Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063216

ABSTRACT

Although the disease caused by chikungunya virus (CHIKV) is of great interest to public health organizations around the world, there are still no authorized antivirals for its treatment. Previously, dihalogenated anti-CHIKV compounds derived from L-tyrosine (dH-Y) were identified as being effective against in vitro infection by this virus, so the objective of this study was to determine the mechanisms of its antiviral action. Six dH-Y compounds (C1 to C6) dihalogenated with bromine or chlorine and modified in their amino groups were evaluated by different in vitro antiviral strategies and in silico tools. When the cells were exposed before infection, all compounds decreased the expression of viral proteins; only C4, C5 and C6 inhibited the genome; and C1, C2 and C3 inhibited infectious viral particles (IVPs). Furthermore, C1 and C3 reduce adhesion, while C2 and C3 reduce internalization, which could be related to the in silico interaction with the fusion peptide of the E1 viral protein. Only C3, C4, C5 and C6 inhibited IVPs when the cells were exposed after infection, and their effect occurred in late stages after viral translation and replication, such as assembly, and not during budding. In summary, the structural changes of these compounds determine their mechanism of action. Additionally, C3 was the only compound that inhibited CHIKV infection at different stages of the replicative cycle, making it a compound of interest for conversion as a potential drug.


Subject(s)
Antiviral Agents , Chikungunya Fever , Chikungunya virus , Tyrosine , Virus Replication , Chikungunya virus/drug effects , Chikungunya virus/physiology , Tyrosine/pharmacology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Animals , Virus Replication/drug effects , Chlorocebus aethiops , Vero Cells , Humans , Virus Internalization/drug effects , Viral Proteins/metabolism
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069269

ABSTRACT

Caveolin-1 (CAV1) is a membrane-bound protein that suppresses tumor development yet also promotes metastasis. E-cadherin is important in CAV1-dependent tumor suppression and prevents CAV1-enhanced lung metastasis. Here, we used murine B16F10 and human A375 melanoma cells with low levels of endogenous CAV1 and E-cadherin to unravel how co-expression of E-cadherin modulates CAV1 function in vitro and in vivo in WT C57BL/6 or Rag-/- immunodeficient mice and how a pro-inflammatory environment generated by treating cells with prostaglandin E2 (PGE2) alters CAV1 function in the presence of E-cadherin. CAV1 expression augmented migration, invasion, and metastasis of melanoma cells, and these effects were abolished via transient co-expression of E-cadherin. Importantly, exposure of cells to PGE2 reverted the effects of E-cadherin expression and increased CAV1 phosphorylation on tyrosine-14 and metastasis. Moreover, PGE2 administration blocked the ability of the CAV1/E-cadherin complex to prevent tumor formation. Therefore, our results support the notion that PGE2 can override the tumor suppressor potential of the E-cadherin/CAV1 complex and that CAV1 released from the complex is phosphorylated on tyrosine-14 and promotes migration/invasion/metastasis. These observations provide direct evidence showing how a pro-inflammatory environment caused here via PGE2 administration can convert a potent tumor suppressor complex into a promoter of malignant cell behavior.


Subject(s)
Dinoprostone , Melanoma, Experimental , Animals , Humans , Mice , Cadherins/metabolism , Caveolin 1/metabolism , Cell Line, Tumor , Cell Movement , Dinoprostone/pharmacology , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Neoplasm Metastasis , Tyrosine/pharmacology
3.
Biol Chem ; 403(3): 293-303, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34854272

ABSTRACT

Melanoma is a type of skin cancer with low survival rates after it has metastasized. In order to find molecular differences that could represent targets of quercetin in anti-melanoma activity, we have chosen SKMEL-103 and SKMEL-28 melanoma cells and human melanocytes as models. Firstly, we observed that quercetin was able in reducing SKMEL-103 cell viability, but not in SKMEL-28. Besides that, quercetin treatment caused inhibition of AXL in both cell lines, but upregulation of PIM-1 in SKMEL-28 and downregulation in SKMEL-103. Moreover, HIF-1 alpha expression decreased in both cell lines. Interestingly, quercetin was more effective against SKMEL-103 than kinases inhibitors, such as Imatinib, Temsirolimus, U0126, and Erlotinib. Interestingly, we observed that while the levels of succinate dehydrogenase and voltage-dependent anion channel increased in SKMEL-103, both proteins were downregulated in SKMEL-28 after quercetin's treatment. Furthermore, AKT, AXL, PIM-1, ABL kinases were much more active and chaperones HSP90, HSP70 and GAPDH were highly expressed in SKMEL-103 cells in comparison with melanocytes. Our findings indicate, for the first time, that the efficacy of quercetin to kill melanoma cells depends on its ability in inhibiting tyrosine kinase and upregulating mitochondrial proteins, at least when SKMEL-103 and SKMEL-28 cells response were compared.


Subject(s)
Melanoma , Quercetin , Apoptosis , GTP Phosphohydrolases/metabolism , Humans , Melanoma/drug therapy , Melanoma/pathology , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/pharmacology , Quercetin/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/pharmacology , Succinate Dehydrogenase/metabolism , Tyrosine/pharmacology
4.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562431

ABSTRACT

Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs' concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2'-dU (5'Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2'-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2'-dU (2.5 µg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2'-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2'-dU.


Subject(s)
Bromodeoxyuridine/pharmacology , Melanoma, Experimental/drug therapy , MicroRNAs/genetics , Tyrosine/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cellular Senescence/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Melanins/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice , Pigmentation/drug effects , Pigmentation/genetics , Pigmentation/physiology , RNA-Seq
5.
J Nat Prod ; 82(5): 1354-1360, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31017788

ABSTRACT

In the search for bioactive marine natural products from zoantharians of the Tropical Eastern Pacific, four new tyrosine dipeptides, named valdiviamides A-D (1-4), were isolated from Antipathozoanthus hickmani, and two new tyramine derivatives, 5 and 6, from Parazoanthus darwini. The phenols of all six tyrosine derivatives are substituted by bromine and/or iodine atoms at the ortho positions of the hydroxyl. The planar structures of these aromatic alkaloids were elucidated from 1D and 2D NMR experiments in combination with HRESIMS data, and the absolute configurations of 1-4 were deduced from comparison between experimental and calculated electronic circular dichroism spectra. As halogenated tyrosine derivatives could represent chemotaxonomic markers of these genera, we decided to undertake the first chemical investigation of another species, Terrazoanthus cf. patagonichus. As expected, no halogenated metabolite was evidenced in the species, but we report herein the identification of two new zoanthoxanthin derivatives, named zoamides E (7) and F (8), from this species. Antimicrobial and cytotoxicity bioassays revealed that valdiviamide B (2) displayed moderate cytotoxicity against the HepG2 cell line with an IC50 value of 7.8 µM.


Subject(s)
Anthozoa/chemistry , Tyrosine/analogs & derivatives , Tyrosine/pharmacology , Animals , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Cell Line, Tumor , Circular Dichroism , Drug Screening Assays, Antitumor , Halogenation , Humans , Microbial Sensitivity Tests , Molecular Conformation , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pacific Ocean , Tyrosine/chemistry
6.
Metab Brain Dis ; 34(4): 1207-1219, 2019 08.
Article in English | MEDLINE | ID: mdl-30949952

ABSTRACT

Deficiency of hepatic enzyme tyrosine aminotransferase characterizes the innate error of autosomal recessive disease Tyrosinemia Type II. Patients may develop neurological and developmental difficulties due to high levels of the amino acid tyrosine in the body. Mechanisms underlying the neurological dysfunction in patients are poorly known. Importantly, Tyrosinemia patients have deficient Omega-3 fatty acids (n-3 PUFA). Here, we investigated the possible neuroprotective effect of the treatment with n-3 PUFA in the alterations caused by chronic administration of L-tyrosine on important parameters of energetic metabolism and oxidative stress in the hippocampus, striatum and cerebral cortex of developing rats. Chronic administration of L-tyrosine causes a decrease in the citrate synthase (CS) activity in the hippocampus and cerebral cortex, as well as in the succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) activities, and an increase in the α-ketoglutarate dehydrogenase activity in the hippocampus. Moreover, in the striatum, L-tyrosine administration caused a decrease in the activities of CS, SDH, creatine kinase, and complexes I, II-III and IV of the mitochondrial respiratory chain. We also observed that the high levels of L-tyrosine are related to oxidative stress in the brain. Notably, supplementation of n-3 PUFA prevented the majority of the modifications caused by the chronic administration of L-tyrosine in the cerebral enzyme activities, as well as ameliorated the oxidative stress in the brain regions of rats. These results indicate a possible neuroprotective and antioxidant role for n-3 PUFA and may represent a new therapeutic approach and potential adjuvant therapy to Tyrosinemia Type II individuals.


Subject(s)
Brain/drug effects , Energy Metabolism/drug effects , Fatty Acids, Omega-3/pharmacology , Mitochondria/drug effects , Oxidative Stress/drug effects , Tyrosine/pharmacology , Animals , Aromatase/metabolism , Brain/metabolism , Male , Mitochondria/metabolism , Rats , Rats, Wistar
7.
Future Med Chem ; 11(6): 525-538, 2019 03.
Article in English | MEDLINE | ID: mdl-30916995

ABSTRACT

AIM: More than 40% of the world's population, across 105 countries, live in malaria endemic areas. It is estimated that about 500 million cases of malaria and half a million deaths occur per year. RESULTS: Herein, we demonstrate the biological activity of indole-3-glyoxyl tyrosine against Plasmodium falciparum, which is the causal agent of the most virulent form of malaria in humans. We developed an efficient synthesis of indole-3-glyoxyl tyrosine derivatives, which were then used as key intermediates in the synthesis of functionalized indole-3-glyoxyl biphenyl tyrosines. CONCLUSION: In biological testing, the compounds exhibited a parasite growth inhibition of over 85%. A cell viability assay showed low cytotoxicity against human cells, with no significant changes in cell viability, making these compounds potential antimalarials.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Tyrosine/analogs & derivatives , Tyrosine/pharmacology , Antimalarials/chemical synthesis , Hep G2 Cells , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Models, Molecular , Parasitic Sensitivity Tests , Tyrosine/chemical synthesis
8.
Kidney Blood Press Res ; 44(1): 1-11, 2019.
Article in English | MEDLINE | ID: mdl-30808844

ABSTRACT

BACKGROUND/AIMS: Dopamine (DA) is a natriuretic hormone that inhibits renal sodium reabsorption, being Angiotensin II (Ang II) its powerful counterpart. These two systems work together to maintain sodium homeostasis and consequently, the blood pressure (BP) within normal limits. We hypothesized that L-tyrosine (L-tyr) or L-dihydroxyphenylalanine (L-dopa) could inhibit the Na+/K+-ATPase activity. We also evaluated whether L-tyr treatment modulates Tyrosine Hydroxylase (TH). METHODS: Experiments involved cultured LLCPK1 cells treated with L-tyr or L-dopa for 30 minutes a 37°C. In experiments on the effect of Dopa Descarboxylase (DDC) inhibition, cells were pre incubated for 15 minutes with 3-Hydroxybenzylhydrazine dihydrochloride (HBH), and them L-dopa was added for 30 minutes. Na+/K+-ATPase activity was quantified colorimetrically. We used immunoblotting and immunocytochemistry to identify the enzymes TH, DDC and the dopamine receptor D1R in LLCPK1 cells. TH activity was accessed by immunoblotting (increase in the phosphorylation). TH and DDC activities were also evaluated by the modulation of the Na+/K+-ATPase activity, which can be ascribed to the synthesis of dopamine. RESULTS: LLCPK1 cells express the required machinery for DA synthesis: the enzymes TH, and (DDC) as well as its receptor D1R, were detected in control steady state cells. Cells treated with L-tyr or L-dopa showed an inhibition of the basolateral Na+/K+-ATPase activity. We can assume that DA formed in the cytoplasm from L-tyr or L-dopa led to inhibition of the Na+/K+-ATPase activity compared to control. L-tyr treatment increases TH phosphorylation at Ser40 by 100%. HBH, a specific DDC inhibitor; BCH, a LAT2 inhibitor; and Sch 23397, a specific D1R antagonist, totally suppressed the inhibition of Na+/K+-ATPase activity due to L-dopa or L-tyr administration, as indicated in the figures. CONCLUSION: The results indicate that DA formed mainly from luminal L-tyr or L-dopa uptake by LAT2, can inhibit the Na+/K+-ATPase. In addition, our results showed for the very first time that TH activity is also significantly increased when the cells were exposed to L-tyr.


Subject(s)
Dopamine/biosynthesis , Kidney/cytology , Serine/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Tyrosine 3-Monooxygenase/metabolism , Tyrosine/pharmacology , Animals , Cell Line , Dopa Decarboxylase , Kidney/metabolism , Phosphorylation/drug effects , Receptors, Dopamine D1 , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Swine , Tyrosine 3-Monooxygenase/drug effects
9.
Biomed Pharmacother ; 108: 670-678, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30245467

ABSTRACT

In this study, we synthesized five N-Boc-L-tyrosine-based analogues to glitazars. The in vitro effects of compounds 1-5 on protein tyrosine phosphatase 1B (PTP-1B), peroxisome proliferator-activated receptor alpha and gamma (PPARα/γ), glucose transporter type-4 (GLUT-4) and fatty acid transport protein-1 (FATP-1) activation are reported in this paper. Compounds 1 and 3 were the most active in the in vitro PTP-1B inhibition assay, showing IC50s of approximately 44 µM. Treatment of adipocytes with compound 1 increased the mRNA expression of PPARγ and GLUT-4 by 8- and 3-fold, respectively. Moreover, both compounds (1 and 3) also increased the relative mRNA expression of PPARα (by 8-fold) and FATP-1 (by 15-fold). Molecular docking studies were performed in order to elucidate the polypharmacological binding mode of the most active compounds on these targets. Finally, a murine model of hyperglycemia was used to evaluate the in vivo effectiveness of compounds 1 and 3. We found that both compounds are orally active using an exploratory dose of 100 mg/kg, decreasing the blood glucose concentration in an oral glucose tolerance test and a non-insulin-dependent diabetes mellitus murine model. In conclusion, we demonstrated that both molecules showed strong in vitro and in vivo effects and can be considered polypharmacological antidiabetic candidates.


Subject(s)
Hypoglycemic Agents/pharmacology , Tyrosine/pharmacology , 3T3 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Blood Glucose/drug effects , Cell Line , Computer Simulation , Disease Models, Animal , Fatty Acid Transport Proteins/metabolism , Glucose Tolerance Test/methods , Glucose Transporter Type 4/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Mice , Molecular Docking Simulation , PPAR gamma/metabolism , RNA, Messenger/metabolism
10.
Curr Pharm Des ; 24(17): 1899-1904, 2018.
Article in English | MEDLINE | ID: mdl-29766796

ABSTRACT

BACKGROUND: Fungal secondary metabolites are important sources for the discovery of new pharmaceuticals, as exemplified by penicillin, lovastatin and cyclosporine. Searching for secondary metabolites of the fungi Metarhizium spp., we previously identified tyrosine betaine as a major constituent. METHODS: Because of the structural similarity with other inhibitors of neprilysin (NEP), an enzyme explored for the treatment of heart failure, we devised the synthesis of tyrosine betaine and three analogues to be subjected to in vitro NEP inhibition assays and to molecular modeling studies. RESULTS: In spite of the similar binding modes with other NEP inhibitors, these compounds only displayed moderate inhibitory activities (IC50 ranging from 170.0 to 52.9 µM). However, they enclose structural features required to hinder passive blood brain barrier permeation (BBB). CONCLUSIONS: Tyrosine betaine remains as a starting point for the development of NEP inhibitors because of the low probability of BBB permeation and, consequently, of NEP inhibition at the Central Nervous System, which is associated to an increment in the Aß levels and, accordingly, with a higher risk for the onset of Alzheimer's disease.


Subject(s)
Heart Failure/drug therapy , Neprilysin/antagonists & inhibitors , Protease Inhibitors/pharmacology , Tyrosine/analogs & derivatives , Crystallography, X-Ray , Heart Failure/metabolism , Humans , Models, Molecular , Molecular Structure , Neprilysin/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Tyrosine/chemical synthesis , Tyrosine/chemistry , Tyrosine/pharmacology
11.
Med Mycol ; 56(4): 506-509, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-28992332

ABSTRACT

Melanization of Histoplasma capsulatum remains poorly described, particularly in regards to the forms of melanin produced. In the present study, 30 clinical and environmental H. capsulatum strains were grown in culture media with or without L-tyrosine under conditions that produced either mycelial or yeast forms. Mycelial cultures were not melanized under the studied conditions. However, all strains cultivated under yeast conditions produced a brownish to black soluble pigment compatible with pyomelanin when grew in presence of L-tyrosine. Sulcotrione inhibited pigment production in yeast cultures, strengthening the hyphothesis that H. capsulatum yeast forms produce pyomelanin. Since pyomelanin is produced by the fungal parasitic form, this pigment may be involved in H. capsulatum virulence.


Subject(s)
Histoplasma/drug effects , Histoplasma/metabolism , Tyrosine/pharmacology , Animals , Culture Media/chemistry , Cyclohexanones/pharmacology , Gene Expression Regulation, Fungal/drug effects , Histoplasma/cytology , Humans , Hydrogen-Ion Concentration , Melanins/genetics , Melanins/metabolism , Mesylates/pharmacology , Pigments, Biological/genetics , Pigments, Biological/metabolism , Virulence
12.
Mol Cell Biochem ; 435(1-2): 207-214, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28547180

ABSTRACT

Tyrosine levels are abnormally elevated in tissues and body fluids of patients with inborn errors of tyrosine metabolism. Tyrosinemia type II, which is caused by tyrosine aminotransferase deficiency, provokes eyes, skin, and central nervous system disturbances in affected patients. However, the mechanisms of brain damage are still poorly known. Considering that studies have demonstrated that oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia, in the present study we investigated the effects of antioxidant treatment (NAC and DFX) on DNA damage and oxidative stress markers induced by chronic administration of L-tyrosine in cerebral cortex, hippocampus, and striatum of rats. The results showed elevated levels of DNA migration, and thus DNA damage, after chronic administration of L-tyrosine in all the analyzed brain areas, and that the antioxidant treatment was able to prevent DNA damage in cerebral cortex and hippocampus. However, the co-administration of NAC plus DFX did not prevent the DNA damage in the striatum. Moreover, we found a significant increase in thiobarbituric acid-reactive substances (TBA-RS) and DCFH oxidation in cerebral cortex, as well as an increase in nitrate/nitrite levels in the hippocampus and striatum. Additionally, the antioxidant treatment was able to prevent the increase in TBA-RS levels and in nitrate/nitrite levels, but not the DCFH oxidation. In conclusion, our findings suggest that reactive oxygen and nitrogen species and oxidative stress can play a role in DNA damage in this disorder. Moreover, NAC/DFX supplementation to tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the current treatment of this disease.


Subject(s)
Antioxidants/pharmacology , Brain/metabolism , DNA Damage , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Tyrosine , Tyrosinemias , Animals , Brain/pathology , Male , Rats , Rats, Wistar , Tyrosine/adverse effects , Tyrosine/pharmacology , Tyrosinemias/chemically induced , Tyrosinemias/drug therapy , Tyrosinemias/metabolism , Tyrosinemias/pathology
13.
Metab Brain Dis ; 32(2): 557-564, 2017 04.
Article in English | MEDLINE | ID: mdl-27924409

ABSTRACT

Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.


Subject(s)
Antioxidants/pharmacology , Brain Chemistry/drug effects , Energy Metabolism/drug effects , Tyrosine/pharmacology , Acetylcysteine/pharmacology , Animals , Citrate (si)-Synthase/metabolism , Citric Acid Cycle/drug effects , Creatine Kinase/metabolism , Deferoxamine/pharmacology , Electron Transport/drug effects , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Succinate Dehydrogenase/metabolism , Tyrosinemias/drug therapy , Tyrosinemias/metabolism
14.
Mol Neurobiol ; 51(3): 1184-94, 2015.
Article in English | MEDLINE | ID: mdl-24961569

ABSTRACT

Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II. In this disease caused by tyrosine aminotransferase deficiency, eyes, skin, and central nervous system disturbances are found. In the present study, we investigated the chronic effect of tyrosine methyl ester (TME) and/or creatine plus pyruvate on some parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex homogenates of 21-day-old Wistar. Chronic administration of TME induced oxidative stress and altered the activities of adenylate kinase and mitochondrial and cytosolic creatine kinase. Total sulfhydryls content, GSH content, and GPx activity were significantly diminished, while DCFH oxidation, TBARS content, and SOD activity were significantly enhanced by TME. On the other hand, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions but enhanced AK activity. In contrast, TME did not affect the carbonyl content and PK activity in cerebral cortex of rats. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by TME administration on the oxidative stress and the enzymes of phosphoryltransfer network, except in mitochondrial CK, AK, and SOD activities. These results indicate that chronic administration of TME may stimulate oxidative stress and alter the enzymes of phosphoryltransfer network in cerebral cortex of rats. In case this also occurs in the patients affected by these disorders, it may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias, and creatine and pyruvate supplementation could be beneficial to the patients.


Subject(s)
Cerebral Cortex/enzymology , Creatine/pharmacology , Oxidative Stress/physiology , Pyruvic Acid/pharmacology , Transferases/metabolism , Tyrosine/pharmacology , Animals , Cerebral Cortex/drug effects , Enzyme Activation/drug effects , Enzyme Activation/physiology , Male , Oxidative Stress/drug effects , Phosphorylation/drug effects , Phosphorylation/physiology , Rats , Rats, Wistar , Tyrosine/analogs & derivatives
15.
Genet Mol Res ; 13(4): 9599-605, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25501169

ABSTRACT

This study aimed to investigate the effect of intracoronary application of tirofiban on platelet alpha-granule membrane protein (GMP-140) and myocardial perfusion levels during emergency percutaneous coronary intervention (PCI). A total of 70 patients who accepted emergency PCI treatment were randomly divided into tirofiban and control groups. We determined GMP-140 and troponin I (cTnI) levels before and 12 h after surgery, as well as N-terminal pro-brain natriuretic peptide levels 1 and 7 days after surgery in the two groups. The results showed that GMP-140 and cTnI levels were significantly (P < 0.01) lower in the tirofiban group than in the control group 12 h after operation (17.99 ± 1.01 vs 24.56 ± 1.96 µg/L and 50.96 ± 2.20 vs 58.69 ± 2.34 ng/mL, respectively). The D-value of the N-terminal pro-brain natriuretic peptide levels between 1 and 7 days after operation was significantly higher in the tirofiban group than in the control group (894.19 ± 90.91 vs 829.50 ± 84.18 pg/mL; P < 0.01). The intracoronary application of tirofiban during emergency PCI clearly reduced the GMP-140 level, inhibited the activation function of platelets, improved myocardial perfusion, and helped recover cardiac function in patients.


Subject(s)
Emergencies , Myocardium/metabolism , P-Selectin/metabolism , Percutaneous Coronary Intervention , Tyrosine/analogs & derivatives , Aged , Female , Humans , Male , Middle Aged , Myocardium/pathology , Natriuretic Peptide, Brain/metabolism , Peptide Fragments/metabolism , Perfusion , Tirofiban , Troponin I/metabolism , Tyrosine/pharmacology
16.
Neurochem Res ; 38(12): 2625-30, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24135880

ABSTRACT

Tyrosinemia type II, also known as Richner-Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of L-tyrosine. Our results demonstrated that the acute administration of L-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of L-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II.


Subject(s)
Brain/drug effects , Catalase/metabolism , Oxidative Stress/drug effects , Tyrosine/administration & dosage , Animals , Brain/enzymology , Brain/metabolism , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Tyrosine/pharmacology
17.
Neurochem Res ; 38(8): 1742-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23690230

ABSTRACT

Most inborn errors of tyrosine catabolism produce hypertyrosinemia. Neurological manifestations are variable and some patients are developmentally normal, while others show different degrees of developmental retardation. Considering that current data do not eliminate the possibility that elevated levels of tyrosine and/or its derivatives may have noxious effects on central nervous system development in some patients, the present study evaluated nerve growth factor (NGF) levels in hippocampus, striatum and posterior cortex of young rats. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal administration of L-tyrosine (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old); the rats were killed 12 h after the last injection. NGF levels were then evaluated. Our findings showed that acute administration of L-tyrosine decreased NGF levels in striatum of 10-day-old rats. In the 30-day-old rats, NGF levels were decreased in hippocampus and posterior cortex. On the other hand, chronic administration of L-tyrosine increased NGF levels in posterior cortex. Decreased NGF may impair growth, differentiation, survival and maintenance of neurons.


Subject(s)
Brain/drug effects , Nerve Growth Factors/metabolism , Tyrosine/pharmacology , Animals , Brain/metabolism , Male , Rats , Rats, Wistar , Tyrosine/administration & dosage
18.
Int J Dev Neurosci ; 31(5): 303-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23602810

ABSTRACT

Tyrosinemia type II is an inborn error of metabolism caused by mutations in the gene that encodes tyrosine aminotransferase, which leads to increased blood tyrosine levels. Considering that tyrosine levels are highly elevated in fluids of patients with tyrosinemia type II, and that previous studies demonstrated significant alterations in brain energy metabolism of young rats caused by l-tyrosine, the present study aimed to evaluate the effect of acute administration of l-tyrosine on the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase, and mitochondrial respiratory chain complexes I, II, II-III, and IV in posterior cortex, hippocampus, and striatum of infant rats. Wistar rats (10 days old) were killed 1h after a single intraperitoneal injection of tyrosine (500 mg/kg) or saline. The activities of energy metabolism enzymes were evaluated in brain of rats. Our results demonstrated that acute administration of l-tyrosine inhibited the activity of citrate synthase activity in striatum and increased the activities of malate dehydrogenase and succinate dehydrogenase in hippocampus. On the other hand, these enzymes were not affected in posterior cortex. The activities of complex I and complex II were inhibited by acute administration of l-tyrosine in striatum. On the other hand, the acute administration of l-tyrosine increased the activity of activity of complex II-III in hippocampus. Complex IV was not affected by acute administration of l-tyrosine in infant rats. Our results indicate an alteration in the energy metabolism in hippocampus and striatum of infant rats after acute administration of l-tyrosine. If the same effects occur in the brain of the patients, it is possible that energy metabolism impairment may be contribute to possible damage in memory and cognitive processes in patients with tyrosinemia type II.


Subject(s)
Citrate (si)-Synthase/metabolism , Corpus Striatum/metabolism , Electron Transport Chain Complex Proteins/metabolism , Hippocampus/metabolism , Malate Dehydrogenase/metabolism , Succinate Dehydrogenase/metabolism , Tyrosine/pharmacology , Animals , Corpus Striatum/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Hippocampus/drug effects , Male , Metabolic Clearance Rate/drug effects , Rats , Rats, Wistar , Tissue Distribution/drug effects
19.
Cell Mol Neurobiol ; 33(3): 379-92, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23324998

ABSTRACT

The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.


Subject(s)
N-Methylaspartate/metabolism , Nitric Oxide Synthase/metabolism , Retina/enzymology , Retina/pathology , Signal Transduction , TRPV Cation Channels/metabolism , Up-Regulation , Aldehydes/pharmacology , Animals , Cell Death/drug effects , DNA Fragmentation/drug effects , Ion Channel Gating/drug effects , Lipid Peroxidation/drug effects , Male , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitrosation/drug effects , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Retina/drug effects , Signal Transduction/drug effects , Tyrosine/analogs & derivatives , Tyrosine/pharmacology , Up-Regulation/drug effects
20.
Article in English | MEDLINE | ID: mdl-23128821

ABSTRACT

BACKGROUND: Fisturalines are bromotyrosine compounds isolated from marine sponges. Previous studies have shown antineoplasic, antiviral and antibacterial effects in Vitro; however, the possible effects of these compounds in hematologic malignancies have not been assessed. METHODS: In the present study, the antiproliferative and pro apoptotic effects of Fistularin-3 (F) and 11-Deoxyfistularin-3 (DF) were assessed using the MTT method and annexin V/propidium iodide by flow cytometry using the cell lines: Jurkat E6.1 and U937. In addition, the cell cycle was assessed by flow cytometry. RESULTS: Inhibition of the proliferative response was concentration and time dependent. The IC50 of F was 7.39 and 8.10 µM for Jurkat E6.1 and U937 respectively. At 24 and 48 h, in the U937 cell line, but not in the Jurkat cell line, both compounds induced up to 35% annexin V increase. Necrosis was not observed in any case. Compound F induced, in both cell lines, a decrease in the number of cells in the S phase and increase in the G0/G1 phase. In the Jurkat cell line only, there was an increase in the number of cells in the G2/M phase. Compound DF was not as effective as F. CONCLUSIONS: F is more active than DF in repressing the cell cycle and inducing apoptosis. Both compounds are potentially useful in the development of new drugs to treat hematologic malignancies.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Biological Products/pharmacology , Cell Proliferation/drug effects , Tyrosine/analogs & derivatives , Cell Cycle/drug effects , Cell Survival/drug effects , Flow Cytometry , Hematologic Neoplasms/drug therapy , Humans , Inhibitory Concentration 50 , Jurkat Cells , Tyrosine/pharmacology , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL