Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.930
1.
Cancer Immunol Immunother ; 73(8): 156, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834869

BACKGROUND: Ubiquitin-specific proteases family is crucial to host immunity against pathogens. However, the correlations between USP21 and immunosurveillance and immunotherapy for colorectal cancer (CRC) have not been reported. METHODS: The differential expression of USP21 between CRC tissues and normal tissues was analyzed using multiple public databases. Validation was carried out in clinical samples through qRT-PCR and IHC. The correlation between USP21 and the prognosis, as well as clinical pathological characteristics of CRC patients, was investigated. Moreover, cell models were established to assess the influence of USP21 on CRC growth and progression, employing CCK-8 assays, colony formation assays, and wound-healing assays. Subsequently, gene set variation analysis (GSVA) was used to explore the potential biological functions of USP21 in CRC. The study also examined the impact of USP21 on cytokine levels and immune cell infiltration in the tumor microenvironment (TME). Finally, the effect of USP21 on the response to immunotherapy and chemotherapy in CRC was analyzed. RESULTS: The expression of USP21 was significantly upregulated in CRC. High USP21 is correlated with poor prognosis in CRC patients and facilitates the proliferation and migration capacities of CRC cells. GSVA indicated an association between low USP21 and immune activation. Moreover, low USP21 was linked to an immune-activated TME, characterized by high immune cell infiltration. Importantly, CRC with low USP21 exhibited higher tumor mutational burden, high PD-L1 expression, and better responsiveness to immunotherapy and chemotherapeutic drugs. CONCLUSION: This study revealed the role of USP21 in TME, response to therapy, and clinical prognosis in CRC, which provided novel insights for the therapeutic application in CRC.


Colorectal Neoplasms , Tumor Microenvironment , Ubiquitin Thiolesterase , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Tumor Microenvironment/immunology , Prognosis , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Male , Female , Cell Proliferation , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Middle Aged , Immunotherapy/methods
2.
Hum Genomics ; 18(1): 55, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822443

BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.


Cyclin-Dependent Kinase Inhibitor p16 , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Biomarkers, Tumor/genetics , Aged , Prognosis , DNA Copy Number Variations/genetics , Mutation/genetics , Microsatellite Instability
3.
BMC Med Genomics ; 17(1): 150, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822402

Long non-coding RNAs (lncRNAs) and cancer stem cells (CSCs) are crucial for the growth, migration, recurrence, and medication resistance of tumors. However, the impact of lncRNAs related to stemness on the outcome and tumor immune microenvironment (TIME) in clear cell renal cell carcinoma (ccRCC) is still unclear. In this study, we aimed to predict the outcome and TIME of ccRCC by constructing a stem related lncRNAs (SRlncRNAs) signature. We firstly downloaded ccRCC patients' clinical data and RNA sequencing data from UCSC and TCGA databases, and abtained the differentially expressed lncRNAs highly correlated with stem index in ccRCC through gene expression differential analysis and Pearson correlation analysis. Then, we selected suitable SRlncRNAs for constructing a prognostic signature of ccRCC patients by LASSO Cox regression. Further, we used nomogram and Kaplan Meier curves to evaluate the SRlncRNA signature for the prognose in ccRCC. At last, we used ssGSEA and GSVA to evaluate the correlation between the SRlncRNAs signature and TIME in ccRCC. Finally, We obtained a signtaure based on six SRlncRNAs, which are correlated with TIME and can effectively predict the ccRCC patients' prognosis. The SRlncRNAs signature may be a noval prognostic indicator in ccRCC.


Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Stem Cells , RNA, Long Noncoding , Tumor Microenvironment , Humans , RNA, Long Noncoding/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/immunology , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Kaplan-Meier Estimate , Gene Expression Profiling
4.
Signal Transduct Target Ther ; 9(1): 142, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825657

Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.


Immune Checkpoint Inhibitors , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Endopeptidases/genetics , NIH 3T3 Cells , Radiopharmaceuticals/therapeutic use , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Xenograft Model Antitumor Assays , Immunotherapy , Gelatinases/genetics , Gelatinases/immunology , Lutetium/pharmacology , Cell Line, Tumor
5.
Eur J Med Res ; 29(1): 307, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38825674

BACKGROUND: Tumor necrosis factor receptor-associated factors family genes play a pivotal role in tumorigenesis and metastasis, functioning as adapters or E3 ubiquitin ligases across various signaling pathways. To date, limited research has explored the association between tumor necrosis factor receptor-associated factors family genes and the clinicopathological characteristics of tumors, immunity, and the tumor microenvironment (TME). This comprehensive study investigates the relationship between tumor necrosis factor receptor-associated factors family and prognosis, TME, immune response, and drug sensitivity in a pan-cancer context. METHODS: Utilizing current public databases, this study examines the expression levels and prognostic significance of tumor necrosis factor receptor-associated factors family genes in a pan-cancer context through bioinformatic analysis. In addition, it investigates the correlation between tumor necrosis factor receptor-associated factors expression and various factors, including the TME, immune subtypes, stemness scores, and drug sensitivity in pan-cancer. RESULTS: Elevated expression levels of tumor necrosis factor receptor-associated factor 2, 3, 4, and 7 were observed across various cancer types. Patients exhibiting high expression of these genes generally faced a worse prognosis. Furthermore, a significant correlation was noted between the expression of tumor necrosis factor receptor-associated factors family genes and multiple dimensions of the TME, immune subtypes, and drug sensitivity.


Neoplasms , Tumor Microenvironment , Humans , Prognosis , Neoplasms/genetics , Neoplasms/drug therapy , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Gene Expression Regulation, Neoplastic , Computational Biology/methods , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/genetics
6.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Article En | MEDLINE | ID: mdl-38831106

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Tumor Microenvironment , Animals , Humans , Immunotherapy, Adoptive/methods , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Receptors, Tumor Necrosis Factor, Member 14/genetics , Mice , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , T-Lymphocytes, Regulatory/immunology , Signal Transduction , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/therapy , Mice, Knockout
7.
Arch Esp Urol ; 77(4): 322-330, 2024 May.
Article En | MEDLINE | ID: mdl-38840273

High intensity focused ultrasound (HIFU), also referred to as focused ultrasound surgery (FUS), has garnered recent attention as a non-invasive therapeutic strategy for prostate cancer. It utilizes focused acoustic energy to achieve localized thermal ablation, while also potentially exerting immunomodulatory effects. This review aims to elucidate the mechanisms underlying how HIFU influences tumor-specific immune responses in prostate cancer. These mechanisms include the release of tumor-associated antigens and damage-associated molecular patterns, the activation of innate immune cells, the facilitation of antigen presentation to adaptive immune cells, the enhancement of activation and proliferation of tumor-specific cytotoxic T lymphocytes, and the attenuation of the immunosuppressive tumor microenvironment by reducing the activity of regulatory T cells and myeloid-derived suppressor cells. Both preclinical investigations and emerging clinical data in prostate cancer models highlight HIFU's potential to modulate the immune system, as evidenced by increased infiltration of effector immune cells, elevated levels of pro-inflammatory cytokines, and improved responsiveness to immune checkpoint inhibitors. HIFU induces immunogenic cell death, leading to the release of tumor antigens and danger signals that activate dendritic cells and facilitate cross-presentation to cytotoxic T cells. Additionally, FUS ablation reduces immunosuppressive cells and increases infiltration of CD8+ T cells into the tumor, reshaping the tumor microenvironment. By priming the immune system while overcoming immunosuppression, combining FUS with other immunotherapies like checkpoint inhibitors and cancer vaccines holds promise for synergistic anti-tumor effects. Despite challenges in optimizing parameters and identifying suitable patients, FUS represents a novel frontier by modulating the tumor microenvironment and enhancing anti-tumor immunity through a non-invasive approach.


High-Intensity Focused Ultrasound Ablation , Prostatic Neoplasms , Prostatic Neoplasms/therapy , Prostatic Neoplasms/immunology , Male , Humans , High-Intensity Focused Ultrasound Ablation/methods , Tumor Microenvironment/immunology
8.
Oncoimmunology ; 13(1): 2363000, 2024.
Article En | MEDLINE | ID: mdl-38846085

NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between ß-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that ß-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with ß-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of ß-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8+ T cell proliferation. ß-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-ß expression and reduced TGF-ß cytokine expression, along with increased CD95 and CD54 surface markers. ß-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into ß-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by ß-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the ß-Lap-induced antitumor activity against NQO1-positive murine tumors.


NAD(P)H Dehydrogenase (Quinone) , Naphthoquinones , Neutrophils , Tumor Microenvironment , Animals , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/immunology , Mice , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Neutrophil Infiltration/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Female , Phenotype
9.
J Hematol Oncol ; 17(1): 40, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835055

Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.


Immunotherapy , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , Immunotherapy/methods , Tumor Microenvironment/immunology , Cancer Vaccines/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Animals , Immunotherapy, Adoptive/methods
10.
Front Immunol ; 15: 1355566, 2024.
Article En | MEDLINE | ID: mdl-38835775

Dendritic cell (DC)-based vaccines have emerged as a promising strategy in cancer immunotherapy due to low toxicity. However, the therapeutic efficacy of DC as a monotherapy is insufficient due to highly immunosuppressive tumor environment. To address these limitations of DC as immunotherapeutic agent, we have developed a polymeric nanocomplex incorporating (1) oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) and (2) arginine-grafted bioreducible polymer with PEGylated paclitaxel (APP) to restore antitumor immune surveillance function in tumor milieu and potentiate immunostimulatory attributes of DC vaccine. Nanohybrid complex (oAd/APP) in combination with DC (oAd/APP+DC) induced superior expression level of antitumor cytokines (IL-12, GM-CSF, and interferon gamma) than either oAd/APP or DC monotherapy in tumor tissues, thus resulting in superior intratumoral infiltration of both endogenous and exogenous DCs. Furthermore, oAd/APP+DC treatment led superior migration of DC to secondary lymphoid organs, such as draining lymph nodes and spleen, in comparison with either monotherapy. Superior migration profile of DCs in oAd/APP+DC treatment group resulted in more prolific activation of tumor-specific T cells in these lymphoid organs and greater intratumoral infiltration of T cells. Additionally, oAd/APP+DC treatment led to lower subset of tumor infiltrating lymphocytes and splenocytes being immunosuppressive regulatory T cells than any other treatment groups. Collectively, oAd/APP+DC led to superior induction of antitumor immune response and amelioration of immunosuppressive tumor microenvironment to elicit potent tumor growth inhibition than either monotherapy.


Adenoviridae , Dendritic Cells , Oncolytic Virotherapy , Oncolytic Viruses , Paclitaxel , Dendritic Cells/immunology , Animals , Paclitaxel/pharmacology , Adenoviridae/genetics , Mice , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Combined Modality Therapy , Cell Line, Tumor , Humans , Mice, Inbred C57BL , Cancer Vaccines/immunology , Immunotherapy/methods , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Female , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects
11.
Front Immunol ; 15: 1380069, 2024.
Article En | MEDLINE | ID: mdl-38835781

Bacillus Calmette-Guérin (BCG) is the first line treatment for bladder cancer and it is also proposed for melanoma immunotherapy. BCG modulates the tumor microenvironment (TME) inducing an antitumor effective response, but the immune mechanisms involved still poorly understood. The immune profile of B16-F10 murine melanoma cells was assessed by infecting these cells with BCG or stimulating them with agonists for different innate immune pathways such as TLRs, inflammasome, cGAS-STING and type I IFN. B16-F10 did not respond to any of those stimuli, except for type I IFN agonists, contrasting with bone marrow-derived macrophages (BMDMs) that showed high production of proinflammatory cytokines. Additionally, we confirmed that BCG is able to infect B16-F10, which in turn can activate macrophages and spleen cells from mice in co-culture experiments. Furthermore, we established a subcutaneous B16-F10 melanoma model for intratumoral BCG treatment and compared wild type mice to TLR2-/-, TLR3-/-, TLR4-/-, TLR7-/-, TLR3/7/9-/-, caspase 1-/-, caspase 11-/-, IL-1R-/-, cGAS-/-, STING-/-, IFNAR-/-, MyD88-/-deficient animals. These results in vivo demonstrate that MyD88 signaling is important for BCG immunotherapy to control melanoma in mice. Also, BCG fails to induce cytokine production in the co-culture experiments using B16-F10 and BMDMs or spleen cells derived from MyD88-/- compared to wild-type (WT) animals. Immunotherapy with BCG was not able to induce the recruitment of inflammatory cells in the TME from MyD88-/- mice, impairing tumor control and IFN-γ production by T cells. In conclusion, MyD88 impacts on both innate and adaptive responses to BCG leading to an efficient antitumor response against melanoma.


BCG Vaccine , Immunotherapy , Melanoma, Experimental , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88 , Signal Transduction , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , BCG Vaccine/immunology , BCG Vaccine/therapeutic use , Immunotherapy/methods , Tumor Microenvironment/immunology , Cell Line, Tumor , Macrophages/immunology , Macrophages/metabolism , Mycobacterium bovis/immunology , Cytokines/metabolism
12.
Front Immunol ; 15: 1384946, 2024.
Article En | MEDLINE | ID: mdl-38835784

Breast cancer has a high incidence and a heightened propensity for metastasis. The absence of precise targets for effective intervention makes it imperative to devise enhanced treatment strategies. Exosomes, characterized by a lipid bilayer and ranging in size from 30 to 150 nm, can be actively released by various cells, including those in tumors. Exosomes derived from distinct subsets of immune cells have been shown to modulate the immune microenvironment within tumors and influence breast cancer progression. In addition, tumor-derived exosomes have been shown to contribute to breast cancer development and progression and may become a new target for breast cancer immunotherapy. Tumor immunotherapy has become an option for managing tumors, and exosomes have become therapeutic vectors that can be used for various pathological conditions. Edited exosomes can be used as nanoscale drug delivery systems for breast cancer therapy, contributing to the remodeling of immunosuppressive tumor microenvironments and influencing the efficacy of immunotherapy. This review discusses the regulatory role of exosomes from different cells in breast cancer and the latest applications of exosomes as nanoscale drug delivery systems and immunotherapeutic agents in breast cancer, showing the development prospects of exosomes in the clinical treatment of breast cancer.


Breast Neoplasms , Exosomes , Immunotherapy , Tumor Microenvironment , Exosomes/immunology , Exosomes/metabolism , Humans , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Female , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Drug Delivery Systems
13.
Sci Adv ; 10(23): eadl6083, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38838151

Hepatocellular carcinoma (HCC) acquires an immunosuppressive microenvironment, leading to unbeneficial therapeutic outcomes. Hyaluronan-mediated motility receptor (HMMR) plays a crucial role in tumor progression. Here, we found that aberrant expression of HMMR could be a predictive biomarker for the immune suppressive microenvironment of HCC, but the mechanism remains unclear. We established an HMMR-/- liver cancer mouse model to elucidate the HMMR-mediated mechanism of the dysregulated "don't eat me" signal. HMMR knockout inhibited liver cancer growth and induced phagocytosis. HMMRhigh liver cancer cells escaped from phagocytosis via sustaining CD47 signaling. Patients with HMMRhighCD47high expression showed a worse prognosis than those with HMMRlowCD47low expression. HMMR formed a complex with FAK/SRC in the cytoplasm to activate NF-κB signaling, which could be independent of membrane interaction with CD44. Notably, targeting HMMR could enhance anti-PD-1 treatment efficiency by recruiting CD8+ T cells. Overall, our data revealed a regulatory mechanism of the "don't eat me" signal and knockdown of HMMR for enhancing anti-PD-1 treatment.


CD47 Antigen , Carcinoma, Hepatocellular , Hyaluronan Receptors , Liver Neoplasms , Phagocytes , Phagocytosis , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Animals , Humans , Mice , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Phagocytes/metabolism , Phagocytes/immunology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Cell Line, Tumor , Signal Transduction , Tumor Microenvironment/immunology , Immune Evasion , NF-kappa B/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Knockout , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Tumor Escape
14.
Front Immunol ; 15: 1371831, 2024.
Article En | MEDLINE | ID: mdl-38840910

Introduction: Lung cancer, with the highest global mortality rate among cancers, presents a grim prognosis, often diagnosed at an advanced stage in nearly 70% of cases. Recent research has unveiled a novel mechanism of cell death termed disulfidptosis, which is facilitated by glucose scarcity and the protein SLC7A11. Methods: Utilizing the least absolute shrinkage and selection operator (LASSO) regression analysis combined with Cox regression analysis, we constructed a prognostic model focusing on disulfidptosis-related genes. Nomograms, correlation analyses, and enrichment analyses were employed to assess the significance of this model. Among the genes incorporated into the model, CHRNA5 was selected for further investigation regarding its role in LUAD cells. Biological functions of CHRNA5 were assessed using EdU, transwell, and CCK-8 assays. Results: The efficacy of the model was validated through internal testing and an external validation set, with further evaluation of its robustness and clinical applicability using a nomogram. Subsequent correlation analyses revealed associations between the risk score and infiltration of various cancer types, as well as oncogene expression. Enrichment analysis also identified associations between the risk score and pivotal biological processes and KEGG pathways. Our findings underscore the significant impact of CHRNA5 on LUAD cell proliferation, migration, and disulfidptosis. Conclusion: This study successfully developed and validated a robust prognostic model centered on disulfidptosis-related genes, providing a foundation for predicting prognosis in LUAD patients.


Adenocarcinoma of Lung , Lung Neoplasms , Nomograms , Receptors, Nicotinic , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Receptors, Nicotinic/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/genetics , Cell Line, Tumor , Male , Cell Proliferation/genetics , Female
15.
Front Immunol ; 15: 1388176, 2024.
Article En | MEDLINE | ID: mdl-38840908

The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.


Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Animals , Immunity, Innate , Cell Communication/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor Escape , Immunotherapy/methods
16.
Front Immunol ; 15: 1370367, 2024.
Article En | MEDLINE | ID: mdl-38840920

Because of the considerable tumor heterogeneity in gastric cancer (GC), only a limited group of patients experiences positive outcomes from immunotherapy. Herein, we aim to develop predictive models related to glycosylation genes to provide a more comprehensive understanding of immunotherapy for GC. RNA sequencing (RNA-seq) data and corresponding clinical outcomes were obtained from GEO and TCGA databases, and glycosylation-related genes were obtained from GlycoGene DataBase. We identified 48 differentially expressed glycosylation-related genes and established a prognostic model (seven prognosis genes including GLT8D2, GALNT6, ST3GAL6, GALNT15, GBGT1, FUT2, GXYLT2) based on these glycosylation-related genes using the results from Cox regression analysis. We found that these glycosylation-related genes revealed a robust correlation with the abundance of Tumor Infiltrating Lymphocytes (TILs), especially the GLT8D2 which is associated with many TILs. Finally, we employed immunohistochemistry and Multiplex Immunohistochemical to discover that GLT8D2 serves as a valuable prognostic biomarker in GC and is closely associated with macrophage-related markers. Collectively, we established a prognostic model based on glycosylation-related genes to provide a more comprehensive understanding of prediction for GC prognosis, and identified that GLT8D2 is closely correlated with adverse prognosis and may underscore its role in regulating immune cell infiltration in GC patients.


Biomarkers, Tumor , Lymphocytes, Tumor-Infiltrating , Stomach Neoplasms , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Biomarkers, Tumor/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Prognosis , Glycosylation , Female , Male , Gene Expression Regulation, Neoplastic , Middle Aged , Tumor Microenvironment/immunology
17.
Front Immunol ; 15: 1411132, 2024.
Article En | MEDLINE | ID: mdl-38840928

Background: Cervical cancer remains a significant gynecologic malignancy in both China and the United States, posing a substantial threat to women's lives and health due to its high morbidity and mortality rates. Altered energy metabolism and dysregulated mitochondrial function play crucial roles in the development, growth, metastasis, and recurrence of malignant tumors. In this study, we aimed to predict prognosis and assess efficacy of anti-tumor therapy in cervical cancer patients based on differential genes associated with mitochondrial metabolism. Methods: Transcriptomic data and clinical profiles of cervical cancer patients were retrieved from the TCGA and GEO databases. Differential gene-related cellular pathways were identified through GO, KEGG, and GSEA analyses. Prognostic indices were constructed using LASSO regression analysis. Immune cell infiltration was assessed using CIBERSORT and ssGSEA, and the correlation between immune checkpoint inhibitor genes and differential genes was examined. Tumor mutation load (TMB) and its association with prognostic indices were analyzed using nucleotide variant data from the TCGA database. Patient response to immunotherapy and sensitivity to antitumor drugs were determined using the TIDE algorithm and the oncoPredic algorithm, respectively. Results: A prognostic index based on metabolism-related differential genes was developed to predict the clinical outcome of cervical cancer patients, enabling their classification into two distinct subtypes. The prognostic index emerged as an independent risk factor for unfavorable prognosis. The high-index group exhibited a significantly worse overall prognosis, along with elevated tumor mutation burden (TMB), increased immune cell infiltration, and lower TIDE scores, indicating a potential benefit from immunotherapy. Conversely, the low-index group demonstrated increased sensitivity to metabolism-related antitumor agents, specifically multikinase inhibitors. Conclusion: The aim of this study was to develop a prognostic index based on differential genes associated with mitochondrial metabolism, which could be used to predict cervical cancer patients' prognoses. When combined with TIDE and TMB analyses, this prognostic index offers insights into the immune cell infiltration landscape, as well as the potential efficacy of immunotherapy and targeted therapy. Our analysis suggests that the Iron-Sulfur Cluster Assembly Enzyme (ISCU) gene holds promise as a biomarker for cervical cancer immunotherapy.


Biomarkers, Tumor , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/mortality , Female , Prognosis , Biomarkers, Tumor/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Gene Expression Regulation, Neoplastic , Transcriptome , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Mitochondria/metabolism , Mitochondria/genetics , Energy Metabolism/genetics , Databases, Genetic , Middle Aged , Mutation , Gene Expression Profiling
18.
Mol Cancer ; 23(1): 117, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824567

Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.


Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods
19.
Oncol Res ; 32(6): 1063-1078, 2024.
Article En | MEDLINE | ID: mdl-38827322

Hepatocellular carcinoma (HCC) is a malignancy known for its unfavorable prognosis. The dysregulation of the tumor microenvironment (TME) can affect the sensitivity to immunotherapy or chemotherapy, leading to treatment failure. The elucidation of PHLDA2's involvement in HCC is imperative, and the clinical value of PHLDA2 is also underestimated. Here, bioinformatics analysis was performed in multiple cohorts to explore the phenotype and mechanism through which PHLDA2 may affect the progression of HCC. Then, the expression and function of PHLDA2 were examined via the qRT-PCR, Western Blot, and MTT assays. Our findings indicate a substantial upregulation of PHLDA2 in HCC, correlated with a poorer prognosis. The methylation levels of PHLDA2 were found to be lower in HCC tissues compared to normal liver tissues. Besides, noteworthy associations were observed between PHLDA2 expression and immune infiltration in HCC. In addition, PHLDA2 upregulation is closely associated with stemness features and immunotherapy or chemotherapy resistance in HCC. In vitro experiments showed that sorafenib or cisplatin significantly up-regulated PHLDA2 mRNA levels, and PHLDA2 knockdown markedly decreased the sensitivity of HCC cells to chemotherapy drugs. Meanwhile, we found that TGF-ß induced the expression of PHLDA2 in vitro. The GSEA and in vitro experiment indicated that PHLDA2 may promote the HCC progression via activating the AKT signaling pathway. Our study revealed the novel role of PHLDA2 as an independent prognostic factor, which plays an essential role in TME remodeling and treatment resistance in HCC.


Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Tumor Microenvironment/immunology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prognosis , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction , Nuclear Proteins
20.
Haematologica ; 109(6): 1656-1667, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38832421

Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.


Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Child , Clinical Trials as Topic , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Tumor Microenvironment/immunology , Animals
...