Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43.801
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 435, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126431

ABSTRACT

Naringenin is a plant polyphenol, widely explored due to its interesting biological activities, namely anticancer, antioxidant, and anti-inflammatory. Due to its potential applications and attempt to overcome the industrial demand, there has been an increased interest in its heterologous production. The microbial biosynthetic pathway to produce naringenin is composed of tyrosine ammonia-lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). Herein, we targeted the efficient de novo production of naringenin in Escherichia coli by performing a step-by-step validation and optimization of the pathway. For that purpose, we first started by expressing two TAL genes from different sources in three different E. coli strains. The highest p-coumaric acid production (2.54 g/L) was obtained in the tyrosine-overproducing M-PAR-121 strain carrying TAL from Flavobacterium johnsoniae (FjTAL). Afterwards, this platform strain was used to express different combinations of 4CL and CHS genes from different sources. The highest naringenin chalcone production (560.2 mg/L) was achieved by expressing FjTAL combined with 4CL from Arabidopsis thaliana (At4CL) and CHS from Cucurbita maxima (CmCHS). Finally, different CHIs were tested and validated, and 765.9 mg/L of naringenin was produced by expressing CHI from Medicago sativa (MsCHI) combined with the other previously chosen genes. To our knowledge, this titer corresponds to the highest de novo production of naringenin reported so far in E. coli. KEY POINTS: • Best enzyme and strain combination were selected for de novo naringenin production. • After genetic and operational optimizations, 765.9 mg/L of naringenin was produced. • This de novo production is the highest reported so far in E. coli.


Subject(s)
Acyltransferases , Ammonia-Lyases , Biosynthetic Pathways , Coenzyme A Ligases , Escherichia coli , Flavanones , Flavanones/biosynthesis , Flavanones/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Biosynthetic Pathways/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Ammonia-Lyases/genetics , Ammonia-Lyases/metabolism , Metabolic Engineering/methods , Coumaric Acids/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Tyrosine/metabolism
2.
J Phys Chem Lett ; 15(32): 8287-8295, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143857

ABSTRACT

The human StAR-related lipid transfer domain protein 2 (STARD2), also known as phosphatidylcholine (PC) transfer protein, is a single-domain lipid transfer protein thought to transfer PC lipids between intracellular membranes. We performed extensive µs-long molecular dynamics simulations of STARD2 of its apo and holo forms in the presence or absence of complex lipid bilayers. The simulations in water reveal ligand-dependent conformational changes. In the 2 µs-long simulations of apo STARD2 in the presence of a lipid bilayer, we observed spontaneous reproducible PC lipid uptake into the protein hydrophobic cavity. We propose that the lipid extraction mechanism involves one to two metastable states stabilized by choline-tyrosine or choline-tryptophane cation-π interactions. Using free energy perturbation, we evaluate that PC-tyrosine cation-π interactions contribute 1.8 and 2.5 kcal/mol to the affinity of a PC-STARD2 metastable state, thus potentially providing a significant decrease of the energy barrier required for lipid desorption.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Phosphatidylcholines , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Phosphatidylcholines/chemistry , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Thermodynamics , Hydrophobic and Hydrophilic Interactions , Tyrosine/chemistry
3.
Biochemistry ; 63(15): 1980-1990, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39008055

ABSTRACT

Aromatic amino acid decarboxylases (AAADs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that catalyze the decarboxylation of aromatic amino acid l-amino acids. In plants, apart from canonical AAADs that catalyze the straightforward decarboxylation reaction, other members of the AAAD family function as aromatic acetaldehyde synthases (AASs) and catalyze more complex decarboxylation-dependent oxidative deamination. The interconversion between a canonical AAAD and an AAS can be achieved by a single tyrosine-phenylalanine mutation in the large catalytic loop of the enzymes. In this work, we report implicit ligand sampling (ILS) calculations of the canonical l-tyrosine decarboxylase from Papaver somniferum (PsTyDC) that catalyzes l-tyrosine decarboxylation and its Y350F mutant that instead catalyzes the decarboxylation-dependent oxidative deamination of the same substrate. Through comparative analysis of the resulting three-dimensional (3D) O2 free energy profiles, we evaluate the impact of the key tyrosine/phenylalanine mutation on oxygen accessibility to both the wild type and Y350F mutant of PsTyDC. Additionally, using molecular dynamics (MD) simulations of the l-tryptophan decarboxylase from Catharanthus roseus (CrTDC), we further investigate the dynamics of a large catalytic loop known to be indispensable to all AAADs. Results of our ILS and MD calculations shed new light on how key structural elements and loop conformational dynamics underlie the enzymatic functions of different members of the plant AAAD family.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases , Catalytic Domain , Molecular Dynamics Simulation , Oxygen , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/chemistry , Oxygen/metabolism , Oxygen/chemistry , Papaver/enzymology , Papaver/genetics , Papaver/metabolism , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Tyrosine/genetics
4.
Front Cell Infect Microbiol ; 14: 1392744, 2024.
Article in English | MEDLINE | ID: mdl-39035356

ABSTRACT

Background: Paracoccidioidomycosis (PCM) is a systemic endemic fungal disease prevalent in Latin America. Previous studies revealed that host immunity against PCM is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), regulatory T-cells (Tregs), and through the recruitment and activation of myeloid-derived suppressor cells (MDSCs). We have recently shown that Dectin-1, TLR2, and TLR4 signaling influence the IDO-1-mediated suppression caused by MDSCs. However, the contribution of these receptors in the production of important immunosuppressive molecules used by MDSCs has not yet been explored in pulmonary PCM. Methods: We evaluated the expression of PD-L1, IL-10, as well as nitrotyrosine by MDSCs after anti-Dectin-1, anti-TLR2, and anti-TLR4 antibody treatment followed by P. brasiliensis yeasts challenge in vitro. We also investigated the influence of PD-L1, IL-10, and nitrotyrosine in the suppressive activity of lung-infiltrating MDSCs of C57BL/6-WT, Dectin-1KO, TLR2KO, and TLR4KO mice after in vivo fungal infection. The suppressive activity of MDSCs was evaluated in cocultures of isolated MDSCs with activated T-cells. Results: A reduced expression of IL-10 and nitrotyrosine was observed after in vitro anti-Dectin-1 treatment of MDSCs challenged with fungal cells. This finding was further confirmed in vitro and in vivo by using Dectin-1KO mice. Furthermore, MDSCs derived from Dectin-1KO mice showed a significantly reduced immunosuppressive activity on the proliferation of CD4+ and CD8+ T lymphocytes. Blocking of TLR2 and TLR4 by mAbs and using MDSCs from TLR2KO and TLR4KO mice also reduced the production of suppressive molecules induced by fungal challenge. In vitro, MDSCs from TLR4KO mice presented a reduced suppressive capacity over the proliferation of CD4+ T-cells. Conclusion: We showed that the pathogen recognition receptors (PRRs) Dectin-1, TLR2, and TLR4 contribute to the suppressive activity of MDSCs by inducing the expression of several immunosuppressive molecules such as PD-L1, IL-10, and nitrotyrosine. This is the first demonstration of a complex network of PRRs signaling in the induction of several suppressive molecules by MDSCs and its contribution to the immunosuppressive mechanisms that control immunity and severity of pulmonary PCM.


Subject(s)
B7-H1 Antigen , Disease Models, Animal , Interleukin-10 , Lectins, C-Type , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Paracoccidioidomycosis , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , Mice , Interleukin-10/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Paracoccidioidomycosis/immunology , Paracoccidioides/immunology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , T-Lymphocytes, Regulatory/immunology , Lung/immunology , Lung/microbiology , Signal Transduction , Male , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Mice, Knockout
5.
Article in English | MEDLINE | ID: mdl-39026474

ABSTRACT

INTRODUCTION: Tyrosinaemia type I is a rare hereditary metabolic disease caused by deficiency of the enzyme involved in the breakdown of tyrosine. Since the use of nitisinone in addition to diet in 1992, survival rates have increased significantly, but more and more socio-emotional problems have become apparent. The aim of the study was the assessment the relationship between variations in serum tyrosine and phenylalanine levels and measurements of socio-emotional functioning and determination of patients' IQs. THE AIM OF THE STUDY: was the assessment the relationship between variations in serum tyrosine and phenylalanine levels and measurements of socio-emotional functioning and determination of patients' IQs. MATERIAL AND METHODS: Twelve children were studied, from a single centre, born between 1994 and 2012, treated with nitisinone and a low-phenylalanine and -tyrosine diet. The psychological evaluation was conducted using the parent form of the Child Behaviour Checklist (CBCL)/4-18. Additionally, the patients' IQs were measured using the Stanford-Binet 5 (SB5) Intelligence Scale. Statistical analyses were performed using PAWS software suite version 26. We found that phenylalanine variability over time correlated with measures of emotional and behavioural functioning. This relationship holds true for externalising behaviour, associated with the experience of maladjustment and aggression. Total score intellectual and cognitive function was within the norm for all patients. CONCLUSIONS: To maintain better quality of life for patients and their families in terms of emotional and behavioural functioning, it may be important to avoid spikes (significant fluctuations) in phenylalanine levels. Regular, detailed psychological evaluations are recommended to detect potential problems and implement interventions aimed at achieving the best possible individual development and realise the intellectual and behavioural potential, thereby improving the patient's and her family's quality of life.


Subject(s)
Phenylalanine , Tyrosinemias , Humans , Tyrosinemias/blood , Tyrosinemias/psychology , Child , Male , Female , Phenylalanine/blood , Child, Preschool , Adolescent , Tyrosine/blood , Cyclohexanones/therapeutic use , Emotions , Quality of Life , Nitrobenzoates/therapeutic use , Child Behavior/psychology
6.
J Am Chem Soc ; 146(29): 20080-20085, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39001844

ABSTRACT

The utility of antibody therapeutics is hampered by potential cross-reactivity with healthy tissue. Over the past decade, significant advances have been made in the design of activatable antibodies, which increase, or create altogether, the therapeutic window of a parent antibody. Of these, antibody prodrugs (pro-antibodies) are masked antibodies that have advanced the most for therapeutic use. They are designed to reveal the active, parent antibody only when encountering proteases upregulated in the microenvironment of the targeted disease tissue, thereby minimizing off-target activity. However, current pro-antibody designs are relegated to fusion proteins that append masking groups restricted to the use of only canonical amino acids, offering excellent control of the site of introduction, but with no authority over where the masking group is installed other than the N-terminus of the antibody. Here, we present a palladium-based bioconjugation approach for the site-specific introduction of a masked tyrosine mimic in the complementary determining region of the FDA approved antibody therapeutic ipilimumab used as a model system. The approach enables the introduction of a protease cleavable group tethered to noncanonical polymers (polyethylene glycol (PEG)) resulting in 47-fold weaker binding to cells expressing CTLA-4, the target antigen of ipilimumab. Upon exposure to tumor-associated proteases, the masking group is cleaved, unveiling a tyrosine-mimic (dubbed hydroxyphenyl cysteine (HPC)) that restores (>90% restoration) binding affinity to its target antigen.


Subject(s)
Prodrugs , Tyrosine , Prodrugs/chemistry , Prodrugs/pharmacology , Humans , Tyrosine/chemistry , Palladium/chemistry , Molecular Structure , Immunoconjugates/chemistry
7.
Se Pu ; 42(7): 693-701, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966977

ABSTRACT

Tyrosine phosphorylation, a common post-translational modification process for proteins, is involved in a variety of biological processes. However, the abundance of tyrosine-phosphorylated proteins is very low, making their identification by mass spectrometry (MS) is difficult; thus, milligrams of the starting material are often required for their enrichment. For example, tyrosine phosphorylation plays an important role in T cell signal transduction. However, the number of primary T cells derived from biological tissue samples is very small, and these cells are difficult to culture and expand; thus, the study of T cell signal transduction is usually carried out on immortalized cell lines, which can be greatly expanded. However, the data from immortalized cell lines cannot fully mimic the signal transduction processes observed in the real physiological state, and they usually lead to conclusions that are quite different from those of primary T cells. Therefore, a highly sensitive proteomic method was developed for studying tyrosine phosphorylation modification signals in primary T cells. To address the issue of the limited T cells numbers, a comprehensive protocol was first optimized for the isolation, activation, and expansion of primary T cells from mouse spleen. CD3+ primary T cells were successfully sorted; more than 91% of the T cells collected were well activated on day 2, and the number of T cells expanded to over 7-fold on day 4. Next, to address the low abundance of tyrosine-phosphorylated proteins, we used SH2-superbinder affinity enrichment and immobilized Ti4+affinity chromatography (Ti4+-IMAC) to enrich the tyrosine-phosphorylated polypeptides of primary T cells that were co-stimulated with anti-CD3 and anti-CD28. These polypeptides were resolved using nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Finally, 282 tyrosine phosphorylation sites were successfully identified in 1 mg of protein, including many tyrosine phosphorylation sites on the immunoreceptor tyrosine-based activation motif (ITAM) in the intracellular region of the T cell receptor membrane protein CD3, as well as the phosphotyrosine sites of ZAP70, LAT, VAV1, and other proteins related to signal transduction under costimulatory conditions. In summary, to solve the technical problems of the limited number of primary cells, low abundance of tyrosine-phosphorylated proteins, and difficulty of detection by MS, we developed a comprehensive proteomic method for the in-depth analysis of tyrosine phosphorylation modification signals in primary T cells. This protocol may be applied to map signal transduction networks that are closely related to physiological states.


Subject(s)
Phosphoproteins , Proteome , T-Lymphocytes , Tyrosine , Animals , Mice , Phosphorylation , Phosphoproteins/analysis , Proteome/analysis , Proteomics/methods , Signal Transduction
8.
Chem Commun (Camb) ; 60(59): 7622-7625, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38957144

ABSTRACT

Pyridyloxy-directed Ir(III)-catalyzed diacylmethylation of protected tyrosines was achieved with alkyl and (hetero)aryl sulfoxonium ylides, furnishing tyrosine-based unnatural amino acids in good yields. Furthermore, the late stage exemplification of the strategy was successfully accomplished in tyrosine-containing dipeptides, tripeptides and tetrapeptides in moderate yields. This methodology is distinguished by its site-selectivity, tolerance of sensitive functional groups, scalability, and retention of the chiral configuration for tyrosine motifs.


Subject(s)
Iridium , Peptides , Tyrosine , Iridium/chemistry , Catalysis , Tyrosine/chemistry , Methylation , Peptides/chemistry , Sulfonium Compounds/chemistry , Molecular Structure
9.
Stress ; 27(1): 2375588, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38975711

ABSTRACT

Ingestion of L-theanine and L-tyrosine has been shown to reduce salivary stress biomarkers and improve aspects of cognitive performance in response to stress. However, there have been no studies to concurrently examine the impact of both L-theanine and L-tyrosine ingestion during a mental stress challenge (MSC) involving a brief cognitive challenge and a virtual reality based active shooter training drill. Thus, the purpose of this study was to determine the impact of ingestion of L-theanine and L-tyrosine on markers of stress and cognitive performance in response to a virtual reality active shooter drill and cognitive challenge. The cognitive challenge involved a Stroop challenge and mental arithmetic. Eighty subjects (age = 21 ± 2.6 yrs; male = 46; female = 34) were randomly assigned L-tyrosine (n = 28; 2000 mg), L-theanine (n = 25; 200 mg), or placebo (n = 27) prior to MSC exposure. Saliva samples, state-anxiety inventory (SAI) scales, and heart rate (HR) were collected before and after exposure to the MSC. Saliva was analyzed for stress markers α-amylase (sAA) and secretory immunoglobulin A (SIgA). The MSC resulted in significant increases in sAA, SIgA, HR, and SAI. Ingestion of L-theanine and L-tyrosine did not impact markers of stress. However, the L-tyrosine treatment demonstrated significantly lower missed responses compared to the placebo treatment group during the Stroop challenge. These data demonstrate that ingestion of L-theanine or L-tyrosine does not impact markers of stress in response to a MSC but may impact cognitive performance. This study was pre-registered as a clinical trial ("Impact of supplements on stress markers": NCT05592561).


Subject(s)
Biomarkers , Cognition , Glutamates , Saliva , Stress, Psychological , Tyrosine , Virtual Reality , Humans , Male , Female , Cognition/drug effects , Young Adult , Saliva/chemistry , Adult , Heart Rate/drug effects , alpha-Amylases/metabolism , alpha-Amylases/analysis , Immunoglobulin A, Secretory/metabolism
10.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954536

ABSTRACT

BACKGROUND: Nephrin is a transmembrane protein with well-established signaling roles in kidney podocytes, and a smaller set of secretory functions in pancreatic ß cells are implicated in diabetes. Nephrin signaling is mediated in part through its 3 cytoplasmic YDxV motifs, which can be tyrosine phosphorylated by high glucose and ß cell injuries. Although in vitro studies demonstrate these phosphorylated motifs can regulate ß cell vesicle trafficking and insulin release, in vivo evidence of their role in this cell type remains to be determined. METHODS: To further explore the role of nephrin YDxV phosphorylation in ß cells, we used a mouse line with tyrosine to phenylalanine substitutions at each YDxV motif (nephrin-Y3F) to inhibit phosphorylation. We assessed islet function via primary islet glucose-stimulated insulin secretion assays and oral glucose tolerance tests. RESULTS: Nephrin-Y3F mice successfully developed pancreatic endocrine and exocrine tissues with minimal structural differences. Unexpectedly, male and female nephrin-Y3F mice showed elevated insulin secretion, with a stronger increase observed in male mice. At 8 months of age, no differences in glucose tolerance were observed between wild-type (WT) and nephrin-Y3F mice. However, aged nephrin-Y3F mice (16 months of age) demonstrated more rapid glucose clearance compared to WT controls. CONCLUSION: Taken together, loss of nephrin YDxV phosphorylation does not alter baseline islet function. Instead, our data suggest a mechanism linking impaired nephrin YDxV phosphorylation to improved islet secretory ability with age. Targeting nephrin phosphorylation could provide novel therapeutic opportunities to improve ß cell function.


Subject(s)
Glucose Tolerance Test , Insulin Secretion , Insulin-Secreting Cells , Insulin , Membrane Proteins , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Phosphorylation , Mice , Male , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Female , Insulin/metabolism , Tyrosine/metabolism , Aging/metabolism , Glucose Intolerance/metabolism , Mice, Inbred C57BL , Glucose/metabolism
11.
Biomater Adv ; 163: 213951, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38986317

ABSTRACT

Photothermal therapy (PTT) of tumor would ineluctably cause oxidative stress and related inflammation in adjacent normal tissues, leading to a discounted therapeutic outcome. To address this issue, herein an innovative therapeutic strategy that integrates photothermal anticancer and normal cell protection is developed. A new type of nitrogen-doped carbon dot (ET-CD) has been synthesized in one step by hydrothermal method using ellagic acid and L-tyrosine as reaction precursors. The as-prepared ET-CD exhibits high photothermal conversion efficiency and good photothermal stability. After intravenous injection, ET-CD can accumulate at the tumor site and the hyperthermia generated under near infrared laser irradiation effectively ablates tumor tissues, thereby significantly inhibiting tumor growth. Importantly, owing to the inherited antioxidant activity from ellagic acid, ET-CD can remove reactive oxygen and nitrogen species produced in the body and reduce the levels of inflammatory factors induced by oxidative stress, so as to alleviate the damage caused by heat-induced inflammation to normal cells and tissues while photothermal anticancer. These attractive features of ET-CD may open the exploration of innovative therapeutic strategies to promote the clinical application of PTT.


Subject(s)
Carbon , Ellagic Acid , Nitrogen , Photothermal Therapy , Tyrosine , Carbon/chemistry , Carbon/pharmacology , Nitrogen/chemistry , Ellagic Acid/pharmacology , Ellagic Acid/chemistry , Ellagic Acid/therapeutic use , Animals , Tyrosine/chemistry , Humans , Mice , Photothermal Therapy/methods , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Quantum Dots/chemistry , Cell Line, Tumor , Inflammation/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Oxidative Stress/drug effects , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology
12.
Chem Pharm Bull (Tokyo) ; 72(7): 700-710, 2024.
Article in English | MEDLINE | ID: mdl-39069473

ABSTRACT

We report two methods for the preparation of peptide thioesters containing Tyr(SO3H) residue(s), without use of a protecting group for the sulfate moiety. The first was based on direct thioesterification using carbodiimide on a fully protected peptide acid, prepared on a 2-chlorotrityl (Clt) resin with fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase peptide synthesis (Fmoc-SPPS). Subsequent deprotection of the protecting groups with trifluoroacetic acid (TFA) (0 °C, 4 h) yielded peptide thioesters containing Tyr(SO3H) residue(s). Peptide thioesters containing one to three Tyr(SO3H) residue(s), prepared by this method, were used as building blocks for the synthesis of the Nα-Fmoc-protected N-terminal part of P-selectin glycoprotein ligand 1 (PSGL-1) (Fmoc-PSGL-1(43-74)) via silver-ion mediated thioester segment condensation. The other method was based on the thioesterification of peptide azide, derived from a peptide hydrazide prepared on a NH2NH-Clt-resin with Fmoc-SPPS. Peptide thioester containing two Tyr(SO3H) residues, prepared via this alternative method, was used as a building block for the one-pot synthesis of the N-terminal extracellular portion of CC-chemokine receptor 5 (CCR5(9-26)) by native chemical ligation (NCL). The two methods for the preparation of peptide thioesters containing Tyr(SO3H) residue(s) described herein are applicable to the synthesis of various types of sulfopeptides.


Subject(s)
Esters , Peptides , Solid-Phase Synthesis Techniques , Peptides/chemistry , Peptides/chemical synthesis , Esters/chemistry , Esters/chemical synthesis , Sulfates/chemistry , Tyrosine/chemistry , Tyrosine/chemical synthesis , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/chemical synthesis , Molecular Structure , Membrane Glycoproteins
13.
ACS Chem Neurosci ; 15(15): 2916-2924, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39036818

ABSTRACT

Several studies have highlighted the presence of nitration damage following neuroinflammation in Alzheimer's disease (AD). Accordingly, post-transcriptional modifications of ß-amyloid (Aß), including peptide nitration, have been explored as a marker of the disease. However, the implications of Aß nitration in terms of aggregation propensity and neurotoxicity are still debated. Here, we show new data obtained using a photoactivatable peroxynitrite generator (BPT-NO) to overcome the limitations associated with chemical nitration methods. We found that the photoactivation of BPT-NO with the highly biocompatible red light selectively induces the nitration of tyrosine 10 of freshly solubilized full-length Aß1-42. Photonitrated Aß1-42 was, therefore, investigated for aggregation states and functions. It resulted that photonitrated Aß1-42 did not aggregate into small oligomers but rather self-assembled into large amorphous aggregates. When tested on neuronal-like SH-SY5Y cells and microglial C57BL/6 BV2 cells, photonitrated Aß1-42 showed to be free of neurotoxicity and able to induce phagocytic microglia cells. We propose that light-controlled nitration of the multiple forms in which Aß occurs (i.e., monomers, oligomers, fibrils) could be a tool to assess in real-time the impact of tyrosine nitration on the amyloidogenic and toxic properties of Aß1-42.


Subject(s)
Amyloid beta-Peptides , Light , Peptide Fragments , Tyrosine , Amyloid beta-Peptides/metabolism , Tyrosine/metabolism , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Peptide Fragments/metabolism , Peptide Fragments/toxicity , Humans , Animals , Microglia/metabolism , Microglia/drug effects , Peroxynitrous Acid/metabolism , Mice , Protein Aggregates/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Neurons/metabolism , Neurons/drug effects
14.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39085039

ABSTRACT

AIMS: The Gram-negative bacterium Erwinia amylovora (Ea) is the causal agent of fire blight, a devastating disease of apples and pears. In the fire blight disease cycle, Ea grows in different plant tissues, each presenting a distinct nutrient environment. Here, we investigate the ability of aspartate and tyrosine double auxotroph Ea lines to proliferate on apple flower stigma surfaces representing the epiphytic growth stage of Ea and in developing fruitlets representing one endophytic growth stage of Ea. METHODS AND RESULTS: Heterologous complementation studies in an Escherichia coli aspartate and tyrosine auxotroph verify that Ea aspartate aminotransferase (AspC) and tyrosine aminotransferase (TyrB) act as aspartate and tyrosine amino transferases. Growth analysis reveals that Ea aspC tyrB mutants multiply to near-wild-type levels on apple flower stigmas and immature fruitlets. CONCLUSIONS: Ea AspC and TyrB are reciprocally complementing for aspartate and tyrosine synthesis in Ec and in Ea. Ea aspC  and  tyrB mutants obtain sufficient aspartate and tyrosine to support multiplication on stigma surfaces and virulence in immature fruitlets.


Subject(s)
Aspartic Acid , Erwinia amylovora , Flowers , Malus , Plant Diseases , Tyrosine , Erwinia amylovora/genetics , Erwinia amylovora/pathogenicity , Plant Diseases/microbiology , Malus/microbiology , Tyrosine/metabolism , Virulence , Aspartic Acid/metabolism , Flowers/microbiology , Aspartate Aminotransferases/metabolism , Fruit/microbiology , Tyrosine Transaminase/genetics , Tyrosine Transaminase/metabolism
15.
Biochemistry ; 63(15): 1999-2008, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39024184

ABSTRACT

Redox-active residues, such as tyrosine and tryptophan, play important roles in a wide range of biological processes. The α3Y de novo protein, which is composed of three α helices and a tyrosine residue Y32, provides a platform for investigating the redox properties of tyrosine in a well-defined protein environment. Herein, the proton-coupled electron transfer (PCET) reaction that occurs upon oxidation of tyrosine in this model protein by a ruthenium photosensitizer is studied by using a vibronically nonadiabatic PCET theory that includes hydrogen tunneling and excited vibronic states. The input quantities to the analytical nonadiabatic rate constant expression, such as the diabatic proton potential energy curves and associated proton vibrational wave functions, reorganization energy, and proton donor-acceptor distribution functions, are obtained from density functional theory calculations on model systems and molecular dynamics simulations of the solvated α3Y protein. Two possible proton acceptors, namely, water or a glutamate residue in the protein scaffold, are explored. The PCET rate constant is greater when glutamate is the proton acceptor, mainly due to the more favorable driving force and shorter equilibrium proton donor-acceptor distance, although contributions from excited vibronic states mitigate these effects. Nevertheless, water could be the dominant proton acceptor if its equilibrium constant associated with hydrogen bond formation is significantly greater than that for glutamate. Although these calculations do not definitively identify the proton acceptor for this PCET reaction, they elucidate the conditions under which each proton acceptor can be favored. These insights have implications for tyrosine-based PCET in a wide variety of biochemical processes.


Subject(s)
Molecular Dynamics Simulation , Oxidation-Reduction , Protons , Tyrosine , Tyrosine/chemistry , Tyrosine/metabolism , Electron Transport , Density Functional Theory
16.
Biomacromolecules ; 25(8): 5028-5038, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38950188

ABSTRACT

Different from conventional synthetic polymers, polypeptides exhibit a distinguishing characteristic of adopting specific secondary structures, including random coils, α-helixes, and ß-sheets. The conformation determines the rigidity and solubility of polypeptide chains, which further direct the self-assembly and morphology of the nanostructures. We studied the effect of distinct secondary structures on the self-assembly behavior of polytyrosine (PTyr)-derived amphiphilic copolymers. Two block copolymers of enantiopure poly(ethylene glycol)-b-poly(l-tyrosine) (PEG-b-P(l-Tyr)) and racemic poly(ethylene glycol)-b-poly(dl-tyrosine) (PEG-b-P(dl-Tyr)) were synthesized through the ring-opening polymerization of l-tyrosine N-thiocarboxyanhydride (l-Tyr-NTA) and dl-tyrosine N-thiocarboxyanhydride (dl-Tyr-NTA), respectively, by using poly(ethylene glycol) amine as the initiator. PEG44-b-P(l-Tyr)10 adopts a ß-sheet conformation and self-assembles into rectangular nanosheets in aqueous solutions, while PEG44-b-P(dl-Tyr)9 is primarily in a random coil conformation with a tiny content of ß-sheet structures, which self-assembles into sheaf-like nanofibrils. A pH increase results in the ionization of phenolic hydroxyl groups, which decreases the ß-sheet content and increases the random coil content of the PTyr segments. Accordingly, PEG44-b-P(l-Tyr)10 and PEG44-b-P(dl-Tyr)9 self-assemble to form slender nanobelts and twisted nanoribbons, respectively, in alkaline aqueous solutions. The secondary structure-driven self-assembly of PTyr-derived copolymers is promising to construct filamentous nanostructures, which have potential for applications in controlled drug release.


Subject(s)
Peptides , Polyethylene Glycols , Polyethylene Glycols/chemistry , Hydrogen-Ion Concentration , Peptides/chemistry , Protein Structure, Secondary , Tyrosine/chemistry , Polymerization , Nanostructures/chemistry
17.
Biochemistry ; 63(14): 1752-1760, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38967549

ABSTRACT

The wildtype H-Ras protein functions as a molecular switch in a variety of cell signaling pathways, and mutations to key residues result in a constitutively active oncoprotein. However, there is some debate regarding the mechanism of the intrinsic GTPase activity of H-Ras. It has been hypothesized that ordered water molecules are coordinated at the active site by Q61, a highly transforming amino acid site, and Y32, a position that has not previously been investigated. Here, we examine the electrostatic contribution of the Y32 position to GTP hydrolysis by comparing the rate of GTP hydrolysis of Y32X mutants to the vibrational energy shift of each mutation measured by a nearby thiocyanate vibrational probe to estimate changes in the electrostatic environment caused by changes at the Y32 position. We further compared vibrational energy shifts for each mutation to the hydration potential of the respective side chain and demonstrated that Y32 is less critical for recruiting water molecules into the active site to promote hydrolysis than Q61. Our results show a clear interplay between a steric contribution from Y32 and an electrostatic contribution from Q61 that are both critical for intrinsic GTP hydrolysis.


Subject(s)
Guanosine Triphosphate , Static Electricity , Thiocyanates , Hydrolysis , Thiocyanates/chemistry , Thiocyanates/metabolism , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Tyrosine/chemistry , Tyrosine/metabolism , Tyrosine/genetics , Mutation , Catalytic Domain , Water/chemistry , Water/metabolism , Models, Molecular
18.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062825

ABSTRACT

Capacitation involves tyrosine phosphorylation (TP) as a key marker. Lifestyle-related factors, such as obesity and smoking, are recognized for their adverse effects on semen quality and male fertility, yet the underlying mechanisms, including their potential impact on TP, remain unclear. Moreover, the effect of sperm cryopreservation on TP at the human sperm population level is unexplored. Flow cytometry analysis of global TP was performed on pre-capacitated, post-capacitated and 1- and 3-hours' incubated fresh and frozen-thawed samples from sperm donors (n = 40). Neither being overweight nor smoking (or both) significantly affected the percentage of sperm showing TP. However, elevated BMI and smoking intensity correlated with heightened basal TP levels (r = 0.226, p = 0.003) and heightened increase in TP after 3 h of incubation (r = 0.185, p = 0.017), respectively. Cryopreservation resulted in increased global TP levels after capacitation but not immediately after thawing. Nonetheless, most donors' thawed samples showed increased TP levels before and after capacitation as well as after incubation. Additionally, phosphorylation patterns in fresh and frozen-thawed samples were similar, indicating consistent sample response to capacitation stimuli despite differences in TP levels. Overall, this study sheds light on the potential impacts of lifestyle factors and cryopreservation on the dynamics of global TP levels during capacitation.


Subject(s)
Body Mass Index , Cryopreservation , Sperm Capacitation , Spermatozoa , Tyrosine , Humans , Cryopreservation/methods , Male , Phosphorylation , Tyrosine/metabolism , Spermatozoa/metabolism , Adult , Cigarette Smoking/adverse effects , Semen Preservation/methods , Semen Analysis
19.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063216

ABSTRACT

Although the disease caused by chikungunya virus (CHIKV) is of great interest to public health organizations around the world, there are still no authorized antivirals for its treatment. Previously, dihalogenated anti-CHIKV compounds derived from L-tyrosine (dH-Y) were identified as being effective against in vitro infection by this virus, so the objective of this study was to determine the mechanisms of its antiviral action. Six dH-Y compounds (C1 to C6) dihalogenated with bromine or chlorine and modified in their amino groups were evaluated by different in vitro antiviral strategies and in silico tools. When the cells were exposed before infection, all compounds decreased the expression of viral proteins; only C4, C5 and C6 inhibited the genome; and C1, C2 and C3 inhibited infectious viral particles (IVPs). Furthermore, C1 and C3 reduce adhesion, while C2 and C3 reduce internalization, which could be related to the in silico interaction with the fusion peptide of the E1 viral protein. Only C3, C4, C5 and C6 inhibited IVPs when the cells were exposed after infection, and their effect occurred in late stages after viral translation and replication, such as assembly, and not during budding. In summary, the structural changes of these compounds determine their mechanism of action. Additionally, C3 was the only compound that inhibited CHIKV infection at different stages of the replicative cycle, making it a compound of interest for conversion as a potential drug.


Subject(s)
Antiviral Agents , Chikungunya Fever , Chikungunya virus , Tyrosine , Virus Replication , Chikungunya virus/drug effects , Chikungunya virus/physiology , Tyrosine/pharmacology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Animals , Virus Replication/drug effects , Chlorocebus aethiops , Vero Cells , Humans , Virus Internalization/drug effects , Viral Proteins/metabolism
20.
PLoS Genet ; 20(7): e1011357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074078

ABSTRACT

Hexokinase (HK) catalyzes the first irreversible rate-limiting step in glycolysis that converts glucose to glucose-6-phosphate. HK1 is ubiquitously expressed in the brain, erythrocytes, and other tissues where glycolysis serves as the major source of ATP production. Spermatogenic cell-specific type 1 hexokinase (HK1S) is expressed in sperm but its physiological role in male mice is still unknown. In this study, we generate Hk1s knockout mice using the CRISPR/Cas9 system to study the gene function in vivo. Hk1s mRNA is exclusively expressed in testes starting from postnatal day 18 and continuing to adulthood. HK1S protein is specifically localized in the outer surface of the sperm fibrous sheath (FS). Depletion of Hk1s leads to infertility in male mice and reduces sperm glycolytic pathway activity, yet they have normal motile parameters and ATP levels. In addition, by using in vitro fertilization (IVF), Hk1s deficient sperms are unable to fertilize cumulus-intact or cumulus-free oocytes, but can normally fertilize zona pellucida-free oocytes. Moreover, Hk1s deficiency impairs sperm migration into the oviduct, reduces acrosome reaction, and prevents capacitation-associated increases in tyrosine phosphorylation, which are probable causes of infertility. Taken together, our results reveal that HK1S plays a critical role in sperm function and male fertility in mice.


Subject(s)
Fertility , Hexokinase , Infertility, Male , Mice, Knockout , Sperm Capacitation , Spermatozoa , Tyrosine , Animals , Hexokinase/genetics , Hexokinase/metabolism , Male , Mice , Phosphorylation , Spermatozoa/metabolism , Sperm Capacitation/genetics , Infertility, Male/genetics , Infertility, Male/metabolism , Fertility/genetics , Tyrosine/metabolism , Female , Testis/metabolism , Sperm Motility/genetics , Glycolysis , Spermatogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL