ZED1227 or placebo. At the transcriptome level, orally administered ZED1227 effectively prevented gluten-induced intestinal damage and inflammation, providing molecular-level evidence that TG2 inhibition is an effective strategy for treating CeD. ZED1227 treatment preserved transcriptome signatures associated with mucosal morphology, inflammation, cell differentiation and nutrient absorption to the level of the gluten-free diet group. Nearly half of the gluten-induced gene expression changes in CeD were associated with the epithelial interferon-γ response. Moreover, data suggest that deamidated gluten-induced adaptive immunity is a sufficient step to set the stage for CeD pathogenesis. Our results, with the limited sample size, also suggest that individuals with CeD might benefit from an HLA-DQ2/HLA-DQ8 stratification based on gene doses to maximally eliminate the interferon-γ-induced mucosal damage triggered by gluten.


Subject(s)
Celiac Disease , Diet, Gluten-Free , GTP-Binding Proteins , Gene Expression Profiling , Glutens , Intestinal Mucosa , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Celiac Disease/immunology , Humans , Glutens/immunology , Transglutaminases/metabolism , Transglutaminases/antagonists & inhibitors , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Female , Male , Adult , Transcriptome , Duodenum/pathology , Duodenum/immunology , Duodenum/metabolism , Interferon-gamma/metabolism , Middle Aged , HLA-DQ Antigens/genetics , HLA-DQ Antigens/immunology , Young Adult , Adaptive Immunity/drug effects
13.
Nutrients ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892641

ABSTRACT

Potential celiac disease (PCD) is a clinical condition characterised by the presence of a positive CD-specific serology and a normal intestinal architecture. Asymptomatic PCD patients are generally advised to continue on a gluten-containing diet (GCD), but long-term risks of this approach have never been explored. In the present study, we aimed to investigate nutritional and autoimmune complications possibly developing overtime in a cohort of asymptomatic PCD children on a GCD. We compared children's parameters of growth, nutritional status, and autoimmunity between the time of diagnosis and on the occasion of their last medical check, after a long-term gluten-containing diet. Altogether, we collected data from 171 PCD children with a mean follow-up time of 3 years (range 0.35-15.3 years). During follow-up, although patients did not reduce their amount of daily gluten intake, their anti-tissue transglutaminase (anti-TG2) antibodies spontaneously and significantly decreased. Most parameters analysed had not changed during follow-up (height centile, ferritin, albumin, cholesterol, calcium, alkaline phosphatase, parathormone, and vitamin D) or even improved significantly (weight and BMI centile, haemoglobin, blood iron, HDL, glycaemia, and HbA1C, p < 0.05), always remaining within the limit of normality. Equally, autoantibodies for other concomitant autoimmune disorders did not increase overtime. Similar results were obtained excluding from analysis patients who had stopped producing anti-TG2 and those with a follow-up time < 3 years. Our pilot study has provided reassuring results regarding the maintenance of a gluten-containing diet in asymptomatic PCD children, even when long-term follow-up was considered.


Subject(s)
Autoantibodies , Celiac Disease , Diet, Gluten-Free , Nutritional Status , Humans , Celiac Disease/diet therapy , Celiac Disease/immunology , Child , Male , Female , Child, Preschool , Adolescent , Autoantibodies/blood , Protein Glutamine gamma Glutamyltransferase 2 , GTP-Binding Proteins/immunology , Transglutaminases/immunology , Glutens/adverse effects , Glutens/immunology , Health Status , Infant , Follow-Up Studies , Autoimmunity
14.
PLoS One ; 19(6): e0297605, 2024.
Article in English | MEDLINE | ID: mdl-38848393

ABSTRACT

Celiac disease (CD) is an autoimmune disease of the small intestine triggered by the consumption of gluten-containing foods in individuals with a genetic predisposition. CD was a rare disease until 20 years ago, when the prevalence increased. Currently, there is no data on the prevalence of CD in high-risk adult populations in Indonesia, even though there is a trend of increasing gluten consumption. Therefore, basic research is needed to determine the magnitude of CD in high-risk adult patients in Indonesia while identifying clinical signs/symptoms, illness history, and lifestyle to determine factors associated with CD in Indonesia. This study is an observational study with a cross-sectional method.Two hundred eighty-three patients who fulfilled the selection and signed the informed consent were recruited from the gastroenterology clinic of Dr. Cipto Mangunkusumo General Hospital. Patients were asked to fill out a celiac disease-related questionnaire and then given anthropometry measurement and blood test for serologic examination with ELISA, consisting of IgA anti-tissue transglutaminase (anti-TTG) and IgG anti-deaminated gliadin peptide (anti-DGP). Statistical analysis was performed using Chi-square and Multivariate logistic regression tests with SPSS software ver. 26. Statistical test differences were considered significant if the p-values were < 0.05. Eight of 283 patients are serologically confirmed with CD (2,83%). On bivariate analysis, the significant variables are age (p < 0,05), constipation (p < 0,05) and history of autoimmune disease (p < 0,05). On multivariate analysis, the only significant variable is the history of autoimmune disease (p < 0,05). This study concluded that the prevalence of CD in high-risk patients with functional gastrointestinal disorder at Dr. Cipto Mangunkusumo Hospital is relatively high (2.83%). CD-associated factors are age, constipation, and history of autoimmune disease in patients. On simultaneous interaction between these factors, autoimmune is the only significant variable associated with CD.


Subject(s)
Celiac Disease , Humans , Celiac Disease/epidemiology , Celiac Disease/complications , Female , Male , Adult , Prevalence , Indonesia/epidemiology , Middle Aged , Cross-Sectional Studies , Risk Factors , Gastrointestinal Diseases/epidemiology , Young Adult , Aged , Transglutaminases/immunology , Adolescent , Protein Glutamine gamma Glutamyltransferase 2
15.
Food Res Int ; 189: 114533, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876603

ABSTRACT

Glutinous rice is extensively consumed due to its nutritious content and wonderful flavor. However, glutinous rice flour has a high glycemic index, and the storage deterioration of sweet dumplingsissevere. Transglutaminase (TG) was used to cross-link glutinous rice protein and improve the characteristics of glutinous rice products. The findings demonstrated that TG significantly catalysed protein cross-linking to form a dense protein network, reduced the viscosity of glutinous rice paste and improved the thermal stability. The protein network may physically block the access of starch granules to digestive enzymes to lower the digestion rate of starch, and attenuate the damage of ice crystal molecules to the starch structure to improve the freezing stability of starch gels. The cracking rate and water loss of sweet dumplings prepared using glutinous rice flour with TG treated for 60 min reduced significantly. In conclusion, this study broadened the application of TG in starch products.


Subject(s)
Digestion , Flour , Food Handling , Oryza , Starch , Transglutaminases , Oryza/chemistry , Transglutaminases/metabolism , Starch/metabolism , Starch/chemistry , Flour/analysis , Food Handling/methods , Viscosity , Plant Proteins/metabolism , Plant Proteins/chemistry
16.
Clin Rheumatol ; 43(7): 2253-2260, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842744

ABSTRACT

Up to 30% of patients with celiac disease (CD) suffer from concurrent autoimmune disease, compared to 3% of the general population. The association between CD and the current clinical phenotypes of inflammatory myopathies (IIM) patients has not been thoroughly addressed. Assess the CD features among patients with IIM and their relationship with the clinical phenotype and the myositis specific (MSA) and associated antibodies (MAA). For this cross-sectional study, we recruited 99 adult patients classified as IIM from a tertiary center in Mexico. We assessed serum MSA, MAA, and CD-associated autoantibodies (IgA anti-tissue transglutaminase (tTG) and both IgA and IgG anti-deaminated gliadin peptide (DGP)). Patients with highly suggestive serology for CD were then tested for IgG anti-endomysium antibodies, and a duodenal biopsy was performed. 70.7% of patients were positive for at least one antibody. Nine duodenal biopsies were taken, revealing findings compatible with celiac disease in two cases. Subjects with anti-MDA5 antibodies were more likely to have positive anti-tTG IgA antibodies (OR 6.76, 95% CI 1.85-24.62, P = 0.013) and suggestive CD serology (OR 6.41, 95% CI 1.62-25.29, P = 0.009). Patients with anti-Mi2 antibodies were more likely to have positive anti-DGP IgG antibodies (OR 3.35, 95% CI 1.12-9.96, P = 0.039), while positivity for these autoantibodies was less frequent in patients with anti-NXP2 antibodies (OR 0.22, 95% CI 0.06-0.80, P = 0.035). There is a higher prevalence of serologic and definite CD in patients with IIM compared to the general population. Identifying this subgroup of patients may have prognostic and therapeutic implications. Key points • The study estimated a serological celiac disease (CD) prevalence of 70.7% in patients with idiopathic inflammatory myopathies (IIM) and a biopsy-confirmed prevalence of 2%, suggesting that IIM patients should be considered a high-risk population for CD. • We identified a significant association between serological CD and the presence of anti-MDA5 and anti-Mi2 antibodies, suggesting a potential justification for celiac disease screening in this specific subgroup of patients. • The impact of gluten-free diets on IIM patients with serological markers of CD remains untested and warrants further investigation through prospective, randomized studies.


Subject(s)
Autoantibodies , Celiac Disease , Myositis , Humans , Celiac Disease/epidemiology , Celiac Disease/immunology , Celiac Disease/blood , Celiac Disease/diagnosis , Celiac Disease/complications , Cross-Sectional Studies , Female , Male , Middle Aged , Adult , Prevalence , Autoantibodies/blood , Myositis/immunology , Myositis/epidemiology , Myositis/blood , Mexico/epidemiology , Transglutaminases/immunology , Aged , Immunoglobulin A/blood , Gliadin/immunology , Immunoglobulin G/blood , Protein Glutamine gamma Glutamyltransferase 2
17.
J Pediatr Gastroenterol Nutr ; 79(1): 84-91, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769762

ABSTRACT

OBJECTIVES: European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) guidelines enable the diagnosis of celiac disease (CD) without biopsies in patients with immunoglobulin A (IgA)-antibodies against tissue transglutaminase (TGA-IgA) ≥ 10× the upper limit of normal (ULN) and positivity of endomysial antibodies in a second blood sample. Limited data exist comparing the biopsy versus the nonbiopsy diagnostic approach regarding long-term outcomes in CD patients. Our study aimed to investigate the influence of the diagnostic approach on adherence to gluten-free diet (GFD), serological remission (defined as normalization of TGA-IgA during follow-up (FU)) and clinical remission in CD patients with TGA-IgA ≥ 10× ULN. METHODS: Retrospective multicenter study. Patients with CD and TGA-IgA ≥ 10× ULN at diagnosis were included in the study. Patients with confirmed diagnosis by biopsy were compared to patients diagnosed by nonbiopsy approach using univariate analysis, Kaplan-Meier survival curve, and logistic regression models. RESULTS: A total of 282 CD patients (192 [68.1%] in the biopsy group; 90 [31.9%] in the nonbiopsy group) were analyzed. The median time to normalization of TGA-IgA was 16.5 months [interquartile range, IQR: 13, 28] in the biopsy and 15 months [IQR: 12, 26] in the nonbiopsy group; p = 0.14). Rates of normalized TGA-IgA at first to third-year FU were comparable between both groups. Adherence to GFD did not seem to be influenced by the diagnostic approach. CONCLUSIONS: The nonbiopsy approach is not inferior to the biopsy approach in terms of adherence to GFD and serological remission in patients with CD.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Immunoglobulin A , Transglutaminases , Humans , Celiac Disease/diagnosis , Celiac Disease/diet therapy , Celiac Disease/blood , Celiac Disease/immunology , Retrospective Studies , Male , Child , Female , Biopsy , Transglutaminases/immunology , Child, Preschool , Adolescent , Immunoglobulin A/blood , Autoantibodies/blood , Protein Glutamine gamma Glutamyltransferase 2 , GTP-Binding Proteins/immunology , Treatment Outcome , Follow-Up Studies , Infant , Patient Compliance
18.
BMJ Case Rep ; 17(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38719261

ABSTRACT

Olmesartan is an angiotensin II receptor blocker licensed for the treatment of hypertension. It can cause a sprue-like enteropathy (SLE), characterised by chronic diarrhoea, weight loss and villous atrophy. Transiently raised anti-tissue transglutaminase (ATTG) antibody has also been rarely reported in the literature.We describe the case of a woman in her mid-50s, who presented with a history of intermittent loose stools over 1 year, associated with significant weight loss. She had two marginally raised serum ATTG antibody tests during her work-up.After extensive investigations, she was diagnosed with olmesartan-induced enteropathy. On subsequent follow-up, her symptoms had resolved with cessation of her olmesartan therapy.This case adds to existing literature, highlighting the importance of considering olmesartan as a possible differential diagnosis for SLE. It also reports the presence of a raised ATTG antibody which is infrequently reported in this context.


Subject(s)
Diarrhea , Imidazoles , Tetrazoles , Transglutaminases , Weight Loss , Humans , Female , Imidazoles/adverse effects , Diarrhea/chemically induced , Tetrazoles/adverse effects , Middle Aged , Transglutaminases/immunology , Diagnosis, Differential , Angiotensin II Type 1 Receptor Blockers/adverse effects , Autoantibodies/blood , Protein Glutamine gamma Glutamyltransferase 2 , Chronic Disease , Celiac Disease/diagnosis , GTP-Binding Proteins/immunology , GTP-Binding Proteins/antagonists & inhibitors
19.
Matrix Biol ; 130: 47-55, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723871

ABSTRACT

Proteinuria, the presence of high molecular weight proteins in the urine, is a primary indicator of chronic kidney disease. Proteinuria results from increased molecular permeability of the glomerular filtration barrier combined with saturation or defects in tubular protein reabsorption. Any solute that passes into the glomerular filtrate traverses the glomerular endothelium, the glomerular basement membrane, and the podocyte slit diaphragm. Damage to any layer of the filter has reciprocal effects on other layers to increase glomerular permeability. The GBM is thought to act as a compressible ultrafilter that has increased molecular selectivity with increased pressure due to compression that reduced the porosity of the GBM with increased pressure. In multiple forms of chronic kidney disease, crosslinking enzymes are upregulated and may act to increase GBM stiffness. Here we show that enzymatically crosslinking porcine GBM with transglutaminase increases the stiffness of the GBM and mitigates pressure-dependent reductions in molecular sieving coefficient. This was modeled mathematically using a modified membrane transport model accounting for GBM compression. Changes in the mechanical properties of the GBM may contribute to proteinuria through pressure-dependent effects on GBM porosity.


Subject(s)
Glomerular Basement Membrane , Proteinuria , Transglutaminases , Animals , Transglutaminases/metabolism , Transglutaminases/genetics , Glomerular Basement Membrane/metabolism , Glomerular Basement Membrane/pathology , Swine , Proteinuria/metabolism , Pressure , Podocytes/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/genetics , Humans , Porosity
20.
Rev Assoc Med Bras (1992) ; 70(4): e20231120, 2024.
Article in English | MEDLINE | ID: mdl-38716937

ABSTRACT

OBJECTIVE: We aimed to examine the effect of remission status on thiol-disulfide homeostasis in celiac patients and thus to indirectly determine the effect of oxidative stress and inflammation caused by non-compliance with the diet. METHODS: Between February 2019 and December 2021, 117 patients diagnosed with celiac disease were included in this prospective randomized and controlled study. In addition to routine tests of celiac patients, thiol and disulfide measurements were made from the blood both at the beginning of the study and at the end of the first year. RESULTS: While 52 of the patients (44.4%) were in remission, 65 patients (55.6%) were not. There was an evident increase in native thiol levels of the patients who were initially not in remission but went into at the end of the first year (347.4±46.7 µmol/L vs. 365.3±44.0 µmol/L; p=0.001). Mean plasma disulfide levels of patients with celiac going into remission became reduced in the first year from the level of 14.5±5.1 µmol/L down to 8.9±4.2 µmol/L (p<0.001). In celiac patients who entered remission, disulfide and anti-tissue transglutaminase immunoglobulin A levels decreased in a correlation (r=0.526; p<0.001). CONCLUSION: Not being in remission in celiac disease leads to increased oxidative stress, and thiol-disulfide homeostasis is an indirect indicator of this. Additionally, providing remission in celiac patients reduces oxidative stress.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Disulfides , Oxidative Stress , Patient Compliance , Sulfhydryl Compounds , Humans , Celiac Disease/diet therapy , Celiac Disease/blood , Oxidative Stress/physiology , Female , Male , Disulfides/blood , Prospective Studies , Sulfhydryl Compounds/blood , Adult , Remission Induction , Young Adult , Adolescent , Middle Aged , Immunoglobulin A/blood , Transglutaminases/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...