Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.596
Filter
1.
Sci Rep ; 14(1): 15387, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965339

ABSTRACT

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Subject(s)
Biofilms , Lactobacillus , Probiotics , Tryptamines , Uropathogenic Escherichia coli , Vagina , Biofilms/drug effects , Biofilms/growth & development , Humans , Tryptamines/pharmacology , Female , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/physiology , Probiotics/pharmacology , Vagina/microbiology , Lactobacillus/drug effects , Lactobacillus/metabolism , Lactobacillus/physiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Adult , Anti-Bacterial Agents/pharmacology
2.
Reprod Domest Anim ; 59(6): e14598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881434

ABSTRACT

Our previous research has shown that melatonin (MLT) can reduce cryopreserved ovarian damage in mice. Yet, the molecular mechanism of MLT protection is still unclear. Some studies have shown that melatonin receptor 1 (MT1) is very important for animal reproductive system. To evaluate whether MLT exerts its protective effect on cryopreserved mice ovarian tissue via MT1, we added antagonist of MT1/MT2 (Luzindor) or antagonist of MT2 (4P-PDOT) to the freezing solution, followed by cryopreservation and thawing of ovarian tissue. The levels of total superoxide dismutase (T-SOD), catalase (CAT), nitric oxide (NO) and malondialdehyde (MDA) were detected. Besides, by using RT-PCR and Western blotting, the expression of Bcl-2, Bax and Nrf2/HO-1 signalling pathway-related proteins was detected. These findings demonstrated that compared with the melatonin group, the addition of Luzindor increased apoptosis, NO and MDA activities, decreased CAT and T-SOD activities and inhibited Nrf2/HO-1 signalling pathway. In conclusion, melatonin can play a protective role in cryopreserved ovarian tissue of mice through MT1 receptor.


Subject(s)
Cryopreservation , Melatonin , NF-E2-Related Factor 2 , Ovary , Oxidative Stress , Receptor, Melatonin, MT1 , Signal Transduction , Animals , Female , Melatonin/pharmacology , Oxidative Stress/drug effects , Ovary/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT1/genetics , Signal Transduction/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Cryopreservation/veterinary , Tryptamines/pharmacology , Apoptosis/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Nitric Oxide/metabolism , Malondialdehyde/metabolism , Membrane Proteins , Heme Oxygenase-1
3.
ACS Chem Neurosci ; 15(13): 2484-2503, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38865609

ABSTRACT

Neuroinflammation is an important factor that exacerbates neuronal death and abnormal synaptic function in neurodegenerative diseases (NDDs). Due to the complex pathogenesis and the presence of blood-brain barrier (BBB), no effective clinical drugs are currently available. Previous results showed that N-salicyloyl tryptamine derivatives had the potential to constrain the neuroinflammatory process. In this study, 30 new N-salicyloyl tryptamine derivatives were designed and synthesized to investigate a structure-activity relationship (SAR) for the indole ring of tryptamine in order to enhance their antineuroinflammatory effects. Among them, both in vitro and in vivo compound 18 exerted the best antineuroinflammatory effects by suppressing the activation of microglia, which is the culprit of neuroinflammation. The underlying mechanism of its antineuroinflammatory effect may be related to the inhibition of transcription, expression and phosphorylation of signal transducer and activator of transcription 3 (STAT3) that subsequently regulated downstream cyclooxygenase-2 (COX-2) expression and activity. With its excellent BBB permeability and pharmacokinetic properties, compound 18 exhibited significant neuroprotective effects in the hippocampal region of lipopolysaccharides (LPS)-induced mice than former N-salicyloyl tryptamine derivative L7. In conclusion, compound 18 has provided a new approach for the development of highly effective antineuroinflammatory therapeutic drugs targeting microglia activation.


Subject(s)
Microglia , Neuroinflammatory Diseases , Neuroprotective Agents , STAT3 Transcription Factor , Tryptamines , Animals , Microglia/drug effects , Microglia/metabolism , Tryptamines/pharmacology , STAT3 Transcription Factor/metabolism , Mice , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Signal Transduction/drug effects , Lipopolysaccharides/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Structure-Activity Relationship , Male , Cyclooxygenase 2/metabolism , Hippocampus/drug effects , Hippocampus/metabolism
4.
PeerJ ; 12: e17517, 2024.
Article in English | MEDLINE | ID: mdl-38846751

ABSTRACT

Background: Psilocybin and related tryptamines have come into the spotlight in recent years as potential therapeutics for depression. Research on the mechanisms of these effects has historically focused on the direct effects of these drugs on neural processes. However, in addition to such neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects. In particular, substantial support exists for a gut microbiome-mediated pathway for the antidepressant efficacy of other drug classes, but no prior studies have determined the effects of tryptamines on microbiota. Methods: To address this gap, in this preliminary study, male Long Evans rats were treated with varying dosages of oral psilocybin (0.2 or 2 mg/kg), norbaeocystin (0.25 or 2.52 mg/kg), or vehicle and their fecal samples were collected 1 week and 3 weeks after exposure for microbiome analysis using integrated 16S ribosomal DNA sequencing to determine gut microbiome composition. Results: We found that although treatment with neither psilocybin nor norbaeocystin significantly affected overall microbiome diversity, it did cause significant dose- and time-dependent changes in bacterial abundance at the phylum level, including increases in Verrucomicrobia and Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications: These preliminary findings support the idea that psilocybin and other tryptamines may act on the gut microbiome in a dose- and time-dependent manner, potentially identifying a novel peripheral mechanism for their antidepressant activity. The results from this preliminary study also suggest that norbaeocystin may warrant further investigation as a potential antidepressant, given the similarity of its effects to psilocybin.


Subject(s)
Feces , Gastrointestinal Microbiome , Rats, Long-Evans , Tryptamines , Animals , Gastrointestinal Microbiome/drug effects , Male , Tryptamines/pharmacology , Tryptamines/administration & dosage , Rats , Feces/microbiology , Psilocybin/pharmacology , Psilocybin/administration & dosage , Administration, Oral , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage
5.
ACS Chem Neurosci ; 15(12): 2386-2395, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38758589

ABSTRACT

Results from randomized clinical trials of psilocybin in depressive disorders highlight the therapeutic potential of serotonergic psychedelic compounds in mental health disorders. The synthetic 5-hydroxytryptamine 2A receptor agonist 4-hydroxy-N,N-diisopropyltryptamine (4-OH-DiPT) is structurally similar to psilocin but is reported to have a shorter duration (2-3 h) of psychedelic effects, suggesting the potential for psilocybin-like therapeutic activity with reduced clinical resource burden. Here, we describe the preclinical and translational characterization of RE104, a 4-OH-DiPT prodrug comprising a glutarate moiety designed to cleave rapidly in situ and thus provide reasonable bioavailability of the active drug. Plasma concentration of 4-HO-DiPT over time in PK experiments in rats was correlated with head-twitch intensity. The half-life of 4-OH-DiPT was 40 min after subcutaneous administration of RE104 in rats. In a forced swim test, a single dose of RE104 (1 mg/kg) significantly reduced mean immobility time at 1 week compared with vehicle (P < 0.001), confirming translational antidepressant potential. Taken together, these data with RE104 show that the glutarate ester can act as an efficient prodrug strategy for 4-HO-DiPT, a unique short-duration psychedelic with potential in depressive disorders.


Subject(s)
Hallucinogens , Prodrugs , Rats, Sprague-Dawley , Animals , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Hallucinogens/pharmacology , Hallucinogens/chemical synthesis , Male , Rats , Tryptamines/pharmacology , Tryptamines/chemical synthesis , Tryptamines/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents/chemical synthesis
6.
Fluids Barriers CNS ; 21(1): 39, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711118

ABSTRACT

BACKGROUND: Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H+/OC) antiporter. Additionally, we evaluated whether triptans interacted with the efflux transporter, P-glycoprotein (P-gp). METHODS: We investigated the cellular uptake characteristics of the prototypical H+/OC antiporter substrates, pyrilamine and oxycodone, and seven different triptans in the human brain microvascular endothelial cell line, hCMEC/D3. Triptan interactions with P-gp were studied using the IPEC-J2 MDR1 cell line. Lastly, in vivo neuropharmacokinetic assessment of the unbound brain-to-plasma disposition of eletriptan was conducted in wild type and mdr1a/1b knockout mice. RESULTS: We demonstrated that most triptans were able to inhibit uptake of the H+/OC antiporter substrate, pyrilamine, with eletriptan emerging as the strongest inhibitor. Eletriptan, almotriptan, and sumatriptan exhibited a pH-dependent uptake into hCMEC/D3 cells. Eletriptan demonstrated saturable uptake kinetics with an apparent Km of 89 ± 38 µM and a Jmax of 2.2 ± 0.7 nmol·min-1·mg protein-1 (n = 3). Bidirectional transport experiments across IPEC-J2 MDR1 monolayers showed that eletriptan is transported by P-gp, thus indicating that eletriptan is both a substrate of the H+/OC antiporter and P-gp. This was further confirmed in vivo, where the unbound brain-to-unbound plasma concentration ratio (Kp,uu) was 0.04 in wild type mice while the ratio rose to 1.32 in mdr1a/1b knockout mice. CONCLUSIONS: We have demonstrated that the triptan family of compounds possesses affinity for the H+/OC antiporter proposing that the putative H+/OC antiporter plays a role in the BBB transport of triptans, particularly eletriptan. Our in vivo studies indicate that eletriptan is subjected to simultaneous brain uptake and efflux, possibly facilitated by the putative H+/OC antiporter and P-gp, respectively. Our findings offer novel insights into the potential central site of action involved in migraine treatment with triptans and highlight the significance of potential transporter related drug-drug interactions.


Subject(s)
Blood-Brain Barrier , Brain , Endothelial Cells , Mice, Knockout , Pyrrolidines , Tryptamines , Tryptamines/pharmacology , Tryptamines/metabolism , Tryptamines/pharmacokinetics , Animals , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain/metabolism , Cell Line , Mice , Mice, Inbred C57BL , Biological Transport/physiology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Male , Antiporters/metabolism , Pyrilamine/metabolism , Pyrilamine/pharmacology , ATP Binding Cassette Transporter, Subfamily B/metabolism
7.
Biomed Pharmacother ; 173: 116335, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422661

ABSTRACT

Accumulating evidence indicates that microbial communities in the human body crucially affect health through the production of chemical messengers. However, the relationship between human microbiota and cancer has been underexplored. As a result of a biochemical investigation of the commensal oral microbe, Corynebacterium durum, we identified the non-enzymatic transformation of tryptamine into an anticancer compound, durumamide A (1). The structure of 1 was determined using LC-MS and NMR data analysis as bis(indolyl)glyoxylamide, which was confirmed using one-pot synthesis and X-ray crystallographic analysis, suggesting that 1 is an oxidative dimer of tryptamine. Compound 1 displayed cytotoxic activity against various cancer cell lines with IC50 values ranging from 25 to 35 µM. A drug affinity responsive target stability assay revealed that survivin is the direct target protein responsible for the anticancer effect of 1, which subsequently induces apoptosis-inducing factor (AIF)-mediated apoptosis. Inspired by the chemical structure and bioactivity of 1, a new derivative, durumamide B (2), was synthesized using another indole-based neurotransmitter, serotonin. The anticancer properties of 2 were similar to those of 1; however, it was less active. These findings reinforce the notion of human microbiota-host interplay by showing that 1 is naturally produced from the human microbial metabolite, tryptamine, which protects the host against cancer.


Subject(s)
Antineoplastic Agents , Corynebacterium , Neoplasms , Humans , Survivin , Apoptosis , Apoptosis Inducing Factor , Tryptamines/pharmacology , Tryptamines/therapeutic use , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Oxidative Stress , Cell Line, Tumor , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Molecular Structure , Cell Proliferation
8.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276568

ABSTRACT

Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.


Subject(s)
Alzheimer Disease , Monoamine Oxidase , Humans , Monoamine Oxidase/metabolism , Alzheimer Disease/metabolism , Monoamine Oxidase Inhibitors/chemistry , Cyclooxygenase 2/metabolism , Molecular Docking Simulation , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship , Tryptamines/pharmacology , Acetylcholinesterase/metabolism , Ligands
9.
Bioorg Med Chem ; 100: 117604, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38290306

ABSTRACT

Colistin is considered as the last-resort antibiotics to treat multi-drug resistant Gram-negative bacterial infections in humans. However, the clinical use of colistin was limited because of the apparition of chromosomal mutations and mobile colistin resistance genes in bacterial isolates. One promising strategy is to combine existing antibiotics with promising non-antibiotics to overcome the widespread emergence of antibiotic-resistant pathogens. Moreover, colistin resistance would be regulated by two component systems PhoP/PhoQ which leads to permanent synthesis of cationic groups compensating for Mg2+ deficiency. In this study, the synthesis of a small library of tryptamine urea derivatives was carried out. In addition, antibiotic susceptibility, antibiotic adjuvant screening and checkerboard assays were used to investigate the antibacterial activity of these synthesized compounds and the potential synergistic activity of their combination with colistin. Conformational analysis of the docked binding modes of the active compound in the predicted binding pocket of bacterial response regulator PhoP were carried out, to see if the active compound inhibits PhoP which is involved in colistin resistance. Finally, hemolytic activity studies have been conducted on the most active compound.


Subject(s)
Colistin , Klebsiella Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/metabolism , Colistin/pharmacology , Drug Resistance, Bacterial , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Microbial Sensitivity Tests , Tryptamines/chemistry , Tryptamines/pharmacology , Urea/chemistry , Urea/pharmacology
10.
Toxicol Lett ; 387: 63-75, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37778463

ABSTRACT

Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.


Subject(s)
Receptors, Aryl Hydrocarbon , Receptors, Steroid , Humans , Pregnane X Receptor/genetics , Caco-2 Cells , Receptors, Aryl Hydrocarbon/metabolism , Indoles/pharmacology , Tryptamines/pharmacology , Receptors, Steroid/metabolism
11.
Steroids ; 200: 109326, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37827441

ABSTRACT

In a previous work, we reported the synthesis of four novel indole steroids and their effect on rat C6 glioma proliferation in vitro. The steroid derived from dehydroepiandrosterone and tryptamine (IS-1) was the most active (52 % inhibition at 10 µM), followed by one of the epimers derived from pregnenolone and tryptamine (IS-3, 36 % inhibition at 10 µM). By contrast, the steroid derived from estrone and tryptamine (IS-2) showed negligible activity at 10 µM. No necrosis, increase in intracellular calcium or ROS levels was observed. In this work, the effect of compounds on C6 glioma apoptosis and autophagy is examined by fluorimetry and fluorescent microscopy. The IS-3 epimers disrupt the mitochondrial membrane potential and induce apoptosis in vitro moderately whereas IS-1 and IS-2 do not. However, IS-1 produces a large increase in monodansylcadaverine-positive autophagic vesicles over 24 h. The antiproliferative effect of indole steroids is ameliorated by autophagy inhibitor hydroxychloroquine, suggesting an autophagy-dependent mechanism of cell death.


Subject(s)
Apoptosis , Glioma , Animals , Rats , Hydroxysteroids/pharmacology , Glioma/metabolism , Indoles/pharmacology , Autophagy , Tryptamines/pharmacology , Cell Line, Tumor
12.
Drug Dev Res ; 84(8): 1578-1594, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37675624

ABSTRACT

Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease associated with aging. It is characterized by the progressive loss of memory and other cognitive functions. Although the exact etiology of AD is not well explored, several factors, such as the deposition of amyloid-ß (Aß) plaques, hyperphosphorylation of tau protein, presence of low levels of acetylcholine, and generation of oxidative stress, are key mediators in the progression of AD. Currently, the clinical treatment options for AD are limited and are based on cholinesterase (ChE) inhibitors (e.g., donepezil, rivastigmine, and galantamine), N-methyl- d-aspartic acid receptor antagonists (e.g., memantine), and the recently approved Aß modulator (e.g., aducanumab). Tryptamine (2-(1H-indol-3-yl)ethan-1-amine) is a small molecule that contains an indole nucleus and an ethylamine side chain. It is also the active metabolite of tryptophan. It possesses a wide range of biological activities related to neurodegenerative disorders, such as ChE inhibition, Aß aggregation inhibition, antioxidant effects, monoamine-oxidase inhibition, and neuroprotection. Several tryptamine-based hybrid analogs are currently being investigated as multifunctional agents for the development of novel hybrids for AD treatment. Thus, this review article aims to provide in-depth insights into the research progress and strategies for designing multifunctional agents used in Alzheimer's therapy.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neurodegenerative Diseases/drug therapy , Cholinesterase Inhibitors/pharmacology , Donepezil , Amyloid beta-Peptides , Tryptamines/pharmacology , Tryptamines/therapeutic use
13.
Nat Commun ; 14(1): 4986, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591886

ABSTRACT

The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Insulin Resistance , Irritable Bowel Syndrome , Metabolic Syndrome , Humans , Animals , Mice , Dysbiosis , Phenethylamines/pharmacology , Tryptamines/pharmacology
14.
Phytochemistry ; 213: 113752, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37330032

ABSTRACT

Four undescribed tryptamine-derived alkaloids, hunteriasines A - D, were isolated and identified from Hunteria umbellata (Apocynaceae), together with fifteen known indole alkaloids. The chemical structure and absolute configuration of hunteriasine A were determined by spectroscopic and X-ray crystallographic data analyses. Hunteriasine A, featuring with a unique scaffold comprised of tryptamine and an unprecedented "12-carbon unit" moiety, is a zwitterionic indole-derived and pyridinium-containing alkaloid. Hunteriasines B - D were identified by spectroscopic data analyses and theoretical calculations. A plausible biogenetic pathway for hunteriasines A and B was proposed. The lipopolysaccharide-stimulated mouse macrophage cell line J774A.1 cell-based bioactivity assays revealed that (+)-eburnamine, strictosidinic acid, and (S)-decarbomethoxydihydrogambirtannine enhance the release of interleukin-1ß.


Subject(s)
Alkaloids , Apocynaceae , Secologanin Tryptamine Alkaloids , Mice , Animals , Alkaloids/pharmacology , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Apocynaceae/chemistry , Plant Extracts/chemistry , Tryptamines/pharmacology , Molecular Structure , Secologanin Tryptamine Alkaloids/chemistry
15.
ACS Chem Neurosci ; 14(11): 2146-2158, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37170554

ABSTRACT

Cerebral ischemia/reperfusion (I/R) injury is a key reason for the poor prognosis of ischemic stroke. As only a few neuroprotective medications for cerebral I/R injury have been applied in the clinic, it is necessary to design a new therapeutic strategy to treat cerebral I/R injury. The N-salicyloyl tryptamine derivative LZWL02003, synthesized from melatonin and salicylic acid, exhibits a wide range of biological properties. In this study, we assessed the neuroprotective capabilities of LZWL02003 in vivo and in vitro and investigated its possible mechanisms. Oxygen-glucose deprivation/reoxygenation was utilized to create an in vitro model of cerebral I/R damage. Middle cerebral artery occlusion/reperfusion was employed to imitate cerebral I/R injury in vivo. Neuronal apoptosis, oxidative stress, mitochondrial dysfunction, and neuroinflammation are associated with the pathogenesis of cerebral I/R injury. Our findings demonstrated that LZWL02003 upregulated the expression of Bcl-2 and downregulated the expression of Bax, thus maintaining the homeostasis of Bcl-2/Bax proteins and preventing apoptosis. LZWL02003 also reduced oxidative stress by reducing malondialdehyde and reactive oxygen species levels, increasing the superoxide dismutase activity, and resolving mitochondrial malfunction. LZWL02003 can lower interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 levels, which in turn suppress neuroinflammation. Activation of the nuclear factor-kappa B (NF-κB) pathway is involved in various pathophysiologies, including cerebral I/R injury. We discovered that LZWL02003 suppressed the phosphorylation activation of NF-κB pathway-related proteins and decreased the nuclear translocation of NF-κB p65 subunits. Taken together, our results suggest that LZWL02003 is a neuroprotective drug with pleiotropic effects and may be a candidate for treating cerebral I/R injury.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Humans , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , bcl-2-Associated X Protein , Neuroinflammatory Diseases , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Proto-Oncogene Proteins c-bcl-2 , Tryptamines/pharmacology , Apoptosis
16.
Eur J Med Chem ; 253: 115318, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37037139

ABSTRACT

A series of tryptamine derivatives has been designed and synthesized as novel GluN2B subunit-containing NMDA receptor (GluN2B-NMDAR) antagonists, which could simultaneously manifest the receptor-ligand interactions of representative GluN2B-NMDAR antagonists ifenprodil (1) and EVT-101 (3). In the present study, the neuroprotective potential of these compounds was explored through chemical synthesis and pharmacological characterization. Compound Z25 with significantly better neuroprotective activity than the positive control drug (percentage of protection: 55.8 ± 0.6% vs. 41.0 ± 2.7%) was considered to be an effective antagonist of the human GluN2B-NMDA receptor. Judging from in vitro pharmacological profiling, Z25 could downregulate NMDA-induced increased intracellular Ca2+ concentration, and Z25 could also upregulate NMDA-induced decreased intracellular p-ERK 1/2 expression, which suggested that Z25 is an antagonist of the GluN2B-NMDA receptor. Furthermore, the in vitro preliminary evaluation of the drug-like properties of compound Z25 showed remarkable plasma stability. Based on in vivo pharmacokinetic and pharmacodynamic studies in C57 mice, compound Z25 exhibited a relatively short half-life and a low F value (3.12 ± 0.01%), while administration of Z25 substantially improved the cognitive performance of mice in a series of tests of cerebral ischemic injury. Overall, these results support the further development of compound Z25 as a potential lead compound to treat the cerebral ischemic injury by antagonizing GluN2B-NMDA receptor.


Subject(s)
Brain Ischemia , Receptors, N-Methyl-D-Aspartate , Mice , Humans , Animals , N-Methylaspartate , Pharmacophore , Brain Ischemia/drug therapy , Tryptamines/pharmacology
17.
ACS Chem Neurosci ; 14(3): 351-358, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36630260

ABSTRACT

Psychedelic compounds have displayed antidepressant potential in both humans and rodents. Despite their promise, psychedelics can induce undesired effects that pose safety concerns and limit their clinical scalability. The rational development of optimized psychedelic-related medicines will require a full mechanistic understanding of how these molecules produce therapeutic effects. While the hallucinogenic properties of psychedelics are generally attributed to activation of serotonin 2A receptors (5-HT2ARs), it is currently unclear if these receptors also mediate their antidepressant effects as several nonhallucinogenic analogues of psychedelics with antidepressant-like properties have been developed. Moreover, many psychedelics exhibit promiscuous pharmacology, making it challenging to identify their primary therapeutic target(s). Here, we use a combination of pharmacological and genetic tools to demonstrate that activation of 5-HT2A receptors is essential for tryptamine-based psychedelics to produce antidepressant-like effects in rodents. Our results suggest that psychedelic tryptamines can induce hallucinogenic and therapeutic effects through activation of the same receptor.


Subject(s)
Hallucinogens , Animals , Humans , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Tryptamines/pharmacology , Rodentia
18.
J Pharmacol Exp Ther ; 385(1): 62-75, 2023 04.
Article in English | MEDLINE | ID: mdl-36669875

ABSTRACT

Novel psychoactive substances, including synthetic substituted tryptamines, represent a potential public health threat. Additionally, some substituted tryptamines are being studied under medical guidance as potential treatments of psychiatric disorders. Characterizing the basic pharmacology of substituted tryptamines will aid in understanding differences in potential for harm or therapeutic use. Using human embryonic kidney cells stably expressing 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT2C receptors (5-HT1AR, 5-HT2AR, and 5HT2CR, respectively) or the serotonin transporter (SERT), we measured affinities, potencies and efficacies of 21 substituted tryptamines. With the exception of two 4-acetoxy compounds, substituted tryptamines exhibited affinities and potencies less than one micromolar at the 5-HT2AR, the primary target for psychedelic effects. In comparison, half or more exhibited low affinities/potencies at 5-HT2CR, 5-HT1AR, and SERT. Sorting by the ratio of 5-HT2A to 5-HT2C, 5-HT1A, or SERT affinity revealed chemical determinants of selectivity. We found that although 4-substituted compounds exhibited affinities that ranged across a factor of 100, they largely exhibited high selectivity for 5-HT2ARs versus 5-HT1ARs and 5-HT2CRs. 5-substituted compounds exhibited high affinities for 5-HT1ARs, low affinities for 5-HT2CRs, and a range of affinities for 5-HT2ARs, resulting in selectivity for 5-HT2ARs versus 5-HT2CRs but not versus 5-HT1ARs. Additionally, a number of psychedelics bound to SERT, with non-ring-substituted tryptamines most consistently exhibiting binding. Interestingly, substituted tryptamines and known psychedelic standards exhibited a broad range of efficacies, which were lower as a class at 5-HT2ARs compared with 5-HT2CRs and 5-HT1ARs. Conversely, coupling efficiency/amplification ratio was highest at 5-HT2ARs in comparison with 5-HT2CRs and 5-HT1ARs. SIGNIFICANCE STATEMENT: Synthetic substituted tryptamines represent both potential public health threats and potential treatments of psychiatric disorders. The substituted tryptamines tested differed in affinities, potencies, and efficacies at 5-hydroxytryptamine (5-HT)2A, 5-HT2C, and 5HT1A receptors and the serotonin transporter (SERT). Several compounds were highly selective for and coupled very efficiently downstream of 5-HT2A versus 5-HT1A and 5-HT2C receptors, and some bound SERT. This basic pharmacology of substituted tryptamines helps us understand the pharmacologic basis of their potential for harm and as therapeutic agents.


Subject(s)
Hallucinogens , Tryptamines , Humans , Tryptamines/pharmacology , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism
19.
ChemMedChem ; 18(1): e202200405, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36317820

ABSTRACT

Six methyl pheophorbide-a derivatives were prepared by linking a tryptamine side chain at the C-131 , C-152 and C-173 positions of pheophorbide-a. Prepared conjugates were characterized and evaluated for their photocytotoxicity against A549 cells. The conjugate 6 a with strong absorption at 413 nm (Soret band), 663-671 nm (Q bands) and comparable fluorescence quantum yield (0.26) was found to exhibit significant cytotoxicity (659 nM). Molecular integration of pheophorbide-a and tryptamines showed synergistic effects as the most potent conjugate 6 a was identified with enhanced photocytotoxicity when compared to methyl pheophorbide-a. The conjugate 6 a was smoothly taken up by A549 cells and exhibited intracellular localization predominantly to lysosome in the cytoplasm. Upon photoirradiation 6 a generated singlet oxygen to show potent cytotoxicity toward A549 cells.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Cell Line, Tumor , Tryptamines/pharmacology
20.
J Agric Food Chem ; 70(46): 14693-14705, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36350271

ABSTRACT

Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (X. citri), is a plant disease affecting Citrus crops worldwide. However, little is known about defense compounds in Citrus. Here, we conducted a mass spectrometry-based metabolomic approach to obtain an overview of the chemical responses of Citrus leaves to X. citri infection. To facilitate result interpretation, the multivariate analyses were combined with molecular networking to identify biomarkers. Metabolite variations among untreated and X. citri-inoculated Citrus samples under greenhouse conditions highlighted induced defense biomarkers. Notably, the plant tryptophan metabolism pathway was activated, leading to the accumulation of N-methylated tryptamine derivatives. This finding was subsequently confirmed in symptomatic leaves in the field. Several tryptamine derivatives showed inhibitory effects in vitro against X. citri. This approach has enabled the identification of new chemically related biomarker groups and their dynamics in the response of Citrus leaves to Xanthomonas infection.


Subject(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/microbiology , Plant Diseases/microbiology , Citrus/microbiology , Plant Leaves/microbiology , Tryptamines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...