Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
1.
BMJ Open ; 14(6): e085340, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871659

ABSTRACT

OBJECTIVE: The objective of this study was to compare ultrasound features and establish a predictive nomogram for distinguishing between triple-negative breast cancer (TNBC) and non-TNBC. DESIGN: A retrospective cohort study. SETTING: This study was conducted at Quanzhou First Hospital, a grade A tertiary hospital in Quanzhou, China, with the research data set covering the period from September 2019 to August 2023. PARTICIPANTS: The study included a total of 205 female patients with confirmed TNBC and 574 female patients with non-TNBC, who were randomly divided into a training set and a validation set at a ratio of 7:3. MAIN OUTCOME MEASURES: All patients underwent ultrasound examination and received a confirmatory pathological diagnosis. Nodules were classified according to the Breast Imaging-Reporting and Data System standard. Subsequently, the study conducted a comparative analysis of clinical characteristics and ultrasonic features. RESULTS: A statistically significant difference was observed in multiple clinical and ultrasonic features between TNBC and non-TNBC. Specifically, in the logistic regression analysis conducted on the training set, indicators such as posterior echo, lesion size, presence of clinical symptoms, margin characteristics, internal blood flow signals, halo and microcalcification were found to be statistically significant (p<0.05). These significant indicators were then effectively incorporated into a static and dynamic nomogram model, demonstrating high predictive performance in distinguishing TNBC from non-TNBC. CONCLUSION: The results of our study demonstrated that ultrasound features can be valuable in distinguishing between TNBC and non-TNBC. The presence of posterior echo, size, clinical symptoms, margin, internal flow, halo and microcalcification was identified as predictive factors for this differentiation. Microcalcification, hyperechoic halo, internal flow and clinical symptoms emerged as the strongest predictive factors, indicating their potential as reliable indicators for identifying TNBC and non-TNBC.


Subject(s)
Nomograms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/pathology , Middle Aged , Retrospective Studies , China , Adult , Aged , Ultrasonography, Mammary/methods , Diagnosis, Differential
2.
J Egypt Natl Canc Inst ; 36(1): 20, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853190

ABSTRACT

BACKGROUND: The goal is to use three different machine learning models to predict the recurrence of breast cancer across a very heterogeneous sample of patients with varying disease kinds and stages. METHODS: A heterogeneous group of patients with varying cancer kinds and stages, including both triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC), was examined. Three distinct models were created using the following five machine learning techniques: Adaptive Boosting (AdaBoost), Random Under-sampling Boosting (RUSBoost), Extreme Gradient Boosting (XGBoost), support vector machines (SVM), and Logistic Regression. The clinical model used both clinical and pathology data in conjunction with the machine learning algorithms. The machine learning algorithms were combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) imaging characteristics in the radiomic model, and the merged model combined the two types of data. Each technique was evaluated using several criteria, including the receiver operating characteristic (ROC) curve, precision, recall, and F1 score. RESULTS: The results suggest that the integration of clinical and radiomic data improves the predictive accuracy in identifying instances of breast cancer recurrence. The XGBoost algorithm is widely recognized as the most effective algorithm in terms of performance. CONCLUSION: The findings presented in this study offer significant contributions to the field of breast cancer research, particularly in relation to the prediction of cancer recurrence. These insights hold great potential for informing future investigations and clinical interventions that seek to enhance the accuracy and effectiveness of recurrence prediction in breast cancer patients.


Subject(s)
Breast Neoplasms , Machine Learning , Magnetic Resonance Imaging , Neoplasm Recurrence, Local , Humans , Female , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies , Middle Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Adult , Algorithms , ROC Curve , Aged , Support Vector Machine , Prognosis , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/pathology , Neoplasm Staging , Radiomics
3.
Clin Nucl Med ; 49(8): 701-708, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38913962

ABSTRACT

ABSTRACT: Tumor-associated macrophages are targets of interest in triple-negative breast cancer (TNBC). The translocator protein 18 kDa (TSPO) is a sensitive marker for macrophages and holds potential relevance in TNBC stratification. This pilot prospective study (EITHICS, NCT04320030) aimed to assess the potential of TSPO PET/CT imaging using 18 F-DPA-714 in primary TNBC, compared with immunohistochemistry, autoradiography, and TSPO polymorphism. PATIENTS AND METHODS: Thirteen TNBC patients were included. They underwent TSPO genotyping (HAB, MAB, LAB), 18 F-FDG PET/CT, and breast MRI. Semiquantitative PET parameters were computed. VOIs were defined on the tumor lesion, healthy breast tissue, and pectoral muscle to obtain SUV, tumor-to-background ratio (TBR), and time-activity curves (TACs). Additionally, immunohistochemistry, 3 H-DPA-714, and 3 H-PK-11195 autoradiography were conducted. RESULTS: The majority of TNBC tumors (11/13, 84%) had a preponderance of M2-polarized macrophages with a median proportion of 82% (range, 44%-94%). 18 F-DPA-714 PET/CT clearly identified TNBC tumors with an excellent TBR. Three distinct patterns of 18 F-DPA-714 TACs were identified, categorized as "above muscular," "equal to muscular," and "below muscular" with reference to the muscular background. For the "above muscular" group (2 HAB and 2 MAB), "equal muscular" group (3 HAB, 3 MAB, and 1 LAB), and "below muscular" group (1 LAB and 1 MAB), tumor TACs showed a 18 F-DPA-714 accumulation slope of 1.35, 0.62, and 0.22, respectively, and a median SUV mean of 4.02 (2.09-5.31), 1.66 (0.93-3.07), and 0.61 (0.43-1.02). CONCLUSIONS: This study successfully demonstrated TNBC tumor targeting by 18 F-DPA-714 with an excellent TBR, allowing to stratify 3 patterns of uptake potentially influenced by the TSPO polymorphism status. Further studies in larger populations should be performed to evaluate the prognostic value of this new biomarker.


Subject(s)
Feasibility Studies , Positron Emission Tomography Computed Tomography , Pyrazoles , Pyrimidines , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Pilot Projects , Middle Aged , Female , Adult , Macrophages/metabolism , Aged , Receptors, GABA/metabolism
4.
BMC Med Imaging ; 24(1): 136, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844842

ABSTRACT

BACKGROUND: To develop and validate a peritumoral vascular and intratumoral radiomics model to improve pretreatment predictions for pathologic complete responses (pCRs) to neoadjuvant chemoradiotherapy (NAC) in patients with triple-negative breast cancer (TNBC). METHODS: A total of 282 TNBC patients (93 in the primary cohort, 113 in the validation cohort, and 76 in The Cancer Imaging Archive [TCIA] cohort) were retrospectively included. The peritumoral vasculature on the maximum intensity projection (MIP) from pretreatment DCE-MRI was segmented by a Hessian matrix-based filter and then edited by a radiologist. Radiomics features were extracted from the tumor and peritumoral vasculature of the MIP images. The LASSO method was used for feature selection, and the k-nearest neighbor (k-NN) classifier was trained and validated to build a predictive model. The diagnostic performance was assessed using the ROC analysis. RESULTS: One hundred of the 282 patient (35.5%) with TNBC achieved pCRs after NAC. In predicting pCRs, the combined peritumoral vascular and intratumoral model (fusion model) yields a maximum AUC of 0.82 (95% confidence interval [CI]: 0.75, 0.88) in the primary cohort, a maximum AUC of 0.67 (95% CI: 0.57, 0.76) in the internal validation cohort, and a maximum AUC of 0.65 (95% CI: 0.52, 0.78) in TCIA cohort. The fusion model showed improved performance over the intratumoral model and the peritumoral vascular model, but not significantly (p > 0.05). CONCLUSION: This study suggested that combined peritumoral vascular and intratumoral radiomics model could provide a non-invasive tool to enable prediction of pCR in TNBC patients treated with NAC.


Subject(s)
Magnetic Resonance Imaging , Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Female , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging/methods , Adult , Aged , Treatment Outcome , Pathologic Complete Response , Radiomics
5.
Dalton Trans ; 53(18): 7946-7952, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38646723

ABSTRACT

The absence of better biomarkers currently limits early diagnosis and treatment of triple-negative breast cancer (TNBC). Our previously published study reported that the cyclic-peptide SD01 exhibited specific binding to EphA2 (Ephrin type-A receptor 2) on TNBC. To develop a novel PET imaging agent, we prepared gallium-68 (68Ga) labeled-DOTA-SD01 and evaluated its specificity and effectiveness through micro PET/CT imaging in a TNBC-bearing mouse model. SD01 and a control linear peptide YSA were conjugated to DOTA and subsequently labeled with 68Ga, obtaining 68Ga-DOTA-SD01 and 68Ga-DOTA-YSA. Both showed high radiochemical purity, stability, good hydrophilicity, and high binding affinity to 4T1 cells. Micro PET/CT imaging showed high radioactivity accumulation in tumors; SUVmean (mean standardized uptake value) of tumors in the group of 68Ga-DOTA-SD01 was 3.34 ± 0.25 and 2.65 ± 0.32 in the group of 68Ga-DOTA-YSA; T/NT ratios (target to non-target, SUVmean ratios of tumor to muscle) were 3.12 ± 0.06 and 2.77 ± 0.11 at 30 min, respectively (p < 0.05). The biodistribution study showed that tumor uptake % ID per g (percentage of injected dose per gram of tissue) in the group of 68Ga-DOTA-SD01 was 2.73 ± 0.34, and 1.77 ± 0.38 in the group of 68Ga-DOTA-YSA; T/NT ratios (radioactivity of tumor to muscle) were 3.55 ± 0.12 and 3.05 ± 0.10 for both groups at 30 min, respectively (p < 0.05). All these suggest that 68Ga-DOTA-SD01 may act as a better novel PET imaging agent for EphA2 positive tumors, such as TNBC.


Subject(s)
Gallium Radioisotopes , Peptides, Cyclic , Positron Emission Tomography Computed Tomography , Receptor, EphA2 , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Gallium Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Mice, Inbred BALB C , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Radiopharmaceuticals/chemistry , Receptor, EphA2/metabolism , Tissue Distribution , Triple Negative Breast Neoplasms/diagnostic imaging
6.
Eur J Nucl Med Mol Imaging ; 51(9): 2744-2757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587644

ABSTRACT

PURPOSE: Radiopharmaceutical therapies targeting fibroblast activation protein (FAP) have shown promising efficacy against many tumor types. But radiopharmaceuticals alone in most cases are insufficient to completely eradicate tumor cells, which can partially be attributed to the protective interplay between tumor cells and cancer-associated fibroblasts (CAFs). The C-X-C chemokine receptor type 4/C-X-C motif chemokine 12 (CXCR4/CXCL12) interaction plays an important role in orchestrating tumor cells and CAFs. We hereby investigated the feasibility and efficacy of [177Lu]Lu-DOTAGA.(SA.FAPi)2, a FAP-targeting radiopharmaceutical, in combination with AMD3100, a CXCR4 antagonist, in a preclinical murine model of triple-negative breast cancer (TNBC). METHODS: Public database was first interrogated to reveal the correlation between CAFs' scores and the prognosis of TNBC patients, as well as the expression levels of FAP and CXCR4 in normal tissues and tumors. In vitro therapeutic efficacy regarding cell proliferation, migration, and colony formation was assessed in BALB/3T3 fibroblasts and 4T1 murine breast cancer cells. In vivo therapeutic efficacy was longitudinally monitored using serial 18F-FDG, [18F]AlF-NOTA-FAPI-04, and [68Ga]Ga-DOTA-Pentixafor PET/CT scans and validated using tumor sections through immunohistochemical staining of Ki-67, α-SMA, CXCR4, and CXCL12. Intratumoral abundance of myeloid-derived suppressive cells (MDSCs) was analyzed using flow cytometry in accordance with the PET/CT schedules. Treatment toxicity was evaluated by examining major organs including heart, lung, liver, kidney, and spleen. RESULTS: CAFs' scores negatively correlated with the survival of TNBC patients (p < 0.05). The expression of CXCR4 and FAP was both significantly higher in tumors than in normal tissues. The combination of [177Lu]Lu-DOTAGA.(SA.FAPi)2 and AMD3100 significantly suppressed cell proliferation, migration, and colony formation in cell culture, and exhibited synergistic effects in 4T1 tumor models along with a decreased number of MDSCs. PET/CT imaging revealed lowest tumor accumulation of 18F-FDG and [18F]AlF-NOTA-FAPI-04 on day 13 and day 14 after treatment started, both of which gradually increased at later time points. A similar trend was observed in the IHC staining of Ki-67, α-SMA, and CXCL12. CONCLUSION: The combination of [177Lu]Lu-DOTAGA.(SA.FAPi)2 and AMD3100 is a feasible treatment against TNBC with minimal toxicity in main organs.


Subject(s)
Chemokine CXCL12 , Receptors, CXCR4 , Triple Negative Breast Neoplasms , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy , Animals , Mice , Chemokine CXCL12/metabolism , Humans , Cell Line, Tumor , Female , Cyclams/pharmacology , Cyclams/therapeutic use , Lutetium , Benzylamines/pharmacology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacology , Endopeptidases , Cell Proliferation/drug effects , Gelatinases/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism
7.
J Nanobiotechnology ; 22(1): 110, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481281

ABSTRACT

BACKGROUND: Breast cancer ranks first among malignant tumors, of which triple-negative breast cancer (TNBC) is characterized by its highly invasive behavior and the worst prognosis. Timely diagnosis and precise treatment of TNBC are substantially challenging. Abnormal tumor vessels play a crucial role in TNBC progression and treatment. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis, while effective NO delivery can normalize the tumor vasculature. Accordingly, we have proposed here a tumor vascular microenvironment remodeling strategy based on NO-induced vessel normalization and extracellular matrix collagen degradation with multimodality imaging-guided nanoparticles against TNBC called DNMF/PLGA. RESULTS: Nanoparticles were synthesized using a chemotherapeutic agent doxorubicin (DOX), a NO donor L-arginine (L-Arg), ultrasmall spinel ferrites (MnFe2O4), and a poly (lactic-co-glycolic acid) (PLGA) shell. Nanoparticle distribution in the tumor was accurately monitored in real-time through highly enhanced magnetic resonance imaging and photoacoustic imaging. Near-infrared irradiation of tumor cells revealed that MnFe2O4 catalyzes the production of a large amount of reactive oxygen species (ROS) from H2O2, resulting in a cascade catalysis of L-Arg to trigger NO production in the presence of ROS. In addition, DOX activates niacinamide adenine dinucleotide phosphate oxidase to generate and supply H2O2. The generated NO improves the vascular endothelial cell integrity and pericellular contractility to promote vessel normalization and induces the activation of endogenous matrix metalloproteinases (mainly MMP-1 and MMP-2) so as to promote extravascular collagen degradation, thereby providing an auxiliary mechanism for efficient nanoparticle delivery and DOX penetration. Moreover, the chemotherapeutic effect of DOX and the photothermal effect of MnFe2O4 served as a chemo-hyperthermia synergistic therapy against TNBC. CONCLUSION: The two therapeutic mechanisms, along with an auxiliary mechanism, were perfectly combined to enhance the therapeutic effects. Briefly, multimodality image-guided nanoparticles provide a reliable strategy for the potential application in the fight against TNBC.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Nitric Oxide , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Reactive Oxygen Species , Hydrogen Peroxide , Doxorubicin/pharmacology , Phototherapy/methods , Collagen , Cell Line, Tumor , Tumor Microenvironment
8.
Clin Imaging ; 109: 110136, 2024 May.
Article in English | MEDLINE | ID: mdl-38552382

ABSTRACT

PURPOSE: To investigate the association of mammographic breast density with treatment and survival outcomes in patients with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC). METHODS: This retrospective study evaluated 306 women with TNBC who underwent NAC followed by surgery between 2010 and 2019. The baseline density and the density changes after NAC were evaluated. Qualitative breast density (a-d) was evaluated using the Breast Imaging Reporting and Data System. Quantitative breast density (%) was evaluated using fully automated software (the Laboratory for Individualized Breast Radiodensity Assessment) in the contralateral breast. Multivariable logistic regression analysis was used to evaluate the association between breast density and pathologic complete response (pCR), stratified by menopausal status. Cox proportional hazard regression analysis was used to evaluate the association among breast density, the development of contralateral breast cancer, and the development of locoregional recurrence and/or distant metastasis. RESULTS: Contralateral density reduction ≥10 % was independently associated with pCR in premenopausal women (odds ratio [OR], 2.5; p = 0.022) but not in postmenopausal women (OR, 0.9; p = 0.823). During a mean follow-up of 65 months, 10 (3 %) women developed contralateral breast cancer, and 68 (22 %) women developed locoregional recurrences and/or distant metastases. Contralateral density reduction ≥10 % showed no association with the occurrence of contralateral breast cancer (hazard ratio [HR], 3.1; p = 0.308) or with locoregional recurrence and/or distant metastasis (HR, 1.1; p = 0.794). CONCLUSION: In premenopausal women, a contralateral breast density reduction of ≥10 % after NAC was independently associated with pCR, although it did not translate into improved outcomes.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Female , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Density , Neoadjuvant Therapy/methods , Retrospective Studies , Neoplasm Recurrence, Local
9.
Acta Biomater ; 179: 313-324, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38490483

ABSTRACT

Nanoscale coordination polymer (NCP) is a class of hybrid materials formed by self-assembly of metal ions and organic ligands through coordination. The applications of NCP in biomedicine are quite extensive due to the diversity choice of metal ions and organic ligands. Here we designed Zr-P1 NCP based on Zr4+ selected as metal ion nodes and tetrakis(4-carboxyphenyl) ethylene as bridging ligands. Zr-P1 NCP was modified with functionalized pyrene derived polyethylene glycol (Py-PAA-PEG-Mal) on the surface and further conjugated with cRGD for active targeting of integrin αvß3 overexpressed in triple-negative breast cancer. Doxorubicin was loaded on Zr-P1 NCP with encapsulation efficiency up to 22 % for the treatment of triple negative breast cancer. 89Zr-P1 NCP can be used for in vivo tumor imaging due to the fluorescence properties resulting from the enhanced aggregation-induced Emission (AIE) behavior of P1 ligands and its positron emission tomography (PET) capability. Cellular evaluation indicated that the functionalized Zr-P1@PEG-RGD presented a good function for tumor cell targeting imaging and doxorubicin could be targeted to triple negative breast cancer when it was loaded onto Zr-P1@PEG-RGD, which corroborated with the in vivo results. In summary, 89Zr-P1@PEG-RGD can serve as a biocompatible nanoplatform for fluorescence and PET image-guided cargo delivery. STATEMENT OF SIGNIFICANCE: Nanoscale coordination polymer (NCP) is a class of hybrid materials formed by self-assembly of metal ions and organic ligands through coordination. The diversity of available metals and ligand structures upon NCP synthesis plays an advantage in establishing multimodal imaging platforms. Here we designed 89Zr-P1@PEG-RGD NCP based on Zr4+ selected as metal ion nodes and tetrakis(4-carboxyphenyl) ethylene as bridging ligands. 89Zr-P1@PEG-RGD nanomaterials have positron emission tomography (PET) capability due to the incorporation of zirconium-89, which can be used for in vivo tumor imaging with high sensitivity. The chemotherapeutic drug DOX was loaded on Zr-P1 NCP for the treatment of triple-negative breast cancer, and dual modality imaging can provide visual guidance for drug delivery.


Subject(s)
Doxorubicin , Positron-Emission Tomography , Radioisotopes , Triple Negative Breast Neoplasms , Zirconium , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Zirconium/chemistry , Animals , Positron-Emission Tomography/methods , Humans , Cell Line, Tumor , Female , Doxorubicin/pharmacology , Doxorubicin/chemistry , Polymers/chemistry , Mice , Drug Delivery Systems , Polyethylene Glycols/chemistry , Mice, Nude
10.
Bioconjug Chem ; 35(3): 381-388, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446033

ABSTRACT

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is overexpressed in human triple-negative breast cancer (TNBC) and promotes cell migration and proliferation. TNBC is limited in treatment options relative to hormone-receptor-positive breast cancer and is commonly treated with chemotherapy, which is often compromised by acquired resistance. DANCR has been implicated in the development of chemoresistance across multiple cancer types. Here, we applied magnetic resonance molecular imaging (MRMI) with a targeted contrast agent, MT218, specific to extradomain-B fibronectin (EDB-FN), a marker for epithelial-to-mesenchymal transition, to assess the therapeutic efficacy of the combination of paclitaxel and ZD2-PEG-ECO/siDANCR nanoparticles (ZD2-siDANCR-ELNP) to treat TNBC. The treatment of orthotopic MDA-MB-231 TNBC in mice with paclitaxel significantly suppressed tumor growth but with a significant increase of EDB-FN in the tumor, as revealed by MRMI and immunohistochemistry. Combining ZD2-siDANCR-ELNP with paclitaxel further reduced tumor sizes, along with reduced EDB-FN expression. Interestingly, MT218-MRMI revealed a lower reduction of tumor signal enhancement with the combination treatment than that with the siDANCR treatment alone, which was supported by higher cell density in the tumors treated with the combination therapy, as shown by histochemical analysis. MT218-MRMI clearly revealed the changes of the tumor microenvironment in response to various therapies and is effective to noninvasively assess the response of TNBC tumors to the therapies. Regulating oncogenic lncRNA DANCR is an effective strategy for improving the outcomes of chemotherapy in TNBC.


Subject(s)
RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , RNA, Long Noncoding/genetics , RNA Interference , Cell Line, Tumor , Paclitaxel/therapeutic use , Magnetic Resonance Spectroscopy , Molecular Imaging/methods , Cell Proliferation , Tumor Microenvironment
11.
J Colloid Interface Sci ; 663: 644-655, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430834

ABSTRACT

Triple-negative breast cancer (TNBC) is insensitive to conventional therapy due to its highly invasive nature resulting in poor therapeutic outcomes. Recent studies have shown multiple genes associated with ferroptosis in TNBC, suggesting an opportunity for ferroptosis-based treatment of TNBC. However, the efficiency of present ferroptosis agents for cancer is greatly restricted due to lack of specificity and low intracellular levels of H2O2 in cancer cells. Herein, we report a nano-theranostic platform consisting of gold (Au)-iron oxide (Fe3O4) Janus nanoparticles (GION@RGD) that effectively enhances the tumor-specific Fenton reaction through utilization of near-infrared (NIR) lasers, resulting in the generation of substantial quantities of toxic hydroxyl radicals (•OH). Specifically, Au nanoparticles (NPs) converted NIR light energy into thermal energy, inducing generation of abundant intracellular H2O2, thereby enhancing the iron-induced Fenton reaction. The generated •OH not only lead to apoptosis of malignant tumor cells but also induce the accumulation of lipid peroxides, causing ferroptosis of tumor cells. After functionalizing with the activity-targeting ligand RGD (Arg-Gly-Asp), precise synergistic treatment of TNBC was achieved in vivo under the guidance of Fe3O4 enhanced T2-weighted magnetic resonance imaging (MRI). This synergistic treatment strategy of NIR-enhanced ferroptosis holds promise for the treatment of TNBC.


Subject(s)
Ferroptosis , Metal Nanoparticles , Multifunctional Nanoparticles , Nanoparticles , Neoplasms , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Gold/therapeutic use , Hydrogen Peroxide , Cell Line, Tumor , Neoplasms/drug therapy , Oligopeptides
12.
JCI Insight ; 9(8)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502228

ABSTRACT

Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti-PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy.


Subject(s)
Cholesterol , Immune Checkpoint Inhibitors , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Animals , Mice , Female , Cholesterol/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Humans , Immunotherapy/methods , Tumor Microenvironment/immunology , Positron-Emission Tomography/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Lymphocyte Activation
13.
Eur J Cancer ; 200: 113535, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309015

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer (BC) subtype, with dismal prognosis and limited option in advanced settings, yet stromal tumor infiltrating lymphocytes (sTILs) in this subtype has a predictive role. PATIENTS AND METHODS: The International Breast Cancer Study Group (IBCSG) Trial 22-00 is a randomized phase III clinical trial testing the efficacy of low-dose metronomic oral Cyclophosphamide-Methotrexate (CM) maintenance following standard adjuvant chemotherapy treatment for early-stage hormone receptor-negative breast cancer patients. A case-cohort sampling was used. We characterized immune cells infiltrates in patients with TNBC by 6 plex immunofluorescence (IF) staining for CD4, FOXP3, CD3, cytokeratine and CD8 RESULTS: We confirmed that high immune CD3+ T cells as well as stromal and intra-epithelial Tregs (CD4+Foxp3+ T cells) infiltrates were associated with a better Distant Recurrence-Free Interval (DRFI), especially in LN+ patient, regardless of the treatment. More importantly, we showed that the spatial distribution of immune cells at baseline is crucial, as CM maintenance was detrimental for T cells excluded LN+ TNBC patients. CONCLUSIONS: immune spatial classification on immune cells infiltrates seems crucial and could help patients' selection in clinical trial and greatly improve responses to specific therapies.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Biomarkers, Tumor/analysis , Cyclophosphamide , Disease-Free Survival , Forkhead Transcription Factors , Lymphocytes, Tumor-Infiltrating , Methotrexate , Prognosis , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Female , Randomized Controlled Trials as Topic , Clinical Trials, Phase III as Topic
14.
Biomater Sci ; 12(6): 1465-1476, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38318975

ABSTRACT

Sono-photodynamic therapy (SPDT) has emerged as a promising treatment modality for triple negative breast cancer (TNBC). However, the hypoxic tumor microenvironment hinders the application of SPDT. Herein, in this study, a multifunctional platform (MnO2/Ce6@MBs) was designed to address this issue. A sono-photosensitizer (Ce6) and a hypoxia modulator (MnO2) were loaded into microbubbles and precisely released within tumor tissues under ultrasound irradiation. MnO2in situ reacted with the excess H2O2 and H+ and produced O2 within the TNBC tumor, which alleviated hypoxia and augmented SPDT by increasing ROS generation. Meanwhile, the reaction product Mn2+ was able to achieve T1-weighted MRI for enhanced tumor imaging. Additionally, Ce6 and microbubbles served as a fluorescence imaging contrast agent and a contrast-enhanced ultrasound imaging agent, respectively. In in vivo anti-tumor studies, under the FL/US/MR imaging guidance, MnO2/Ce6@MBs combined with SPDT significantly reversed tumor hypoxia and inhibited tumor growth in 4T1-tumor bearing mice. This work presents a theragnostic system for reversing tumor hypoxia and enhancing TNBC treatment.


Subject(s)
Photochemotherapy , Porphyrins , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Microbubbles , Manganese Compounds , Hydrogen Peroxide , Cell Line, Tumor , Oxides , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Hypoxia , Porphyrins/pharmacology , Tumor Microenvironment
15.
Phys Med Biol ; 69(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38306970

ABSTRACT

Objective.To investigate the incremental value of quantitative stratified apparent diffusion coefficient (ADC) defined tumor habitats for differentiating triple negative breast cancer (TNBC) from non-TNBC on multiparametric MRI (mpMRI) based feature-fusion radiomics (RFF) model.Approach.466 breast cancer patients (54 TNBC, 412 non-TNBC) who underwent routine breast MRIs in our hospital were retrospectively analyzed. Radiomics features were extracted from whole tumor on T2WI, diffusion-weighted imaging, ADC maps and the 2nd phase of dynamic contrast-enhanced MRI. Four models including the RFFmodel (fused features from all MRI sequences), RADCmodel (ADC radiomics feature), StratifiedADCmodel (tumor habitas defined on stratified ADC parameters) and combinational RFF-StratifiedADCmodel were constructed to distinguish TNBC versus non-TNBC. All cases were randomly divided into a training (n= 337) and test set (n= 129). The four competing models were validated using the area under the curve (AUC), sensitivity, specificity and accuracy.Main results.Both the RFFand StratifiedADCmodels demonstrated good performance in distinguishing TNBC from non-TNBC, with best AUCs of 0.818 and 0.773 in the training and test sets. StratifiedADCmodel revealed significant different tumor habitats (necrosis/cysts habitat, chaotic habitat or proliferative tumor core) between TNBC and non-TNBC with its top three discriminative parameters (p <0.05). The integrated RFF-StratifiedADCmodel demonstrated superior accuracy over the other three models, with higher AUCs of 0.832 and 0.784 in the training and test set, respectively (p <0.05).Significance.The RFF-StratifiedADCmodel through integrating various tumor habitats' information from whole-tumor ADC maps-based StratifiedADCmodel and radiomics information from mpMRI-based RFFmodel, exhibits tremendous promise for identifying TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Retrospective Studies , Radiomics , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods
16.
Breast Cancer ; 31(3): 529-535, 2024 May.
Article in English | MEDLINE | ID: mdl-38351366

ABSTRACT

This rapid communication highlights the correlations between digital pathology-whole slide imaging (WSI) and radiomics-magnetic resonance imaging (MRI) features in triple-negative breast cancer (TNBC) patients. The research collected 12 patients who had both core needle biopsy and MRI performed to evaluate pathologic complete response (pCR). The results showed that higher collagenous values in pathology data were correlated with more homogeneity, whereas higher tumor expression values in pathology data correlated with less homogeneity in the appearance of tumors on MRI by size zone non-uniformity normalized (SZNN). Higher myxoid values in pathology data are correlated with less similarity of gray-level non-uniformity (GLN) in tumor regions on MRIs, while higher immune values in WSIs correlated with the more joint distribution of smaller-size zones by small area low gray-level emphasis (SALGE) in the tumor regions on MRIs. Pathologic complete response (pCR) was associated with collagen, tumor, and myxoid expression in WSI and GLN and SZNN in radiomic features. The correlations of WSI and radiomic features may further our understanding of the TNBC tumoral microenvironment (TME) and could be used in the future to better tailor the use of neoadjuvant chemotherapy (NAC). This communication will focus on the post-NAC MRI features correlated with pCR and their association with WSI features from core needle biopsies.


Subject(s)
Magnetic Resonance Imaging , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/pathology , Female , Magnetic Resonance Imaging/methods , Biopsy, Large-Core Needle/methods , Middle Aged , Adult , Aged , Tumor Microenvironment , Neoadjuvant Therapy/methods , Pathologic Complete Response , Radiomics
17.
Breast Cancer Res ; 26(1): 26, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347619

ABSTRACT

BACKGROUND: MRI-based tumor shrinkage patterns (TSP) after neoadjuvant therapy (NAT) have been associated with pathological response. However, the understanding of TSP after early NAT remains limited. We aimed to analyze the relationship between TSP after early NAT and pathological response after therapy in different molecular subtypes. METHODS: We prospectively enrolled participants with invasive ductal breast cancers who received NAT and performed pretreatment DCE-MRI from September 2020 to August 2022. Early-stage MRIs were performed after the first (1st-MRI) and/or second (2nd-MRI) cycle of NAT. Tumor shrinkage patterns were categorized into four groups: concentric shrinkage, diffuse decrease (DD), decrease of intensity only (DIO), and stable disease (SD). Logistic regression analysis was performed to identify independent variables associated with pathologic complete response (pCR), and stratified analysis according to tumor hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) disease subtype. RESULTS: 344 participants (mean age: 50 years, 113/345 [33%] pCR) with 345 tumors (1 bilateral) had evaluable 1st-MRI or 2nd-MRI to comprise the primary analysis cohort, of which 244 participants with 245 tumors had evaluable 1st-MRI (82/245 [33%] pCR) and 206 participants with 207 tumors had evaluable 2nd-MRI (69/207 [33%] pCR) to comprise the 1st- and 2nd-timepoint subgroup analysis cohorts, respectively. In the primary analysis, multivariate analysis showed that early DD pattern (OR = 12.08; 95% CI 3.34-43.75; p < 0.001) predicted pCR independently of the change in tumor size (OR = 1.37; 95% CI 0.94-2.01; p = 0.106) in HR+/HER2- subtype, and the change in tumor size was a strong pCR predictor in HER2+ (OR = 1.61; 95% CI 1.22-2.13; p = 0.001) and triple-negative breast cancer (TNBC, OR = 1.61; 95% CI 1.22-2.11; p = 0.001). Compared with the change in tumor size, the SD pattern achieved a higher negative predictive value in HER2+ and TNBC. The statistical significance of complete 1st-timepoint subgroup analysis was consistent with the primary analysis. CONCLUSION: The diffuse decrease pattern in HR+/HER2- subtype and stable disease in HER2+ and TNBC after early NAT could serve as additional straightforward and comprehensible indicators of treatment response. TRIAL REGISTRATION: Trial registration at https://www.chictr.org.cn/ . REGISTRATION NUMBER: ChiCTR2000038578, registered September 24, 2020.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Middle Aged , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Neoadjuvant Therapy , Treatment Outcome , Receptor, ErbB-2/genetics , Magnetic Resonance Imaging , Predictive Value of Tests , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies
18.
Int J Pharm ; 652: 123764, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38176479

ABSTRACT

Triple-negative breast cancer (TNBC) diagnosis remains challenging without expressing critical receptors. Cancer cell membrane (CCm) coating has been extensively studied for targeted cancer diagnostics due to attractive features such as good biocompatibility and homotypic tumor-targeting. However, the present study found that widely used CCm coating approaches, such as extrusion, were not applicable for functionalizing irregularly shaped nanoparticles (NPs), such as porous silicon (PSi). To tackle this challenge, we proposed a novel approach that employs polyethylene glycol (PEG)-assisted membrane coating, wherein PEG and CCm are respectively functionalized on PSi NPs through chemical conjugation and physical absorption. Meanwhile, the PSi NPs were grafted with the bisphosphonate (BP) molecules for radiolabeling. Thanks to the good chelating ability of BP and homotypic tumor targeting of cancer CCm coating, a novel PSi-based contrast agent (CCm-PEG-89Zr-BP-PSi) was developed for targeted positron emission tomography (PET)/computed tomography (CT) imaging of TNBC. The novel imaging agent showed good radiochemical purity (∼99 %) and stability (∼95 % in PBS and ∼99 % in cell medium after 48 h). Furthermore, the CCm-PEG-89Zr-BP-PSi NPs had efficient homotypic targeting ability in vitro and in vivo for TNBC. These findings demonstrate a versatile biomimetic coating method to prepare novel NPs for tumor-targeted diagnosis.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Polyethylene Glycols/chemistry , Silicon , Triple Negative Breast Neoplasms/diagnostic imaging , Biomimetics , Nanoparticles/chemistry , Cell Membrane/metabolism , Cell Line, Tumor
20.
J Magn Reson Imaging ; 59(2): 575-584, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37218596

ABSTRACT

BACKGROUND: Breast cancer treatment response evaluation using the response evaluation criteria in solid tumors (RECIST) guidelines, based on tumor volume changes, has limitations, prompting interest in novel imaging markers for accurate therapeutic effect determination. PURPOSE: To use MRI-measured cell size as a new imaging biomarker for assessing chemotherapy response in breast cancer. STUDY TYPE: Longitudinal; animal model. STUDY POPULATION: Triple-negative human breast cancer cell (MDA-MB-231) pellets (4 groups, n = 7) treated with dimethyl sulfoxide (DMSO) or 10 nM of paclitaxel for 24, 48, and 96 hours, and 29 mice with MDA-MB-231 tumors in right hind limbs treated with paclitaxel (n = 16) or DMSO (n = 13) twice weekly for 3 weeks. FIELD STRENGTH/SEQUENCE: Oscillating gradient spin echo and pulsed gradient spin echo sequences at 4.7 T. ASSESSMENT: MDA-MB-231 cells were analyzed using flowcytometry and light microscopy to assess cell cycle phases and cell size distribution. MDA-MB-231 cell pellets were MR imaged. Mice were imaged weekly, with 9, 6, and 14 being sacrificed for histology after MRI at weeks 1, 2, and 3, respectively. Microstructural parameters of tumors/cell pellets were derived by fitting diffusion MRI data to a biophysical model. STATISTICAL TESTS: One-way ANOVA compared cell sizes and MR-derived parameters between treated and control samples. Repeated measures 2-way ANOVA with Bonferroni post-tests compared temporal changes in MR-derived parameters. A P-value <0.05 was considered statistically significant. RESULTS: In vitro experiments showed that the mean MR-derived cell sizes of paclitaxel-treated cells increased significantly with a 24-hours treatment and decreased (P = 0.06) with a 96-hour treatment. For in vivo xenograft experiments, the paclitaxel-treated tumors showed significant decreases in cell size at later weeks. MRI observations were supported by flowcytometry, light microscopy, and histology. DATA CONCLUSIONS: MR-derived cell size may characterize the cell shrinkage during treatment-induced apoptosis, and may potentially provide new insights into the assessment of therapeutic response. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 4.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Female , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Dimethyl Sulfoxide/therapeutic use , Cell Line, Tumor , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Magnetic Resonance Imaging/methods , Cell Size
SELECTION OF CITATIONS
SEARCH DETAIL
...