Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.789
1.
J Oleo Sci ; 73(6): 865-874, 2024.
Article En | MEDLINE | ID: mdl-38825540

Although peach kernels are rich in oil, there is a lack of information about its chemical and biological properties. Therefore, the purpose of this study was to determine the lipid profile, antioxidant capacity, and trypsin inhibitory propriety of peach oil extracted from two varieties (sweet cap and O'Henry) cultivated in Tunisia. The investigated peach kernel oil contains significant amount of unsaponifiable (2.1±0.5-2.8±0.2% of oil) and phenolic compounds (45.8±0.92-74.6±1.3 mg GAE/g of oil). Its n-alkane profile was characterized by the predominance of tetracosane n-C24 (47.24%) followed by tricosane n-C23 (34.43%). An important total tocopherol content (1192.83±3.1 mg/kg oil) has been found in sweet cap cultivar. Although rich in polyphenols and tocopherols, the tested oil did not display an inhibitory effect on trypsin. However, all peach oil samples showed effective antioxidant capacity and the highest values (86.34±1.3% and 603.50±2.6 µmol TE/g oil for DPPH test and ORAC assay, respectively) were observed for sweet cap oil. Peach oil has an excellent potential for application in the food and pharmaceutical industries as source of naturally-occurring bioactive substances.


Antioxidants , Phenols , Plant Oils , Prunus persica , Tocopherols , Antioxidants/analysis , Plant Oils/chemistry , Plant Oils/analysis , Phenols/analysis , Tocopherols/analysis , Prunus persica/chemistry , Trypsin Inhibitors/analysis , Polyphenols/analysis
2.
BMJ Case Rep ; 17(6)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839406

Steroid-induced acute pancreatitis is a rare form of pancreatitis that requires intensive care and has a high morbidity and mortality rate as there is no specific treatment. Management of steroid-induced pancreatitis is generally non-specific and supportive. Here, we are presenting a man in his 40s presented with epigastric pain, fever and vomiting. The patient was diagnosed case of rheumatoid arthritis, for which he was receiving regular 5 mg oral prednisolone therapy. Based on history, and clinical, biochemical and radiological imaging a diagnosis of steroid-induced pancreatitis was made, which was successfully managed with the help of ulinastatin and other supportive treatments. A serine protease inhibitor like ulinastatin may be used early in the clinical management of steroid-induced pancreatitis.


Glycoproteins , Pancreatitis , Prednisolone , Trypsin Inhibitors , Humans , Male , Prednisolone/therapeutic use , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Adult , Trypsin Inhibitors/therapeutic use , Arthritis, Rheumatoid/drug therapy , Glucocorticoids/therapeutic use , Glucocorticoids/adverse effects
3.
J Agric Food Chem ; 72(20): 11782-11793, 2024 May 22.
Article En | MEDLINE | ID: mdl-38717295

Soybeans are the number one source of plant proteins for food and feed, but the natural presence of protein protease inhibitors (PIs), namely, the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI), exerts antinutritional effects. This communication describes a new methodology for simultaneously quantitating all parameters of PIs in soybeans. It consists of seven steps and featured enzymatically measuring trypsin and chymotrypsin inhibitory activities, respectively, and subsequently determining the contents of reactive KTI and BBI and the contributions of each toward total PI mass and total trypsin or chymotrypsin inhibition by solving a proposed system of linear equations with two variables (C = dB + eK and T = xB + yK). This enzymatic and algebraic (EA) methodology was based on differential inhibitions of KTI and BBI toward trypsin and chymotrypsin and validated by applications to a series of mixtures of purified KTI and BBI, two KTI-null and two conventional soybeans, and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The EA methodology allowed calculations of PI composition and the contributions of individual inhibitors toward total inhibition with ease. It was first found that although BBI constituted only about 30% of the total PI mass in conventional raw soybeans, it contributed about 80% toward total chymotrypsin inhibitor activity and about 45% toward trypsin inhibitor activity. Therefore, BBI caused more total protease inhibitions than those of KTI. Furthermore, the so-called KTI-null soybean mutants still contained measurable KTI content and thus should be named KTI-low soybeans.


Chymotrypsin , Glycine max , Trypsin Inhibitor, Bowman-Birk Soybean , Trypsin Inhibitor, Kunitz Soybean , Trypsin , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Chymotrypsin/chemistry , Trypsin Inhibitor, Bowman-Birk Soybean/chemistry , Glycine max/chemistry , Glycine max/enzymology , Trypsin/chemistry , Trypsin/metabolism , Trypsin Inhibitor, Kunitz Soybean/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/analysis
4.
Biochem J ; 481(11): 717-739, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38752933

Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.


Echinococcus granulosus , Helminth Proteins , Echinococcus granulosus/enzymology , Echinococcus granulosus/genetics , Echinococcus granulosus/metabolism , Animals , Dogs , Helminth Proteins/metabolism , Helminth Proteins/genetics , Helminth Proteins/chemistry , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/chemistry , Cattle , Amino Acid Sequence , Trypsin/chemistry , Trypsin/metabolism
5.
J Agric Food Chem ; 72(22): 12319-12339, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38780067

This review aims to provide an updated overview of the effects of protein extraction/recovery on antinutritional factors (ANFs) in plant protein ingredients, such as protein-rich fractions, protein concentrates, and isolates. ANFs mainly include lectins, trypsin inhibitors, phytic acid, phenolic compounds, oxalates, saponins, tannins, and cyanogenic glycosides. The current technologies used to recover proteins (e.g., wet extraction, dry fractionation) and novel technologies (e.g., membrane processing) are included in this review. The mechanisms involved during protein extraction/recovery that may enhance or decrease the ANF content in plant protein ingredients are discussed. However, studies on the effects of protein extraction/recovery on specific ANFs are still scarce, especially for novel technologies such as ultrasound- and microwave-assisted extraction and membrane processing. Although the negative effects of ANFs on protein digestibility and the overall absorption of plant proteins and other nutrients are a health concern, it is also important to highlight the potential positive effects of ANFs. This is particularly relevant given the rise of novel protein ingredients in the market and the potential presence or absence of these factors and their effects on consumers' health.


Plant Proteins , Animals , Chemical Fractionation/methods , Nutritive Value , Plant Proteins/chemistry , Trypsin Inhibitors/isolation & purification , Trypsin Inhibitors/analysis , Trypsin Inhibitors/chemistry , Humans
6.
Food Chem ; 450: 139293, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38631207

Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.


Cooking , Germination , Lens Plant , Nutritive Value , Seeds , Lens Plant/chemistry , Seeds/chemistry , Seeds/growth & development , Phytic Acid/analysis , Phytic Acid/chemistry , Tannins/analysis , Tannins/chemistry , Trypsin Inhibitors/analysis , Trypsin Inhibitors/chemistry , Food Handling
7.
Anal Methods ; 16(19): 2997-3006, 2024 May 16.
Article En | MEDLINE | ID: mdl-38687148

α-Amylase/trypsin inhibitor proteins (ATI) are discussed as possible triggers for non-celiac gluten sensitivity. The potential of high-performance thin-layer chromatography (HPTLC) was studied for the first time to analyse the inhibitory properties of ATIs from flour of wheat, spelt, and einkorn. Inhibition by each flour of the digestive enzymes trypsin or α-amylase was determined by the reduction of released metabolisation products in comparison to non-digested flour, and positive (acarbose) and negative (water) controls. Firstly, amylolysis was carried out in miniaturized form on the HPTLC surface (HPTLC-nanoGIT) after in-vial pre-incubation of the amylase with the inhibitors from flour. α-Amylase inhibition was evident via the reduction of released saccharides, as analysed by normal phase HPTLC. A strong influence of the flour matrix on the assay results (individual saccharides) was evident, caused by an increased amylolysis of further polysaccharides present, making HPTLC analysis more reliable than currently used spectrophotometric sum value assays. The detection and visualization of such matrix influence helps to understand the problems associated with spectrophotometric assays. Only maltotriose was identified as a reliable marker of the amylolysis. The highest α-amylase inhibition and thus the lowest saccharide response was detected for maltotriose in refined spelt, whereas the lowest α-amylase inhibition and thus the highest saccharide response was detected for maltotriose in refined wheat. A comparison of refined and whole grain flours showed no clear trend in the responses. Secondly, trypsin inhibition and proteolysis were performed in-vial, and any inhibition was evident via the reduction of released peptides, analysed by reversed-phase HPTLC. Based on the product pattern of the proteolysis, einkorn and whole wheat showed the highest trypsin inhibition, whereas refined wheat and refined spelt showed the lowest inhibition. Advantageously, HPTLC analysis provided important information on changes in individual saccharides or peptides, which was more reliable and sustainable than spectrophotometric in-vial assays (only sum value) or liquid column chromatography analysis (targeting only the ATI proteins).


Triticum , Trypsin Inhibitors , alpha-Amylases , Triticum/chemistry , Chromatography, Thin Layer/methods , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/analysis , Trypsin Inhibitors/analysis , Trypsin Inhibitors/pharmacology , Plant Proteins/analysis , Flour/analysis
8.
Braz J Microbiol ; 55(2): 1205-1217, 2024 Jun.
Article En | MEDLINE | ID: mdl-38594492

The incidence of Candida species resistant to traditional antifungal drugs is increasing globally. This issue significantly impacts patients' lives and increases healthcare expenses, confirming the need to develop novel therapeutic strategies. Recently, a thermostable trypsin inhibitor named ShTI (11.558 kDa), which has antibacterial effects on Staphylococcus aureus, was isolated from Salvia hispanica L. (chia) seeds. This study aimed to assess the antifungal effect of ShTI against Candida species and its synergism with fluconazole and to evaluate its mode of action. Preliminary toxicological studies on mouse fibroblasts were also performed. ShTI exhibited antifungal effects against C. parapsilosis (ATCC® 22,019), C. krusei (ATCC® 6258), and six clinical fluconazole-resistant strains of C. albicans (2), C. parapsilosis (2), and C. tropicalis (2). The minimum inhibitory concentration (MIC) values were 4.1 µM (inhibiting 50% of the isolates) and 8.2 µM (inhibiting 100% of the isolates). Additionally, when combined with fluconazole, ShTI had a synergistic effect on C. albicans, altering the morphological structure of the yeast. The mode of action of ShTI against C. krusei (ATCC® 6258) and C. albicans involves cell membrane permeabilization, the overproduction of reactive oxygen species, the formation of pseudohyphae, pore formation, and consequently, cell death. In addition, ShTI (8.65 and 17.3 µM) had noncytotoxic and nongenotoxic effects on L929 mouse fibroblasts. These findings suggest that ShTI could be a promising antimicrobial candidate, but further research is necessary to advance its application as a novel antifungal agent.


Antifungal Agents , Candida , Drug Resistance, Fungal , Fluconazole , Microbial Sensitivity Tests , Salvia , Seeds , Trypsin Inhibitors , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Fluconazole/pharmacology , Fluconazole/toxicity , Candida/drug effects , Salvia/chemistry , Seeds/chemistry , Animals , Mice , Trypsin Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fibroblasts/drug effects , Drug Synergism , Candidiasis/microbiology , Candidiasis/drug therapy
9.
Pestic Biochem Physiol ; 201: 105899, 2024 May.
Article En | MEDLINE | ID: mdl-38685208

This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.


Aedes , Insect Proteins , Ivermectin , Animals , Aedes/drug effects , Aedes/genetics , Aedes/metabolism , Ivermectin/pharmacology , Insect Proteins/metabolism , Insect Proteins/genetics , Trypsin/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Fertility/drug effects , Insecticide Resistance/genetics , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/pharmacology , Molecular Docking Simulation , Insecticides/pharmacology
10.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Article En | MEDLINE | ID: mdl-38676695

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Colorectal Neoplasms , Plant Extracts , Plant Proteins , Setaria Plant , Trypsin Inhibitors , Animals , Humans , Male , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Gene Expression , Mice, Inbred BALB C , Mice, Nude , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Setaria Plant/genetics , Setaria Plant/chemistry , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/isolation & purification , Trypsin Inhibitors/chemistry
11.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article En | MEDLINE | ID: mdl-38473954

This experimental study was designed to evaluate the effect of ulinastatin, a urinary trypsin inhibitor, on postoperative cognitive dysfunction (POCD) in rats under general anesthesia with isoflurane, on the aspect of behavior, as evaluated using a Y-maze test and focusing on microglial activity. Ulinastatin (50,000 U/mL) and normal saline (1 mL) were randomly (1:1) administered intraperitoneally to the ulinastatin and control groups, respectively, before general anesthesia. Anesthesia with isoflurane 1.5 volume% was maintained for 2 h. The Y-maze test was used to evaluate cognitive function. Neuronal damage using caspase-1 expression, the degree of inflammation through cytokine detection, and microglial activation with differentiation of the phenotypic expression were evaluated. Twelve rats were enrolled in the study and evenly allocated into the two groups, with no dropouts from the study. The Y-maze test showed similar results in the two groups before general anesthesia (63 ± 12% in the control group vs. 64 ± 12% in the ulinastatin group, p = 0.81). However, a significant difference was observed between the two groups after general anesthesia (17 ± 24% in the control group vs. 60 ± 12% in the ulinastatin group, p = 0.006). The ulinastatin group showed significantly lower expression of caspase-1. Pro-inflammatory cytokine levels were significantly lower in the ulinastatin group than in the control group. The ulinastatin group had a significantly lower microglial activation (41.74 ± 10.56% in the control group vs. 4.77 ± 0.56% in the ulinastatin, p < 0.001), with a significantly lower activation of M1 phenotypes (52.19 ± 7.83% in the control group vs. 5.58 ± 0.76% in the ulinastatin group, p < 0.001). Administering ulinastatin before general anesthesia prevented neuronal damage and cognitive decline after general anesthesia, in terms of the aspect of behavior, as evaluated by the Y-maze test. The protective effect of ulinastatin was associated with the inhibition of microglial activation, especially the M1 phenotype.


Cognitive Dysfunction , Glycoproteins , Isoflurane , Postoperative Cognitive Complications , Rats , Animals , Isoflurane/pharmacology , Microglia , Cytokines/pharmacology , Caspase 1 , Maze Learning , Trypsin Inhibitors/pharmacology
12.
Int J Biol Macromol ; 263(Pt 2): 130244, 2024 Apr.
Article En | MEDLINE | ID: mdl-38387638

Oxidative stress disorders and diseases caused by drug-resistant bacteria have emerged as significant public health concerns. Plant-based medications like protease inhibitors are growing despite adverse effects therapies. Consecutively, in this study, trypsin inhibitors from Dioscorea bulbifera L. (DbGTi trypsin inhibitor) ground tubers were isolated, purified, characterized, and evaluated for their potential cytotoxicity, antibacterial, and antioxidant activities. DbGTi protein was purified by Q-Sepharose matrix, followed by trypsin inhibitory activity. The molecular weight of the DbGTi protein was found to be approximately 31 kDa by SDS-PAGE electrophoresis. The secondary structure analysis by circular dichroism (CD) spectroscopy revealed that the DbGTi protein predominantly comprises ß sheets followed by α helix. DbGTi protein showed competitive type of inhibition with Vmax = 2.1372 × 10-1 µM/min, Km = 1.1805 × 102 µM, & Ki = 8.4 × 10-9 M and was stable up to 70 °C. DbGTi protein exhibited 58 % similarity with Dioscorin protein isolated from Dioscorea alata L. as revealed by LC-MS/MS analysis. DbGTi protein showed a non-toxic effect, analyzed by MTT, Haemolytic assay and in vivo studies on zebrafish model. DbGTi protein significantly inhibited K. pneumoniae and has excellent antioxidant properties, confirmed by various antioxidant assays. The results of anti-microbial, cytotoxicity and antioxidant assays demonstrate its bioactive potential and non-toxic nature.


Antioxidants , Dioscorea , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Trypsin Inhibitors/pharmacology , Zebrafish , Dioscorea/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Trypsin/metabolism
13.
Protein J ; 43(2): 333-350, 2024 Apr.
Article En | MEDLINE | ID: mdl-38347326

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 µM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and ß-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.


Cajanus , Plant Leaves , Humans , Cajanus/chemistry , Plant Leaves/chemistry , Caco-2 Cells , Cell Proliferation/drug effects , Cell Line, Tumor , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification , Plant Proteins/pharmacology , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Serine Proteases/metabolism
14.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article En | MEDLINE | ID: mdl-38397107

Predicting the potency of inhibitors is key to in silico screening of promising synthetic or natural compounds. Here we describe a predictive workflow that provides calculated inhibitory values, which concord well with empirical data. Calculations of the free interaction energy ΔG with the YASARA plugin FoldX were used to derive inhibition constants Ki from PDB coordinates of protease-inhibitor complexes. At the same time, corresponding KD values were obtained from the PRODIGY server. These results correlated well with the experimental values, particularly for serine proteases. In addition, analyses were performed for inhibitory complexes of cysteine and aspartic proteases, as well as of metalloproteases, whereby the PRODIGY data appeared to be more consistent. Based on our analyses, we calculated theoretical Ki values for trypsin with sunflower trypsin inhibitor (SFTI-1) variants, which yielded the more rigid Pro14 variant, with probably higher potency than the wild-type inhibitor. Moreover, a hirudin variant with an Arg1 and Trp3 is a promising basis for novel thrombin inhibitors with high potency. Further examples from antibody interaction and a cancer-related effector-receptor system demonstrate that our approach is applicable to protein interaction studies beyond the protease field.


Helianthus , Serine Endopeptidases , Trypsin Inhibitors/pharmacology , Trypsin/metabolism , Helianthus/metabolism , Peptide Hydrolases , Protease Inhibitors/pharmacology
15.
Acta Vet Hung ; 71(3-4): 174-182, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38090953

We aimed to assess the usefulness of monitoring inter-alpha trypsin inhibitor heavy chain 4 (ITIH4) and haptoglobin (Hp) in peripheral and local blood in canine pyometra, and evaluation the relationships among acute phase proteins (APPs), systemic inflammatory response syndrome (SIRS) and the presence of bacteria. The material was collected from bitches with pyometra and from healthy ones. Blood was taken from the cephalic and uterine veins. APPs levels were quantified by ELISA. In the peripheral circulation, the Hp was higher in animals with open-cervix pyometra (OCP) than in the closed-cervix pyometra (CCP) and the control group. The Hp concentration was not correlated with age, with the presence of SIRS or with the type of bacteria (Gram-negative, Gram-positive or mixed flora). The ITIH4 concentrations in the peripheral blood did not differ significantly in the cases of pyometra. The Hp concentration in the local circulation increased in the OCP but not in the CCP groups, although the histopathological changes in the endometrium were similar. Peripheral Hp concentrations may be a useful tool in differentiating between the types of pyometra.


Dog Diseases , Pyometra , Female , Animals , Dogs , Pyometra/veterinary , Haptoglobins/metabolism , Trypsin Inhibitors , Uterus , Systemic Inflammatory Response Syndrome/veterinary , Dog Diseases/metabolism
16.
Curr Protein Pept Sci ; 25(2): 172-182, 2024.
Article En | MEDLINE | ID: mdl-37694793

INTRODUCTION: Trypsin inhibitors (TIs) have the ability to competitively or non-competitively bind to trypsin and inhibit its action. These inhibitors are commonly found in plants and are used in protease inhibition studies involved in biochemical pathways of pharmacological interest. OBJECTIVES: This work aimed to purify a trypsin inhibitor from Bauhinia pulchella seeds (BpuTI), describing its kinetic mechanism and anticoagulant effect. METHODS: Affinity chromatography, protein assay, and SDS-PAGE were used to purify the inhibitor. Mass spectrometry, inhibition assays, and enzyme kinetics were used to characterize the inhibitor. In vitro assays were performed to verify its ability to prolong blood clotting time. RESULTS: Affinity chromatography on a Trypsin-Sepharose 4B column gave a yield of 43.1. BpuTI has an apparent molecular mass of 20 kDa with glycosylation (1.15%). Protein identification was determined by MS/MS, and BpuTI showed similarity to several Kunitz-type trypsin inhibitors. BpuTI inhibited bovine trypsin as an uncompetitive inhibitor with IC50 (3 x 10-6 M) and Ki (1.05 x 10-6 M). Additionally, BpuTI showed high stability to temperature and pH variations, maintaining its activity up to 100ºC and in extreme pH ranges. However, the inhibitor was susceptible to reducing agents, such as DTT, which completely abolished its activity. BpuTI showed an anticoagulant effect in vitro at a concentration of 33 µM, prolonging clotting time by 2.6 times. CONCLUSION: Our results suggest that BpuTI can be a biological tool to be used in blood clotting studies.


Bauhinia , Trypsin Inhibitors , Animals , Cattle , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/chemistry , Bauhinia/metabolism , Trypsin/analysis , Trypsin/chemistry , Trypsin/metabolism , Tandem Mass Spectrometry , Seeds/chemistry , Anticoagulants/pharmacology , Anticoagulants/analysis , Anticoagulants/chemistry
17.
Scand J Clin Lab Invest ; 83(8): 540-547, 2023 Dec.
Article En | MEDLINE | ID: mdl-38156824

Interα-trypsin inhibitor heavy chain H4 (ITIH4) modulates inflammation and immunity, which take part in the pathogenesis of ankylosing spondylitis (AS). The current research intended to discover the clinical value of serum ITIH4 quantification for AS management. Serum ITIH4 among 80 AS patients before current treatment initiation (baseline) at weeks (W) 4, 8 and 12 after treatment was detected by ELISA. Serum ITIH4 from 20 disease controls (DCs) and 20 healthy controls (HCs) was detected. ITIH4 expression was lower in AS patients than in DCs (p = 0.002) and HCs (p < 0.001). Among AS patients, ITIH4 was negatively associated with C-reactive protein (CRP) (r = -0.311, p = 0.005), bath AS disease activity index (BASDAI) (r = -0.223, p = 0.047), total pack pain (r = -0.273, p = 0.014) and AS disease activity score (ASDAS) (CRP) (r = -0.265, p = 0.018). Meanwhile, ITIH4 was negatively related to tumor necrosis factor (TNF)-α (r = -0.364, p = 0.001), interleukin (IL)-1ß (r = -0.251, p = 0.025), IL-6 (r = -0.292, p = 0.009) and IL-17A (r = -0.254, p = 0.023). After treatment, the assessment of the spondylitis arthritis international society 40 response rate was 28.7% at W4, 46.3% at W8 and 55.0% at W12; ITIH4 showed an increasing trend from baseline to W12 (p < 0.001). Furthermore, ITIH4 at W8 (p = 0.020) and W12 (p = 0.035), but not at baseline or W4 (both p > 0.05), was enhanced in response patients vs. nonresponse patients. Additionally, ITIH4 at W12 was increased in AS patients receiving TNF inhibitors vs. those receiving nonsteroidal anti-inflammatory drugs (NSAIDs) (p = 0.024). Serum ITIH4 increases after treatment, and its augmentation is correlated with lower disease activity, decreased inflammation and enhanced treatment response in AS patients.


Spondylitis, Ankylosing , Sulfonamides , Humans , Anti-Inflammatory Agents/therapeutic use , C-Reactive Protein/metabolism , Inflammation , Spondylitis, Ankylosing/drug therapy , Treatment Outcome , Trypsin Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha
18.
J Food Sci ; 88(12): 5093-5107, 2023 Dec.
Article En | MEDLINE | ID: mdl-37961005

Allergens, antinutritional factors, and lipoxygenase (LOX) enzyme present in soymilk limit its consumption as vegan milk. Therefore, the present study focuses on reducing these limiting factors using pulsed electric field (PEF) treatment. In this regard, 20-40 kV/cm electric field was applied to soymilk for the effective treatment periods of 450, 1350, and 2250 ms. After the treatment, a reduction in pH (6.60 ± 0.10 to 6.47 ± 0.12) and an increase in the conductivity (173.03 ± 0.40 to 177.33 ± 0.72 µS) were observed. Furthermore, FTIR (Fourier Transform Infrared Spectroscopy), UV (Ultra Violet) intrinsic spectra, and CD (Circular Dichroism) spectra (α-helix reduction and ß-sheet increase) data indicated mild structural changes in the proteins of soymilk. As a result, PEF treatment reduced the soymilk allergenicity (67.33 ± 20.48%), LOX activity (69.45 ± 9.38%), and trypsin inhibitor activity (75.61 ± 4.04%). Apart from that, the color, viscosity, and volatiles of soymilk also had significant changes due to PEF treatment. The aroma changes in PEF-treated soymilk were highly influenced by two major principal component (PC1 & PC2) groups and they accounted for about 70% of the aroma variations. However, these changes were mild and did not induce any off-flavors and the treatment remained effective against the quality hazards like allergens, antinutritional factors, and LOX enzyme. PRACTICAL APPLICATION: PEF treatment of soymilk reduces the possible allergic reactions in human body at least by 30%. Further, it reduces the antinutritional factor and off-odor inducing compounds. Therefore, the PEF treatment can be used in industries as a pre-treatment to produce allergen and antinutritional compounds free protein isolates from soybeans.


Odorants , Trypsin Inhibitors , Humans , Allergens , Glycine max , Electricity , Lipoxygenase
19.
J Econ Entomol ; 116(6): 2146-2153, 2023 12 11.
Article En | MEDLINE | ID: mdl-37816687

Lepidopteran pests have been successfully managed by the adoption of insect resistant transgenic plants expressing Cry and/or Vip insecticidal proteins derived from Bacillus thuringiensis (Bt plants). Among such pests, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is highlighted for its destructive potential in maize crops and for cases of field-evolved resistance to Bt plants. Cry insecticidal proteins expressed in Bt plants are known for their interaction with insect midgut receptors and subsequent midgut cell disruption that leads to target pest death. In the midgut of lepidopteran larval pests such as S. frugiperda, serine proteases are important in dietary protein digestion and activation or degradation of insecticidal proteins. This work was conducted to evaluate if the use of a soybean trypsin inhibitor (SBTI) could disrupt the development of a Bt-susceptible and a Bt-resistant population of S. frugiperda ingesting Bt (expressing Cry1F, Cry1A.105, and Cry2Ab2 Cry proteins) and non-Bt maize plants. The SBTI was produced and purified using recombinant expression in E. coli followed by purification in Ni-Sepharose. Bioassays using non-Bt maize leaves indicated that the development of susceptible and resistant populations of S. frugiperda was not influenced by the ingestion of SBTI. However, when the resistant population consumed Bt maize plants amended with SBTI, high mortality along with a reduction in larval weight and reduced activity of digestive trypsins were observed. Although the mode of action was not elucidated, it is possible that the consumption of SBTI increased susceptibility to Bt maize in the resistant population of S. frugiperda.


Bacillus thuringiensis , Insecticides , Animals , Spodoptera , Zea mays , Trypsin Inhibitors/pharmacology , Glycine max/genetics , Endotoxins/pharmacology , Escherichia coli/metabolism , Bacillus thuringiensis Toxins , Insecticide Resistance , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Hemolysin Proteins/pharmacology , Hemolysin Proteins/genetics , Insecticides/pharmacology , Bacillus thuringiensis/genetics , Larva/physiology , Plants, Genetically Modified/genetics
20.
Food Res Int ; 173(Pt 1): 113264, 2023 Nov.
Article En | MEDLINE | ID: mdl-37803577

Faba bean is an ancient legume that is regaining interest due to its environmental and nutritional benefits. Very little is known on the protein quality of the new faba bean varieties. In this study, the digestibility and the Digestible Indispensable Amino Acid Score (DIAAS) of the protein quality of three Canadian faba bean varieties (Fabelle, Malik and Snowbird) were compared to pea and soy using the harmonized in vitro digestion procedure developed by the International Network of Excellence on the Fate of Food in the Gastrointestinal Tract (INFOGEST). The impact of boiling on the nutritional quality of faba bean flours was also ascertained. Protein content in faba bean (28.7-32.5%) was lower than defatted soy (56.6%) but higher than pea (24.2%). Total phenolics and phytate content were higher (p < 0.05) in faba bean (2.1-2.4 mg/g and 11.5-16.4 mg/g respectively) and soy (2.4 mg/g and 19.8 mg/g respectively) comparatively to pea (1.3 mg/g and 8.9 mg/g). Trypsin inhibitor activity was significantly higher (p < 0.05) in soy (15.4 mg/g) comparatively to pea (0.7 mg/g) and faba bean (0.8-1.1 mg/g). The digestibility of free amino acids of raw faba bean flours ranged from 31 to 39% while the digestibility of total amino acids ranged from 38 to 39%. The in vitro Digestible Indispensable Amino Acid Score (IV-DIAAS) of raw faba bean flours ranged from 13 to 16 (when calculated based on free amino acid digestibility) to 32-38 (when calculated based on total amino acid digestibility) and was in a similar range to pea (13-31) and soy (11-40). Boiling modified the protein electrophoretic profile and decreased trypsin inhibitor activity (30-86% reduction), while total phenolics and phytate content were unaffected. The IV-DIAAS significantly decreased in all boiled legumes, possibly due to an increased protein aggregation leading into a lower protein digestibility (18-32% reduction). After boiling, the nutritional quality of faba bean was significantly lower (p < 0.05) than soy, but higher than pea. Our results demonstrate that faba bean has a comparable protein quality than other legumes and could be used in similar food applications.


Fabaceae , Vicia faba , Humans , Vicia faba/chemistry , Pisum sativum/chemistry , Trypsin Inhibitors , Phytic Acid , Digestion , Canada , Fabaceae/chemistry , Amino Acids/metabolism , Nutritive Value
...