Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.478
1.
Biol Direct ; 19(1): 35, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715121

BACKGROUND: Ubiquitin-conjugating enzyme E2 N (UBE2N) is recognized in the progression of some cancers; however, little research has been conducted to describe its role in prostate cancer. The purpose of this paper is to explore the function and mechanism of UBE2N in prostate cancer cells. METHODS: UBE2N expression was detected in Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data, prostate cancer tissue microarrays, and prostate cancer cell lines, respectively. UBE2N knockdown or overexpression was used to analyze its role in cell viability and glycolysis of prostate cancer cells and tumor growth. XAV939 or Axin1 overexpression was co-treated with UBE2N overexpression to detect the involvement of the Wnt/ß-catenin signaling and Axin1 in the UBE2N function. UBE2N interacting with Axin1 was analyzed by co-immunoprecipitation assay. RESULTS: UBE2N was upregulated in prostate cancer and the UBE2N-high expression correlated with the poor prognosis of prostate cancer. UBE2N knockdown inhibited cell viability and glycolysis in prostate cancer cells and restricted tumor formation in tumor-bearing mice. Wnt/ß-catenin inhibition and Axin1 overexpression reversed the promoting viability and glycolysis function of UBE2N. UBE2N promoted Axin1 ubiquitination and decreased Axin1 protein level.


Axin Protein , Cell Survival , Glycolysis , Prostatic Neoplasms , Ubiquitin-Conjugating Enzymes , Ubiquitination , Animals , Humans , Male , Mice , Axin Protein/metabolism , Axin Protein/genetics , Cell Line, Tumor , Mice, Nude , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Wnt Signaling Pathway
2.
BMC Biol ; 22(1): 105, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702628

BACKGROUND: Histone H3K4 tri-methylation (H3K4me3) catalyzed by Set1/COMPASS, is a prominent epigenetic mark found in promoter-proximal regions of actively transcribed genes. H3K4me3 relies on prior monoubiquitination at the histone H2B (H2Bub) by Rad6 and Bre1. Swd2/Cps35, a Set1/COMPASS component, has been proposed as a key player in facilitating H2Bub-dependent H3K4me3. However, a more comprehensive investigation regarding the relationship among Rad6, Swd2, and Set1 is required to further understand the mechanisms and functions of the H3K4 methylation. RESULTS: We investigated the genome-wide occupancy patterns of Rad6, Swd2, and Set1 under various genetic conditions, aiming to clarify the roles of Set1 and Rad6 for occupancy of Swd2. Swd2 peaks appear on both the 5' region and 3' region of genes, which are overlapped with its tightly bound two complexes, Set1 and cleavage and polyadenylation factor (CPF), respectively. In the absence of Rad6/H2Bub, Set1 predominantly localized to the 5' region of genes, while Swd2 lost all the chromatin binding. However, in the absence of Set1, Swd2 occupancy near the 5' region was impaired and rather increased in the 3' region. CONCLUSIONS: This study highlights that the catalytic activity of Rad6 is essential for all the ways of Swd2's binding to the transcribed genes and Set1 redistributes the Swd2 to the 5' region for accomplishments of H3K4me3 in the genome-wide level.


Histone-Lysine N-Methyltransferase , Histones , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Methylation , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics
3.
PLoS One ; 19(5): e0287877, 2024.
Article En | MEDLINE | ID: mdl-38787820

Type 1 diabetes (T1D) is characterized by HLA class I-mediated presentation of autoantigens on the surface of pancreatic ß-cells. Recognition of these autoantigens by CD8+ T cells results in the destruction of pancreatic ß-cells and, consequently, insulin deficiency. Most epitopes presented at the surface of ß-cells derive from the insulin precursor molecule proinsulin. The intracellular processing pathway(s) involved in the generation of these peptides are poorly defined. In this study, we show that a proinsulin B-chain antigen (PPIB5-14) originates from proinsulin molecules that are processed by ER-associated protein degradation (ERAD) and thus originate from ER-resident proteins. Furthermore, screening genes encoding for E2 ubiquitin conjugating enzymes, we identified UBE2G2 to be involved in proinsulin degradation and subsequent presentation of the PPIB10-18 autoantigen. These insights into the pathway involved in the generation of insulin-derived peptides emphasize the importance of proinsulin processing in the ER to T1D pathogenesis and identify novel targets for future T1D therapies.


Autoantigens , Endoplasmic Reticulum-Associated Degradation , Proinsulin , Proteolysis , Ubiquitin-Conjugating Enzymes , Proinsulin/metabolism , Proinsulin/immunology , Proinsulin/genetics , Autoantigens/metabolism , Autoantigens/immunology , Humans , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Antigen Presentation/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/immunology
4.
Arch Dermatol Res ; 316(6): 249, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795139

Psoriasis vulgaris (PV) and Atopic dermatitis (AD) are the two major types of immune-mediated inflammatory skin disease (IMISD). Limited studies reported the association between Ubiquitin-conjugating enzyme E2 (UBE2) and IMISD. We employed a two-sample Mendelian randomization (MR) study to assess the causality between UBE2 and PV & AD. UBE2 association genome-wide association study (GWAS) data were collected. The inverse variance weighted (IVW) method was utilized as the principal method in our Mendelian randomization (MR) study, with additional using the MR-Egger, weighted median, simple mode, and weighted mode methods. The MR-Egger intercept test, Cochran's Q test, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and leave-one-out analysis were conducted to identify heterogeneity and pleiotropy, colocalization analysis was also performed. The results showed that Ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1) was causally associated with PV (OR = 0.909, 95% CI: 0.830-0.996, P = 0.040), Ubiquitin-conjugating enzyme E2 L3 (UBE2L3) was causally associated with AD (OR = 0.799, 95% CI: 0.709-0.990, P < 0.001). Both UBE2V1 and UBE2L3 may play protective roles in patients with PV or AD, respectively. No other significant result has been investigated. No heterogeneity or pleiotropy was observed. This study provided new evidence of the relationship between UBE2V1 and PV, UBE2L3 and AD. Our MR suggested that UBE2V1 plays an inhibitory role in PV progression, UBE2L3 plays an inhibitory role in AD. These could be novel and effective ways to treat PV and AD.


Dermatitis, Atopic , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Psoriasis , Ubiquitin-Conjugating Enzymes , Humans , Ubiquitin-Conjugating Enzymes/genetics , Psoriasis/genetics , Psoriasis/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology
5.
BMC Plant Biol ; 24(1): 341, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671351

BACKGROUND: Ubiquitination is an important regulatory step of selective protein degradation in the plant UPS (ubiquitin-proteasome system), which is involved in various biological processes in eukaryotes. Ubiquitin-conjugating enzymes play an intermediate role in the process of protein ubiquitination reactions and thus play an essential role in regulating plant growth and response to adverse environmental conditions. However, a genome-wide analysis of the UBC gene family in wheat (Triticum aestivum L.) has not yet been performed. RESULTS: In this study, the number, physiochemical properties, gene structure, collinearity, and phylogenetic relationships of TaUBC family members in wheat were analyzed using bioinformatics methods. The expression pattern of TaUBC genes in different tissues/organs and developmental periods, as well as the transcript levels under abiotic stress treatment, were analyzed using RNA-Seq data and qRT-PCR. Meanwhile, favorable haplotypes of TaUBC25 were investigated based on wheat resequencing data of 681 wheat cultivars from the Wheat Union Database. The analyses identified a total of 93 TaUBC family members containing a UBC domain in wheat genome. These genes were unevenly distributed across 21 chromosomes, and numerous duplication events were observed between gene members. Based on phylogenetic analysis, the TaUBC family was divided into 13 E2 groups and a separate UEV group. We investigated the expression of TaUBC family genes under different tissue/organ and stress conditions by quantitative real-time PCR (qRT-PCR) analysis. The results showed that some TaUBC genes were specifically expressed in certain tissues/organs and that most TaUBC genes responded to NaCl, PEG6000, and ABA treatment with different levels of expression. In addition, we performed association analysis for the two haplotypes based on key agronomic traits such as thousand-kernel weight (TKW), kernel length (KL), kernel weight (KW), and kernel thickness (KT), examining 122 wheat accessions at three environmental sites. The results showed that TaUBC25-Hap II had significantly higher TKW, KL, KW, and KT than TaUBC25-Hap I. The distribution analysis of haplotypes showed that TaUBC25-Hap II was preferred in the natural population of wheat. CONCLUSION: Our results identified 93 members of the TaUBC family in wheat, and several genes involved in grain development and abiotic stress response. Based on the SNPs detected in the TaUBC sequence, two haplotypes, TaUBC25-Hap I and TaUBC25-Hap II, were identified among wheat cultivars, and their potential value for wheat breeding was validated by association analysis. The above results provide a theoretical basis for elucidating the evolutionary relationships of the TaUBC gene family and lay the foundation for studying the functions of family members in the future.


Multigene Family , Phylogeny , Triticum , Ubiquitin-Conjugating Enzymes , Triticum/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Stress, Physiological/genetics , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study , Gene Expression Profiling
6.
J Ethnopharmacol ; 329: 118081, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38570148

ETHNOPHARMACOLOGICAL RELEVANCE: Liujunzi formula has been used to treat liver cancer in China for many years, but its underlying mechanism remains unclear. We previously found that decreased expression of miR-122-3p was associated with liver cancer. In this study, we aimed to explore the target of miR-122-3p and the effect of the Liujunzi formula on miR-122-3p and its downstream events in liver cancer. MATERIAL AND METHODS: Bioinformatics pinpointed potential targets of miR-122-3p. The actual target was confirmed by miRNA mimic/inhibitor transfections and a dual-luciferase reporter assay. RNA-seq looked at downstream genes impacted by this target. Flow cytometry checked for changes in T cell apoptosis levels after exposing them to liver cancer cells. Gene expression was measured by RT-qPCR, western blotting, and immunofluorescence staining. RESULTS: Cell experiments found the Liujunzi extract (LJZ) upregulated miR-122-3p and in a dose-dependent manner. Bioinformatics analysis found UBE2I was a potential target of miR-122-3p, which was validated through experiments using miRNA mimics/inhibitors and a dual-luciferase reporter assay. RNA-seq data implicated the NF-κB pathway as being downstream of the miR-122-3p/UBE2I axis, further confirmed by forcing overexpression of UBE2I. Bioinformatic evidence suggested a link between UBE2I and T cell infiltration in liver cancer. Given that the NF-κB pathway drives PD-L1 expression, which can inhibit T cell infiltration, we investigated whether PD-L1 is a downstream effector of miR-122-3p/UBE2I. This was corroborated through mining public databases, UBE2I overexpression studies, and tumor-T cell co-culture assays. In addition, we also confirmed that LJZ downregulates UBE2I and NF-κB/PD-L1 pathways through miR-122-3p. LJZ also suppressed SUMOylation in liver cancer cells and protected PD-1+ T cells from apoptosis induced by co-culture with tumor cells. Strikingly, a miR-122-3p inhibitor abrogated LJZ's effects on UBE2I and PD-L1, and UBE2I overexpression rescued the LJZ-mediated effects on NF-κB and PD-L1. CONCLUSIONS: miR-122-3p targets UBE2I, thereby suppressing the NF-κB signaling cascade and downregulating PD-L1 expression, which potentiates anti-tumor immune responses. LJZ bolsters anti-tumor immunity by modulating the miR-122-3p/UBE2I/NF-κB/PD-L1 axis in liver cancer cells.


Drugs, Chinese Herbal , Liver Neoplasms , MicroRNAs , Ubiquitin-Conjugating Enzymes , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Humans , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Drugs, Chinese Herbal/pharmacology , Apoptosis/drug effects , NF-kappa B/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Hep G2 Cells , Immune Tolerance/drug effects
7.
Dev Cell ; 59(10): 1317-1332.e5, 2024 May 20.
Article En | MEDLINE | ID: mdl-38574733

UBE2F, a neddylation E2, neddylates CUL5 to activate cullin-RING ligase-5, upon coupling with neddylation E3 RBX2/SAG. Whether and how UBE2F controls pancreatic tumorigenesis is previously unknown. Here, we showed that UBE2F is essential for the growth of human pancreatic cancer cells with KRAS mutation. In the mouse KrasG12D pancreatic ductal adenocarcinoma (PDAC) model, Ube2f deletion suppresses cerulein-induced pancreatitis, and progression of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia. Mechanistically, Ube2f deletion inactivates the Mapk-c-Myc signals via blocking ubiquitylation of Diras2, a substrate of CRL5Asb11 E3 ligase. Biologically, DIRAS2 suppresses growth and survival of human pancreatic cancer cells harboring mutant KRAS, and Diras2 deletion largely rescues the phenotypes induced by Ube2f deletion. Collectively, Ube2f or Diras2 plays a tumor-promoting or tumor-suppressive role in the mouse KrasG12D PDAC model, respectively. The UBE2F-CRL5ASB11 axis could serve as a valid target for pancreatic cancer, whereas the levels of UBE2F or DIRAS2 may serve as prognostic biomarkers for PDAC patients.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Ubiquitin-Conjugating Enzymes , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Humans , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Oncogenes/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cell Proliferation , Signal Transduction , Genes, Tumor Suppressor
8.
J Cancer Res Clin Oncol ; 150(4): 210, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656363

PURPOSE: Gastric cancer (GC) is prevalent as one of the most common malignant tumors globally, with a particularly high incidence in China. The role of UBE2L3 in the initiation and progression of various cancers has been well documented, but its specific significance in GC is not yet fully elucidated. The objective of this study is to examine the expression and importance of UBE2L3 in human gastric cancer tissues. METHODS: Immunohistochemical staining and survival analysis were conducted on 125 cases of GC. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to assess the expression of UBE2L3 in GC cell lines. Cell lines with UBE2L3 knockdown and overexpression were cultured through lentivirus transfection and subsequently assessed using Western blot analysis. The involvement of UBE2L3 in the proliferation, invasion, and apoptosis of GC cells was confirmed through in vitro experiments, and its capacity to facilitate tumor growth was also validated in in vivo studies. RESULTS: The up-regulation of UBE2L3 expression was observed in GC, and its high expression was found to be significantly associated with the degree of differentiation (χ2 = 6.153, P = 0.0131), TNM stage (χ2 = 6.216, P = 0.0447), and poor overall survival. In vitro, UBE2L3 has been shown to enhance functions in GC cell lines, such as promoting proliferation and invasion, and inhibiting apoptosis. In vivo experiments have validated the role of UBE2L3 in promoting tumor growth. CONCLUSIONS: The findings of our study demonstrate the significant involvement of UBE2L3 in the pathogenesis and advancement of gastric cancer, suggesting its potential as a therapeutic target.


Apoptosis , Cell Proliferation , Stomach Neoplasms , Ubiquitin-Conjugating Enzymes , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Female , Male , Middle Aged , Animals , Cell Line, Tumor , Mice , Mice, Nude , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , Aged , Mice, Inbred BALB C , Clinical Relevance
9.
Front Biosci (Landmark Ed) ; 29(4): 134, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38682180

BACKGROUND: Immune escape is a key factor influencing survival rate of lung adenocarcinoma (LUAD) patients, but molecular mechanism of ubiquitin binding enzyme E2T (UBE2T) affecting immune escape of LUAD remains unclear. The objective was to probe role of UBE2T in LUAD. METHODS: Bioinformatics means were adopted for analyzing UBE2T and forkhead box A1 (FOXA1) expression in LUAD tissues, the gene binding sites, the pathway UBE2T regulates, and the correlation between UBE2T and glycolysis genes. Dual luciferase and chromatin immunoprecipitation (ChIP) assays were conducted for validating the binding relationship between the two genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to evaluate UBE2T, FOXA1, and programmed death ligand 1 (PD-L1) levels in cancer cells. MTT assay was conducted for detecting cell viability. Cytotoxicity assay detected CD8+T cell toxicity. Cytokine expression was assayed by enzyme linked immunosorbent assay (ELISA). Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were assayed by extracellular flow analyzer. Glycolytic gene expression was analyzed by qRT-PCR, and glycolysis-related indicators were detected by ELISA. Immunohistochemistry (IHC) detected CD8+T cell infiltration in tumor tissues. RESULTS: FOXA1 and UBE2T were up-regulated in LUAD, and a binding site existed between UBE2T and FOXA1. Overexpressing UBE2T could increase PD-L1 expression and inhibit toxicity of CD8+T cells to LUAD cells. Overexpressing UBE2T repressed CD8+T cell activity in LUAD by activating the glycolysis pathway, and the addition of glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed the above results. Mechanistically, FOXA1 promoted the immune escape of LUAD by up-regulating UBE2T and thus mediating glycolysis. In vivo experiments revealed that UBE2T knockdown hindered tumor growth, inhibited PD-L1 expression, and facilitated CD8+T cell infiltration. CONCLUSION: FOXA1 up-regulated the expression of UBE2T, which activated glycolysis, and thus inhibited activity of CD8+T cells, causing immune escape of LUAD.


Adenocarcinoma of Lung , CD8-Positive T-Lymphocytes , Hepatocyte Nuclear Factor 3-alpha , Lung Neoplasms , Ubiquitin-Conjugating Enzymes , Animals , Female , Humans , Male , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycolysis , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Nude , Tumor Escape/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
10.
Parasit Vectors ; 17(1): 190, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643149

BACKGROUND: Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS: To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS: Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFß1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS: Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.


Echinococcosis , Echinococcus granulosus , Sheep Diseases , Animals , Sheep , Echinococcus granulosus/genetics , Ubiquitin-Conjugating Enzymes/genetics , Echinococcosis/parasitology , Liver Cirrhosis , Ubiquitins/genetics , Genotype , Sheep Diseases/parasitology
11.
BMC Cancer ; 24(1): 497, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637730

This study aims to investigate the role and mechanism of tubiquitin-conjugating enzyme E2 C (UBE2C) in acute myeloid leukemia (AML). Initially, UBE2C expression in leukemia was analyzed using the Cancer Genome Atlas database. Further, we silenced UBE2C expression using small-hairpin RNA (sh-RNA). UBE2C expression was detected via the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot analysis. Apoptotic events and reactive oxygen species (ROS) levels were detected by flow cytometry. A xenograft model of leukemia cells were established, and the protein levels of UBE2C, KI-67, and cleaved-caspase 3 were detected by immunohistochemistry. We reported an overexpression of UBE2C in leukemia patients and cell lines (HL60, THP-1, U937, and KG-1 cells). Moreover, a high expression level of UBE2C was correlated with a dismal prognosis in AML patients. UBE2C knockdown inhibited the viability and promoted apoptosis in AML cells by regulating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Furthermore, UBE2C knockdown increased cellular Fe2+ and ROS levels, and enhanced erastin-induced ferroptosis in a proteasome-dependent manner. UBE2C knockdown also suppressed the tumor formation of AML cells in the mouse model. In summary, our findings suggest that UBE2C overexpression promotes the proliferation and inhibits ferroptosis in AML cells by activating the PI3K/AKT pathway.


Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Leukemia, Myeloid, Acute/pathology , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species , RNA, Small Interfering , Ubiquitin-Conjugating Enzymes/genetics
12.
Cancer Rep (Hoboken) ; 7(4): e2032, 2024 Apr.
Article En | MEDLINE | ID: mdl-38577722

BACKGROUND: The diverse and complex attributes of cancer have made it a daunting challenge to overcome globally and remains to endanger human life. Detection of critical cancer-related gene alterations in solid tumor samples better defines patient diagnosis and prognosis, and indicates what targeted therapies must be administered to improve cancer patients' outcome. MATERIALS AND METHODS: To identify genes that have aberrant expression across different cancer types, differential expressed genes were detected within the TCGA datasets. Subsequently, the DEGs common to all pan cancers were determined. Furthermore, various methods were employed to gain genetic alterations, co-expression genes network and protein-protein interaction (PPI) network, pathway enrichment analysis of common genes. Finally, the gene regulatory network was constructed. RESULTS: Intersectional analysis identified UBE2C as a common DEG between all 28 types of studied cancers. Upregulated UBE2C expression was significantly correlated with OS and DFS of 10 and 9 types of cancer patients. Also, UBE2C can be a diagnostic factor in CESC, CHOL, GBM, and UCS with AUC = 100% and diagnose 19 cancer types with AUC ≥90%. A ceRNA network constructed including UBE2C, 41 TFs, 10 shared miRNAs, and 21 circRNAs and 128 lncRNAs. CONCLUSION: In summary, UBE2C can be a theranostic gene, which may serve as a reliable biomarker in diagnosing cancers, improving treatment responses and increasing the overall survival of cancer patients and can be a promising gene to be target by cancer drugs in the future.


Biomarkers , Neoplasms , Ubiquitin-Conjugating Enzymes , Humans , Biomarkers/metabolism , Computational Biology/methods , Neoplasms/diagnosis , Neoplasms/genetics , Prognosis , Protein Interaction Maps/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
13.
Nat Commun ; 15(1): 2211, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480722

Low-temperature germination (LTG) is an important agronomic trait for rice (Oryza sativa). Japonica rice generally has greater capacity for germination at low temperatures than the indica subpopulation. However, the genetic basis and molecular mechanisms underlying this complex trait are poorly understood. Here, we report that OsUBC12, encoding an E2 ubiquitin-conjugating enzyme, increases low-temperature germinability in japonica, owing to a transposon insertion in its promoter enhancing its expression. Natural variation analysis reveals that transposon insertion in the OsUBC12 promoter mainly occurs in the japonica lineage. The variation detected in eight representative two-line male sterile lines suggests the existence of this allele introgression by indica-japonica hybridization breeding, and varieties carrying the japonica OsUBC12 locus (transposon insertion) have higher low-temperature germinability than varieties without the locus. Further molecular analysis shows that OsUBC12 negatively regulate ABA signaling. OsUBC12-regulated seed germination and ABA signaling mainly depend on a conserved active site required for ubiquitin-conjugating enzyme activity. Furthermore, OsUBC12 directly associates with rice SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 1.1 (OsSnRK1.1), promoting its degradation. OsSnRK1.1 inhibits LTG by enhancing ABA signaling and acts downstream of OsUBC12. These findings shed light on the underlying mechanisms of UBC12 regulating LTG and provide genetic reference points for improving LTG in indica rice.


Germination , Oryza , Germination/genetics , Oryza/metabolism , Quantitative Trait Loci/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Plant Breeding , Cold Temperature
14.
Front Immunol ; 15: 1295305, 2024.
Article En | MEDLINE | ID: mdl-38481990

Introduction: Ubiquitination is a crucial biological mechanism in humans, essential for regulating vital biological processes, and has been recognized as a promising focus for cancer therapy. Our objective in this research was to discover potential enzymes associated with ubiquitination that may serve as therapeutic targets for individuals with esophageal carcinoma (ESCA). Methods: To identify genes linked to the prognosis of ESCA, we examined mRNA sequencing data from patients with ESCA in the TCGA database. Further investigation into the role of the candidate gene in ESCA was conducted through bioinformatic analyses. Subsequently, we carried out biological assays to assess its impact on ESCA development. Results: Through univariate Cox regression analysis, we identified Ubiquitin Conjugating Enzyme E2 B (UBE2B) as a potential gene associated with the prognosis of ESCA. UBE2B exhibited significant upregulation and was found to be correlated with survival outcomes in ESCA as well as other cancer types. Additionally, UBE2B was observed to be involved in various biological pathways linked to the development of ESCA, including TNF-a signaling via NF-κB, epithelial-mesenchymal transition, inflammatory response, and hypoxia. Moreover, immune-related pathways like B cell activation (GO: 0042113), B cell receptor signaling pathway (GO: 0050853) and B cell mediated immunity (GO:0019724) were also involved. It was found that high expression of UBE2B was correlated with the increase of several kinds of T cells (CD8 T cells, Th1 cells) and macrophages, while effector memory T cell (Tem) and Th17 cells decreased. Furthermore, UBE2B showed potential as a prognostic biomarker for ESCA, displaying high sensitivity and specificity. Notably, proliferation and migration in ESCA cells were effectively suppressed when the expression of UBE2B was knocked down. Conclusions: To summarize, this study has made a discovery regarding the importance of gaining new insights into the role of UBE2B in ESCA. UBE2B might be an oncogene with good ability in predicting and diagnosing ESCA. Consequently, this discovery highlights the feasibility of targeting UBE2B as a viable approach for treating patients with ESCA.


Carcinoma , Esophageal Neoplasms , Humans , Prognosis , Oncogenes , B-Lymphocytes , Esophageal Neoplasms/genetics , Biomarkers , Ubiquitin-Conjugating Enzymes/genetics
15.
Mol Biochem Parasitol ; 258: 111619, 2024 Jun.
Article En | MEDLINE | ID: mdl-38556171

In eukaryotic cells, molecular fate and cellular responses are shaped by multicomponent enzyme systems which reversibly attach ubiquitin and ubiquitin-like modifiers to target proteins. The extent of the ubiquitin proteasome system in Leishmania mexicana and its importance for parasite survival has recently been established through deletion mutagenesis and life-cycle phenotyping studies. The ubiquitin conjugating E2 enzyme UBC2, and the E2 enzyme variant UEV1, with which it forms a stable complex in vitro, were shown to be essential for the differentiation of promastigote parasites to the infectious amastigote form. To investigate further, we used immunoprecipitation of Myc-UBC2 or Myc-UEV1 to identify interacting proteins in L. mexicana promastigotes. The interactome of UBC2 comprises multiple ubiquitin-proteasome components including UEV1 and four RING E3 ligases, as well as potential substrates predicted to have roles in carbohydrate metabolism and intracellular trafficking. The smaller UEV1 interactome comprises six proteins, including UBC2 and shared components of the UBC2 interactome consistent with the presence of intracellular UBC2-UEV1 complexes. Recombinant RING1, RING2 and RING4 E3 ligases were shown to support ubiquitin transfer reactions involving the E1, UBA1a, and UBC2 to available substrate proteins or to unanchored ubiquitin chains. These studies define additional components of a UBC2-dependent ubiquitination pathway shown previously to be essential for promastigote to amastigote differentiation.


Leishmania mexicana , Protozoan Proteins , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Leishmania mexicana/genetics , Leishmania mexicana/enzymology , Leishmania mexicana/metabolism , Protein Binding , Protein Interaction Mapping , Immunoprecipitation
16.
Sci Adv ; 10(13): eadh0123, 2024 03 29.
Article En | MEDLINE | ID: mdl-38536929

E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.


Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitin/metabolism , Protein Processing, Post-Translational
17.
Exp Gerontol ; 188: 112391, 2024 Apr.
Article En | MEDLINE | ID: mdl-38437929

Diabetic retinopathy (DR) is the most common ocular fundus disease in diabetic patients. Chronic hyperglycemia not only promotes the development of diabetes and its complications, but also aggravates the occurrence of senescence. Previous studies have shown that DR is associated with senescence, but the specific mechanism has not been fully elucidated. Here, we first detected the differentially expressed genes (DEGs) and cellular senescence level of db/db mouse retinas by bulk RNA sequencing. Then, we used single-cell sequencing (scRNA-seq) to identify the main cell types in the retina and analyzed the DEGs in each cluster. We demonstrated that p53 expression was significantly increased in retinal endothelial cell cluster of db/db mice. Inhibition of p53 can reduce the expression of SA-ß-Gal and the senescence-associated secretory phenotype (SASP) in HRMECs. Finally, we found that p53 can promote FoxO3a ubiquitination and degradation by increasing the expression of the ubiquitin-conjugating enzyme UBE2L6. Overall, our results demonstrate that p53 can accelerate the senescence process of endothelial cells and aggravate the development of DR. These data reveal new targets and insights that may be used to treat DR.


Diabetes Mellitus , Diabetic Retinopathy , Animals , Humans , Mice , Cellular Senescence/genetics , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Retina/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
18.
Fish Shellfish Immunol ; 146: 109408, 2024 Mar.
Article En | MEDLINE | ID: mdl-38307301

Small ubiquitin-like modifier (SUMO) is a reversible post-translational modification that regulates various biological processes in eukaryotes. Ubiquitin-conjugating enzyme 9 (UBC9) is the sole E2-conjugating enzyme responsible for SUMOylation and plays an important role in essential cellular functions. Here, we cloned the UBC9 gene from sea perch (Lateolabrax japonicus) (LjUBC9) and investigated its role in regulating the IFN response during red-spotted grouper nervous necrosis virus (RGNNV) infection. The LjUBC9 gene consisted of 477 base pairs and encoded a polypeptide of 158 amino acids with an active site cysteine residue and a UBCc domain. Phylogenetic analysis showed that LjUBC9 shared the closest evolutionary relationship with UBC9 from Paralichthys olivaceus. Tissue expression profile analysis demonstrated that LjUBC9 was significantly increased in multiple tissues of sea perch following RGNNV infection. Further experiments showed that overexpression of LjUBC9 significantly increased the mRNA and protein levels of RGNNV capsid protein in LJB cells infected with RGNNV, nevertheless knockdown of LjUBC9 had the opposite effect, suggesting that LjUBC9 exerted a pro-viral effect during RGNNV infection. More importantly, we found that the 93rd cysteine is crucial for its pro-viral effect. Additionally, dual luciferase assays revealed that LjUBC9 prominently attenuated the promoter activities of sea perch type Ⅰ interferon (IFN) in RGNNV-infected cells, and overexpression of LjUBC9 markedly suppressed the transcription of key genes associated with RLRs-IFN pathway. In summary, these findings elucidate that LjUBC9 impairs the RLRs-IFN response, resulting in enhanced RGNNV infection.


Bass , Fish Diseases , Interferon Type I , Nodaviridae , Perches , RNA Virus Infections , Animals , Perches/genetics , Immunity, Innate/genetics , Phylogeny , Ubiquitin-Conjugating Enzymes/genetics , Cysteine , Fish Proteins/chemistry , Interferon Type I/genetics , Nodaviridae/physiology , Bass/genetics , Bass/metabolism
19.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article En | MEDLINE | ID: mdl-38397039

Human brain development involves a tightly regulated sequence of events that starts shortly after conception and continues up to adolescence. Before birth, neurogenesis occurs, implying an extensive differentiation process, sustained by changes in the gene expression profile alongside proteome remodeling, regulated by the ubiquitin proteasome system (UPS) and autophagy. The latter processes rely on the selective tagging with ubiquitin of the proteins that must be disposed of. E3 ubiquitin ligases accomplish the selective recognition of the target proteins. At the late stage of neurogenesis, the brain starts to take shape, and neurons migrate to their designated locations. After birth, neuronal myelination occurs, and, in parallel, neurons form connections among each other throughout the synaptogenesis process. Due to the malfunctioning of UPS components, aberrant brain development at the very early stages leads to neurodevelopmental disorders. Through deep data mining and analysis and by taking advantage of machine learning-based models, we mapped the transcriptomic profile of the genes encoding HECT- and ring-between-ring (RBR)-E3 ubiquitin ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating enzymes during human brain development, from early post-conception to adulthood. The inquiry outcomes unveiled some implications for neurodevelopment-related disorders.


Ubiquitin-Activating Enzymes , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Brain/metabolism
20.
J Cell Physiol ; 239(5): e31213, 2024 May.
Article En | MEDLINE | ID: mdl-38308641

Recent studies have shown that nucleophagy can mitigate DNA damage by selectively degrading nuclear components protruding from the nucleus. However, little is known about the role of nucleophagy in neurons after spinal cord injury (SCI). Western blot analysis and immunofluorescence were performed to evaluate the nucleophagy after nuclear DNA damage and leakage in SCI neurons in vivo and NSC34 expression in primary neurons cultured with oxygen-glucose deprivation (OGD) in vitro, as well as the interaction and colocalization of autophagy protein LC3 with nuclear lamina protein Lamin B1. The effect of UBC9, a Small ubiquitin-related modifier (SUMO) E2 ligase, on Lamin B1 SUMOylation and nucleophagy was examined by siRNA transfection or 2-D08 (a small-molecule inhibitor of UBC9), immunoprecipitation, and immunofluorescence. In SCI and OGD injured NSC34 or primary cultured neurons, neuronal nuclear DNA damage induced the SUMOylation of Lamin B1, which was required by the nuclear Lamina accumulation of UBC9. Furthermore, LC3/Atg8, an autophagy-related protein, directly bound to SUMOylated Lamin B1, and delivered Lamin B1 to the lysosome. Knockdown or suppression of UBC9 with siRNA or 2-D08 inhibited SUMOylation of Lamin B1 and subsequent nucleophagy and protected against neuronal death. Upon neuronal DNA damage and leakage after SCI, SUMOylation of Lamin B1 is induced by nuclear Lamina accumulation of UBC9. Furthermore, it promotes LC3-Lamin B1 interaction to trigger nucleophagy that protects against neuronal DNA damage.


Autophagy , DNA Damage , Lamin Type B , Neurons , Spinal Cord Injuries , Sumoylation , Ubiquitin-Conjugating Enzymes , Lamin Type B/metabolism , Lamin Type B/genetics , Animals , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Cell Nucleus/metabolism , Rats , Mice , Cells, Cultured
...