Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.243
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000291

ABSTRACT

Urinary bladder cancer (BC) inflicts a significant impairment of life quality and poses a high mortality risk. Schistosoma haematobium infection can cause BC, and the urinary microbiota of BC patients differs from healthy controls. Importantly, intravesical instillation of the bacterium Bacillus Calmette-Guerin stands as the foremost therapy for non-muscle invasive BC. Hence, studying the receptors and signaling molecules orchestrating bacterial recognition and the cellular response in the context of BC is of paramount importance. Thus, we challenged Toll-like receptor 4 (Tlr4) and myeloid differentiation factor 88 (Myd88) knock-out (KO) mice with N-butyl-N-(4-hydroxylbutyl)-nitrosamine (BBN), a well-known urinary bladder carcinogen. Gut microbiota, gene expression, and urinary bladder pathology were followed. Acute exposure to BBN did not reveal a difference in bladder pathology despite differences in the animal's ability to recognize and react to bacteria. However, chronic treatment resulted in reduced cancer invasiveness among Myd88KO mice while the absence of functional Tlr4 did not influence BC development or progression. These differences correlate with a heightened abundance of the Faecalibaculum genus and the lowest microbial diversity observed among Myd88KO mice. The presented data underscore the important role of microbiota composition and MyD88-mediated signaling during bladder carcinogenesis.


Subject(s)
Gastrointestinal Microbiome , Mice, Knockout , Myeloid Differentiation Factor 88 , Signal Transduction , Toll-Like Receptor 4 , Urinary Bladder Neoplasms , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/microbiology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Butylhydroxybutylnitrosamine/toxicity , Carcinogenesis , Urinary Bladder/pathology , Urinary Bladder/microbiology , Urinary Bladder/metabolism , Female , Mice, Inbred C57BL , Microbiota , Humans
2.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999984

ABSTRACT

Enhanced electrical activity in detrusor smooth muscle (DSM) cells is a key factor in detrusor overactivity which causes overactive bladder pathological disorders. Transient receptor potential melastatin-4 (TRPM4) channels, which are calcium-activated cation channels, play a role in regulating DSM electrical activities. These channels likely contribute to depolarizing the DSM cell membrane, leading to bladder overactivity. Our research focuses on understanding TRPM4 channel function in the DSM cells of mice, using computational modeling. We aimed to create a detailed computational model of the TRPM4 channel based on existing electrophysiological data. We employed a modified Hodgkin-Huxley model with an incorporated TRP-like current to simulate action potential firing in response to current and synaptic stimulus inputs. Validation against experimental data showed close agreement with our simulations. Our model is the first to analyze the TRPM4 channel's role in DSM electrical activity, potentially revealing insights into bladder overactivity. In conclusion, TRPM4 channels are pivotal in regulating human DSM function, and TRPM4 channel inhibitors could be promising targets for treating overactive bladder.


Subject(s)
Computer Simulation , TRPM Cation Channels , Urinary Bladder, Overactive , TRPM Cation Channels/metabolism , Urinary Bladder, Overactive/metabolism , Urinary Bladder, Overactive/physiopathology , Animals , Mice , Humans , Urinary Bladder/metabolism , Urinary Bladder/physiopathology , Action Potentials , Electrophysiological Phenomena , Muscle, Smooth/metabolism , Muscle, Smooth/physiopathology
3.
Bull Exp Biol Med ; 177(1): 47-50, 2024 May.
Article in English | MEDLINE | ID: mdl-38955852

ABSTRACT

Ectonucleotidases play an important role in regulating the level of extracellular nucleotides and nucleosides and are an important part of the regulation of the effects of adenosine and ATP on adenosine and P2 receptors, respectively. We have previously established the ambiguous effect of P2 receptor agonists on the contractile activity of smooth muscle tissue in rats with the valproate model of autism. In this work, HPLC was used to evaluate the activity of ectonucleotidases in the smooth muscle tissues of the internal organs of rats with a valproate model of autism. The activity of ectonucleotidases was significantly higher in the smooth muscle tissues of the duodenum, vas deferens, and bladder, but lower in the ileum and uterus. The results obtained make it possible to compare the activity of ectonucleotidases identified here with changes in P2 receptor-mediated contractility of smooth muscle tissues revealed in our previous experiments.


Subject(s)
Autistic Disorder , Muscle Contraction , Muscle, Smooth , Urinary Bladder , Valproic Acid , Vas Deferens , Animals , Rats , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Valproic Acid/pharmacology , Autistic Disorder/metabolism , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Male , Female , Vas Deferens/drug effects , Vas Deferens/metabolism , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/enzymology , Muscle Contraction/drug effects , Uterus/drug effects , Uterus/metabolism , Ileum/drug effects , Ileum/metabolism , Ileum/enzymology , Disease Models, Animal , Rats, Wistar , Receptors, Purinergic P2/metabolism , Adenosine Triphosphatases/metabolism
4.
Eur J Med Res ; 29(1): 381, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039528

ABSTRACT

Bladder cancer remains a significant health challenge due to its high recurrence and progression rates. This study aims to evaluate the role of POLR3G in the development and progression of bladder cancer and the potential of POLR3G to serve as a novel therapeutic target. We constructed a bladder cancer model in Wistar rats by administering N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN), which successfully induced a transition from normal mucosa to hyperplasia and ultimately to urothelial carcinoma. We observed a progressive upregulation of POLR3G expression during the bladder cancer development and progression. To investigate the functional role of POLR3G, we performed functional experiments in bladder cancer cell lines. The results demonstrated that knocking down POLR3G significantly inhibited cell proliferation, migration, and invasion. We further conducted RNA sequencing on POLR3G-knockdown bladder cancer cells, and Metascape was employed to perform the functional enrichment analysis of the differentially expressed genes (DEGs). Enrichment analysis revealed the enrichment of DEGs in the RNA polymerase and apoptotic cleavage of cellular proteins pathways, as well as their involvement in the Wnt and MAPK signaling pathways. The downregulation of Wnt pathway-related proteins such as Wnt5a/b, DVL2, LRP-6, and phosphorylated LRP-6 upon POLR3G knockdown was further confirmed by Western blotting, indicating that POLR3G might influence bladder cancer behavior through the Wnt signaling pathway. Our findings suggest that POLR3G plays a crucial role in bladder cancer progression and could serve as a potential therapeutic target. Future studies should focus on the detailed mechanisms by which POLR3G regulates these signaling pathways and its potential as a biomarker for early detection and prognosis of bladder cancer.


Subject(s)
Up-Regulation , Urinary Bladder Neoplasms , Urothelium , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Animals , Rats , Humans , Urothelium/metabolism , Urothelium/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Rats, Wistar , Cell Movement/genetics , Urinary Bladder/metabolism , Urinary Bladder/pathology , Cell Line, Tumor , Wnt Signaling Pathway/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
5.
Sci Rep ; 14(1): 16134, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997336

ABSTRACT

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a complex chronic pain disorder with an elusive etiology and nonspecific symptoms. Although numerous animal models with phenotypes similar to human disease have been established, no available regimen can consistently alleviate clinical symptoms. This dilemma led us to question whether current animal models adequately represent IC/BPS. We compared four commonly used IC/BPS rat models to determine their diverse histopathological and molecular patterns. Female rats were given single treatments with hydrochloric acid (HCL), acetic acid (AA), protamine sulfate plus lipopolysaccharide (PS + LPS), or cyclophosphamide (CYP) to induce IC/BPS. Bladder sections were stained for histopathologic evaluation, and mRNA expression profiles were examined using next-generation sequencing and gene set analyses. Mast cell counts were significantly higher in the HCL and AA groups than in the PS + LPS, CYP, and control groups, but only the AA group showed significant collagen accumulation. The models differed substantially in terms of their gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our observations suggest that none of these rat models fully reflects the complexity of IC/BPS. We recommend that future studies apply and compare multiple models simultaneously to fully replicate the complicated features of IC/BPS.


Subject(s)
Cystitis, Interstitial , Disease Models, Animal , Animals , Cystitis, Interstitial/pathology , Cystitis, Interstitial/chemically induced , Cystitis, Interstitial/metabolism , Female , Rats , Urinary Bladder/pathology , Urinary Bladder/metabolism , Urinary Bladder/drug effects , Rats, Sprague-Dawley , Mast Cells/metabolism , Cyclophosphamide/adverse effects , Hydrochloric Acid/adverse effects , Hydrochloric Acid/toxicity , Lipopolysaccharides
6.
J Physiol ; 602(15): 3693-3713, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970617

ABSTRACT

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.


Subject(s)
Muscle Contraction , Muscle, Smooth , TRPV Cation Channels , Urinary Bladder , Animals , TRPV Cation Channels/metabolism , Urinary Bladder/physiology , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Muscle Contraction/physiology , Muscle, Smooth/physiology , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Rats , Male , Carbachol/pharmacology , Capsaicin/pharmacology , Calcium/metabolism , Rats, Sprague-Dawley , Rats, Wistar
7.
Sci Rep ; 14(1): 15757, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38977772

ABSTRACT

Urinary bladder dysfunction can be caused by environmental, genetic, and developmental insults. Depending upon insult severity, the bladder may lose its ability to maintain volumetric capacity and intravesical pressure resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is utilized to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) co-seeded with CD34+ hematopoietic stem/progenitor cells (HSPCs) onto a pliable synthetic scaffold [poly(1,8-octamethylene-citrate-co-octanol)(POCO)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in our baboon bladder augmentation model. We set out to determine the global protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogeneous protein expression between the tissues following long-term engraftment. We posit that stem cell-seeded scaffolds can recapitulate tissue that is nearly indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.


Subject(s)
Papio , Regeneration , Tissue Scaffolds , Urinary Bladder , Animals , Urinary Bladder/metabolism , Tissue Scaffolds/chemistry , Proteomics/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology
8.
Front Endocrinol (Lausanne) ; 15: 1384115, 2024.
Article in English | MEDLINE | ID: mdl-38883607

ABSTRACT

Background: Estrogen homeostasis is crucial for bladder function, and estrogen deprivation resulting from menopause, ovariectomy or ovarian dysfunction may lead to various bladder dysfunctions. However, the specific mechanisms are not fully understood. Methods: We simulated estrogen deprivation using a rat ovariectomy model and supplemented estrogen through subcutaneous injections. The metabolic characteristics of bladder tissue were analyzed using non-targeted metabolomics, followed by bioinformatics analysis to preliminarily reveal the association between estrogen deprivation and bladder function. Results: We successfully established a rat model with estrogen deprivation and, through multivariate analysis and validation, identified several promising biomarkers represented by 3, 5-tetradecadiencarnitine, lysoPC (15:0), and cortisol. Furthermore, we explored estrogen deprivation-related metabolic changes in the bladder primarily characterized by amino acid metabolism imbalance. Conclusion: This study, for the first time, depicts the metabolic landscape of bladder resulting from estrogen deprivation, providing an important experimental basis for future research on bladder dysfunctions caused by menopause.


Subject(s)
Estrogens , Metabolomics , Ovariectomy , Rats, Sprague-Dawley , Urinary Bladder , Animals , Female , Rats , Metabolomics/methods , Urinary Bladder/metabolism , Estrogens/metabolism , Metabolome , Menopause/metabolism , Biomarkers/metabolism
9.
Turk J Med Sci ; 54(1): 26-32, 2024.
Article in English | MEDLINE | ID: mdl-38812622

ABSTRACT

Background/aim: To investigate the roles of vascular endothelial growth inhibitor (VEGI) and hypoxia-inducible factor-1α (HIF-1α) in the treatment of refractory interstitial cystitis/bladder pain syndrome (IC/BPS) with hyperbaric oxygen (HBO). Materials and methods: A total of 38 patients were included. They were assessed before and 6 months after HBO treatment. Three-day voiding diaries were recorded, and O'leary-Sant scores, visual analog scale (VAS) scores, quality of life (QoL) scores, pelvic pain, and urgency/frequency (PUF) scores were evaluated. Bladder capacity was assessed by cystoscopy. Bladder mucosa was collected for Western blot, qRT-PCR, and immunofluorescence staining to compare the expression of VEGI and HIF-1α before and after treatment. Results: Compared with before treatment, patients showed significant improvements in 24-h voiding frequency (15.32 ± 5.38 times), nocturia (3.71 ± 1.80 times), O'leary-Sant score (20.45 ± 5.62 points), VAS score (41.76 ± 17.88 points), QoL score (3.03 ± 1.44 points), and PUF score (19.95 ± 6.46 points) after treatment (p < 0.05). There was no significant difference in bladder capacity before and after treatment (p ≥ 0.05). The expression levels of VEGI and HIF-1α protein and mRNA were significantly decreased 6 months after treatment compared with before treatment. Immunofluorescence staining results showed that the double positive expression of VEGI and HIF-1α protein in bladder tissue of IC/BPS patients after HBO treatment quantitatively decreased significantly. Conclusion: This study identified a possible mechanism by which VEGI and HIF-1α expression decreased after HBO treatment due to hypoxia reversal, which improved symptoms in IC/BPS patients.


Subject(s)
Cystitis, Interstitial , Hyperbaric Oxygenation , Hypoxia-Inducible Factor 1, alpha Subunit , Humans , Hyperbaric Oxygenation/methods , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Female , Middle Aged , Male , Cystitis, Interstitial/therapy , Cystitis, Interstitial/metabolism , Adult , Quality of Life , Urinary Bladder/metabolism , Aged , Treatment Outcome
10.
Int Urogynecol J ; 35(6): 1119-1129, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38771505

ABSTRACT

INTRODUCTION AND HYPOTHESIS: Bladder pain syndrome (BPS) is poorly understood with both the aetiology and pathophysiology being unknown. Symptoms overlap with other disorders, such as overactive bladder (OAB) and chronic pelvic pain disorders such as endometriosis, making a consensus on how to diagnosis and manage patients challenging. The development of biomarkers for BPS may be the key to understanding more about its pathophysiology, as well as aiding diagnosis, subclassification, and discovering new drug targets for its management. As inflammation is widely understood to hold a central role in BPS, the evaluation of cytokines has gained interest. This article summarises the current literature and understanding of urinary, serum, and bladder tissue cytokines found elevated in patients with bladder pain syndrome. METHODS: literature search using Pub Med with the keywords "bladder pain syndrome", "painful bladder syndrome", "bladder pain", "Interstitial cystitis" AND "cytokines" or "inflammation". This study was except from institutional approval. RESULTS: Thirty-six cytokines have been identified as being statistically significantly elevated in either the serum, urine, or bladder tissue of patients with bladder pain syndrome in the 22 studies identified in this review of the literature. These cytokines include those from the interleukin group (n = 14), the CXC chemokine group (n = 5), and the C-C chemokine group (n = 7). CONCLUSIONS: CXCL-1, CXCL-8, CXCL-9, CXCL-10, CXCL-11 from the CXC chemokine group, and CCL2, CCL4, CCL5, CCL7, and CCL11 from the C-C chemokine group have been found to be significantly elevated in patients with bladder pain in the literature. Many of these analytes also have supporting evidence for their roles in bladder pain from animal models and studies in other chronic inflammatory conditions. It is likely that a single cytokine will not serve as an adequate biomarker of disease in bladder pain syndrome for either diagnosis or disease severity. Instead, panels of inflammatory mediators may reveal more about the different pathways of inflammation leading to similar presentations of bladder pain in patients.


Subject(s)
Cystitis, Interstitial , Cytokines , Humans , Cystitis, Interstitial/diagnosis , Cytokines/blood , Cytokines/metabolism , Biomarkers/blood , Biomarkers/urine , Urinary Bladder/physiopathology , Urinary Bladder/metabolism , Female , Pelvic Pain/etiology , Pelvic Pain/blood , Pelvic Pain/diagnosis
11.
Prostate ; 84(11): 1016-1024, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804836

ABSTRACT

BACKGROUND: Our research focused on the assessment of the impact of systemic inhibition of Trk receptors, which bind to nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), on bladder hypersensitivity in two distinct rodent models of prostatic inflammation (PI). METHODS: Male Sprague-Dawley rats were divided into three groups (n = 6 each): the control group (no PI, vehicle administration), the untreated group (PI, vehicle administration), and the treated group (PI, nonselective Trk inhibitor, GNF 5837, administration). PI in rats was induced by a intraprostatic injection of 5% formalin. Posttreatment, we carried out conscious cystometry and a range of histological and molecular analyses. Moreover, the study additionally evaluated the effects of a nonselective Trk inhibitor on bladder overactivity in a mouse model of PI, which was induced by prostate epithelium-specific conditional deletion of E-cadherin. RESULTS: The rat model of PI showed upregulations of NGF and BDNF in both bladder and prostate tissues in association with bladder overactivity and inflammation in the ventral lobes of the prostate. GNF 5837 treatment effectively mitigated these PI-induced changes, along with reductions in TrkA, TrkB, TrkC, and TRPV1 mRNA expressions in L6-S1 dorsal root ganglia. Also, in the mouse PI model, GNF 5837 treatment similarly improved bladder overactivity. CONCLUSIONS: The findings of our study suggest that Trk receptor inhibition, which reduced bladder hypersensitivity and inflammatory responses in the prostate, along with a decrease in overexpression of Trk and TRPV1 receptors in sensory pathways, could be an effective treatment strategy for male lower urinary tract symptoms associated with PI and bladder overactivity.


Subject(s)
Prostatitis , Receptor, trkA , Urinary Bladder, Overactive , Animals , Male , Mice , Rats , Administration, Oral , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Nerve Growth Factor/antagonists & inhibitors , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Prostate/drug effects , Prostate/pathology , Prostate/metabolism , Prostatitis/drug therapy , Prostatitis/pathology , Prostatitis/metabolism , Rats, Sprague-Dawley , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/metabolism , Urinary Bladder/drug effects , Urinary Bladder/pathology , Urinary Bladder/metabolism , Urinary Bladder, Overactive/drug therapy , Urinary Bladder, Overactive/etiology
12.
Int Immunopharmacol ; 134: 111997, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759370

ABSTRACT

Cystitis is a common disease closely associated with urinary tract infections, and the specific mechanisms underlying its occurrence and development remain largely unknown. In this study, we discovered that IGFBP1 suppresses the occurrence and development of cystitis by stabilizing the expression of Umod through m6A modification, inhibiting the NF-κB and ERK signaling pathways. Initially, we obtained a bladder cystitis-related transcriptome dataset from the GEO database and identified the characteristic genes Umod and IGFBP1. Further exploration revealed that IGFBP1 in primary cells of cystitis can stabilize the expression of Umod through m6A modification. Overexpression of both IGFBP1 and Umod significantly inhibited cell apoptosis and the NF-κB and ERK signaling pathways, ultimately suppressing the production of pro-inflammatory factors. Finally, using a rat model of cystitis, we demonstrated that overexpression of IGFBP1 stabilizes the expression of Umod, inhibits the NF-κB and ERK signaling pathways, reduces the production of pro-inflammatory factors, and thus prevents the occurrence and development of cystitis. Our study elucidates the crucial role of IGFBP1 and Umod in cystitis and reveals the molecular mechanisms that inhibit the occurrence and development of cystitis. This research holds promise for offering new insights into the treatment of cystitis in the future.


Subject(s)
Cystitis , Insulin-Like Growth Factor Binding Protein 1 , MAP Kinase Signaling System , NF-kappa B , Rats, Sprague-Dawley , Animals , Female , Humans , Rats , Apoptosis , Cystitis/metabolism , Disease Models, Animal , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , NF-kappa B/metabolism , Urinary Bladder/pathology , Urinary Bladder/metabolism
13.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732143

ABSTRACT

This study explores low-intensity extracorporeal shock wave therapy (LiESWT)'s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model.


Subject(s)
Disease Models, Animal , Extracorporeal Shockwave Therapy , Muscle Contraction , TRPV Cation Channels , Urinary Bladder , Animals , Female , Rats , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Extracorporeal Shockwave Therapy/methods , Urinary Bladder/physiopathology , Urinary Bladder/metabolism , Urinary Bladder, Overactive/therapy , Urinary Bladder, Overactive/metabolism , Urinary Bladder, Overactive/physiopathology , Urinary Bladder, Overactive/etiology , Ovariectomy , Rats, Sprague-Dawley , Ovary/metabolism
14.
J Pharmacol Exp Ther ; 390(2): 213-221, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38777604

ABSTRACT

Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.


Subject(s)
Neuroglia , Sensory Receptor Cells , Visceral Pain , Animals , Humans , Visceral Pain/metabolism , Visceral Pain/physiopathology , Neuroglia/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism , Satellite Cells, Perineuronal/metabolism , Urinary Bladder/innervation , Urinary Bladder/metabolism , Colon/metabolism , Colon/innervation
15.
Arch Toxicol ; 98(7): 2065-2084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38630284

ABSTRACT

Arsenic is highly toxic to the human bladder. In the present study, we established a human bladder epithelial cell line that closely mimics normal human bladder epithelial cells by immortalizing primary uroplakin 1B-positive human bladder epithelial cells with human telomerase reverse transcriptase (HBladEC-T). The uroplakin 1B-positive human bladder epithelial cell line was then used to evaluate the toxicity of seven arsenicals (iAsV, iAsIII, MMAV, MMAIII, DMAV, DMAIII, and DMMTAV). The cellular uptake and metabolism of each arsenical was different. Trivalent arsenicals and DMMTAV exhibited higher cellular uptake than pentavalent arsenicals. Except for MMAV, arsenicals were transported into cells by aquaglyceroporin 9 (AQP9). In addition to AQP9, DMAIII and DMMTAV were also taken up by glucose transporter 5. Microarray analysis demonstrated that arsenical treatment commonly activated the NRF2-mediated oxidative stress response pathway. ROS production increased with all arsenicals, except for MMAV. The activating transcription factor 3 (ATF3) was commonly upregulated in response to oxidative stress in HBladEC-T cells: ATF3 is an important regulator of necroptosis, which is crucial in arsenical-induced bladder carcinogenesis. Inorganic arsenics induced apoptosis while MMAV and DMAIII induced necroptosis. MMAIII, DMAV, and DMMTAV induced both cell death pathways. In summary, MMAIII exhibited the strongest cytotoxicity, followed by DMMTAV, iAsIII, DMAIII, iAsV, DMAV, and MMAV. The cytotoxicity of the tested arsenicals on HBladEC-T cells correlated with their cellular uptake and ROS generation. The ROS/NRF2/ATF3/CHOP signaling pathway emerged as a common mechanism mediating the cytotoxicity and carcinogenicity of arsenicals in HBladEC-T cells.


Subject(s)
Activating Transcription Factor 3 , Arsenicals , Epithelial Cells , Oxidative Stress , Reactive Oxygen Species , Urinary Bladder , Humans , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/pathology , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Activating Transcription Factor 3/metabolism , NF-E2-Related Factor 2/metabolism , Cell Line , Apoptosis/drug effects , Cell Survival/drug effects
16.
Int Urogynecol J ; 35(5): 1069-1075, 2024 May.
Article in English | MEDLINE | ID: mdl-38662109

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The objective was to assess PD-L1 expression in nonbacterial chronic cystitis (NCC) and bladder cancer (BC). METHODS: The present study included 20 NCC and 20 BC patients. The degree of inflammation of the bladder wall was assessed on slides stained with H&E. Viral pathogens (herpes simplex virus, Epstein-Barr virus, cytomegalovirus, and high-risk HPVs) were detected using real-time polymerase chain reaction analyses of the bladder specimens. Immunohistochemistry was performed to assess the PD-L1 expression in bladder tissue. RESULTS: Expression of PD-L1 was detected in 40% of NCC patients and 85% of BC patients. Viral pathogens were found in 50% of NCC patients and 60% of BC patients, with EBV being the most common. In NCC patients the immune cell score correlated strongly with the degree of inflammatory infiltration of the bladder wall (r = 0.867, p < 0.001), the presence of lymphoid aggregates in the submucosa (r = 0.804, p < 0.001), koilocytosis (r = 0.620, p = 0.004), and the presence of viral pathogens (r = 0.784, p < 0.001). In BC patients the immune cell score correlated with the degree of inflammatory infiltration of the bladder wall (r = 0.534, p = 0.015) and the presence of viral pathogens (r = 0.626, p = 0.003), but not with the presence of lymphoid aggregates in the submucosa (r = 0.083, p = 0.729), and koilocytosis (r = 0.366, p = 0.112). CONCLUSIONS: Expression of PD-L1 was detected in a cohort of NCC patients, although the PD-L1 positivity rate was lower than that in BC. Our results demonstrate that the degree of PD-L1 expression in bladder tissue is associated with the presence of viral infections and with the degree of inflammatory infiltration of the bladder wall in both NCC and BC.


Subject(s)
B7-H1 Antigen , Cystitis , Urinary Bladder Neoplasms , Humans , B7-H1 Antigen/metabolism , Urinary Bladder Neoplasms/virology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Female , Middle Aged , Cystitis/virology , Cystitis/metabolism , Aged , Male , Adult , Chronic Disease , Urinary Bladder/pathology , Urinary Bladder/metabolism , Urinary Bladder/virology , Immunohistochemistry , Aged, 80 and over
17.
Am J Physiol Renal Physiol ; 326(6): F957-F970, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38601986

ABSTRACT

Stretch-activated two-pore domain K+ (K2P) channels play important roles in many visceral organs, including the urinary bladder. The TWIK-related K+ channel TREK-1 is the predominantly expressed K2P channel in the urinary bladder of humans and rodents. Downregulation of TREK-1 channels was observed in the urinary bladder of patients with detrusor overactivity, suggesting their involvement in the pathogenesis of voiding dysfunction. This study aimed to characterize the long-term effects of TREK-1 on bladder function with global and smooth muscle-specific TREK-1 knockout (KO) mice. Bladder morphology, bladder smooth muscle (BSM) contractility, and voiding patterns were evaluated up to 12 mo of age. Both sexes were included in this study to probe the potential sex differences. Smooth muscle-specific TREK-1 KO mice were used to distinguish the effects of TREK-1 downregulation in BSM from the neural pathways involved in the control of bladder contraction and relaxation. TREK-1 KO mice developed enlarged urinary bladders (by 60.0% for males and by 45.1% for females at 6 mo; P < 0.001 compared with the age-matched control group) and had a significantly increased bladder capacity (by 137.7% at 12 mo; P < 0.0001) and compliance (by 73.4% at 12 mo; P < 0.0001). Bladder strips isolated from TREK-1 KO mice exhibited decreased contractility (peak force after KCl at 6 mo was 1.6 ± 0.7 N/g compared with 3.4 ± 2.0 N/g in the control group; P = 0.0005). The lack of TREK-1 channels exclusively in BSM did not replicate the bladder phenotype observed in TREK-1 KO mice, suggesting a strong neurogenic origin of TREK-1-related bladder dysfunction.NEW & NOTEWORTHY This study compared voiding function and bladder phenotypes in global and smooth muscle-specific TREK-1 KO mice. We found significant age-related changes in bladder contractility, suggesting that the lack of TREK-1 channel activity might contribute to age-related changes in bladder smooth muscle physiology.


Subject(s)
Hypertrophy , Mice, Knockout , Muscle Contraction , Muscle, Smooth , Potassium Channels, Tandem Pore Domain , Urinary Bladder , Animals , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/deficiency , Urinary Bladder/physiopathology , Urinary Bladder/metabolism , Urinary Bladder/pathology , Muscle, Smooth/metabolism , Muscle, Smooth/physiopathology , Muscle, Smooth/pathology , Male , Female , Aging/metabolism , Mice , Mice, Inbred C57BL , Age Factors , Urination
18.
Am J Physiol Renal Physiol ; 326(6): F1078-F1090, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634130

ABSTRACT

Urothelium forms a distensible yet impermeable barrier, senses and transduces stimuli, and defends the urinary tract from mechanical, chemical, and bacterial injuries. Biochemical and genetic labeling studies support the existence of one or more progenitor populations with the capacity to rapidly regenerate the urothelium following injury, but slow turnover, a low mitotic index, and inconsistent methodologies obscure progenitor identity. The progenitor properties of basal keratin 5 urothelial cells (K5-UCs) have been previously investigated, but those studies focused on embryonic or adult bladder urothelium. Urothelium undergoes desquamation and apoptosis after birth, which requires postnatal proliferation and restoration. Therefore, we mapped the fate of bladder K5-UCs across postnatal development/maturation and following administration of cyclophosphamide to measure homeostatic and reparative progenitor capacities, respectively. In vivo studies demonstrate that basal K5-UCs are age-restricted progenitors in neonates and juveniles, but not in adult mice. Neonatal K5-UCs retain a superior progenitor capacity in vitro, forming larger and more differentiated urothelial organoids than adult K5-UCs. Accordingly, K5-UC transcriptomes are temporally distinct, with enrichment of transcripts associated with cell proliferation and differentiation in neonates. Induction of urothelial proliferation is sufficient to restore adult K5-UC progenitor capacity. Our findings advance the understanding of urothelial progenitors and support a linear model of urothelial formation and regeneration, which may have significant impact on therapeutic development or tissue engineering strategies.NEW & NOTEWORTHY Fate mapping reveals an important linear relationship, whereby bladder basal urothelial cells give rise to intermediate and superficial cells in an age-restricted manner and contribute to tissue repair. Neonatal basal cells reprise their role as superior progenitors in vitro and display distinct transcriptional signatures, which suggest progenitor function is at least partially cell intrinsic. However, the urothelium progenitor niche cannot be overlooked, since FGF7 rescues adult basal cell progenitor function.


Subject(s)
Cell Proliferation , Keratin-5 , Regeneration , Stem Cells , Urinary Bladder , Urothelium , Animals , Mice , Age Factors , Animals, Newborn , Cell Differentiation , Cells, Cultured , Cyclophosphamide , Fibroblast Growth Factor 7/metabolism , Fibroblast Growth Factor 7/genetics , Gene Expression Regulation, Developmental , Keratin-5/metabolism , Keratin-5/genetics , Mice, Inbred C57BL , Stem Cells/metabolism , Transcriptome , Urinary Bladder/metabolism , Urothelium/metabolism
19.
Drug Metab Pharmacokinet ; 56: 100998, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583388

ABSTRACT

To assess the pharmacologically relevant and selective muscarinic receptor occupancy in the bladder mucosa, we considered not only plasma drug concentrations but also urinary drug concentrations. The purpose of this study was to predict muscarinic receptor occupancy in the human bladder mucosa based on urinary concentrations in response to clinical dosages of antimuscarinic agents used to treat overactive bladder. The calculated mean plasma or serum unbound steady state concentrations were 0.06-11 nM in clinical dosages of five antimuscarinic agents. Urinary concentrations calculated from the mean plasma or serum and renal clearance ranged between 19 nM and 2 µM, which were >10-fold higher than the Ki values for bladder muscarinic receptors excluding propiverine. Bladder mucosal muscarinic receptor occupancy estimated from the urinary concentrations and the Ki values was >90 % at a steady state in clinical dosages of five antimuscarinic agents. The bladder muscarinic receptor occupancy was higher than that in the parotid gland calculated based on the mean plasma or serum unbound concentrations and Ki values for muscarinic receptors in the parotid gland. These results suggest that sufficient and selective muscarinic receptor occupancy by antimuscarinic agents, to exert pharmacological effects, in the bladder mucosa can be predicted using urinary concentrations.


Subject(s)
Mucous Membrane , Muscarinic Antagonists , Receptors, Muscarinic , Urinary Bladder, Overactive , Urinary Bladder , Humans , Muscarinic Antagonists/pharmacokinetics , Urinary Bladder, Overactive/drug therapy , Urinary Bladder, Overactive/metabolism , Urinary Bladder, Overactive/urine , Receptors, Muscarinic/metabolism , Urinary Bladder/metabolism , Urinary Bladder/drug effects , Mucous Membrane/metabolism , Mucous Membrane/drug effects , Male , Female , Middle Aged , Adult , Aged
20.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674069

ABSTRACT

Bladder pain is a prominent symptom in Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). We studied spinal mechanisms of bladder pain in mice using a model where repeated activation of intravesical Protease Activated Receptor-4 (PAR4) results in persistent bladder hyperalgesia (BHA) with little or no bladder inflammation. Persistent BHA is mediated by spinal macrophage migration inhibitory factor (MIF), and is associated with changes in lumbosacral proteomics. We investigated the contribution of individual spinal MIF receptors to persistent bladder pain as well as the spinal proteomics changes associated with relief of persistent BHA by spinal MIF antagonism. Female mice with persistent BHA received either intrathecal (i.t.) MIF monoclonal antibodies (mAb) or mouse IgG1 (isotype control antibody). MIF antagonism temporarily reversed persistent BHA (peak effect: 2 h), while control IgG1 had no effect. Moreover, i.t. antagonism of the MIF receptors CD74 and C-X-C chemokine receptor type 4 (CXCR4) partially reversed persistent BHA. For proteomics experiments, four separate groups of mice received either repeated intravesical scrambled peptide and sham i.t. injection (control, no pain group) or repeated intravesical PAR4 and: sham i.t.; isotype IgG1 i.t. (15 µg); or MIF mAb (15 µg). L6-S1 spinal segments were excised 2 h post-injection and examined for proteomics changes using LC-MS/MS. Unbiased proteomics analysis identified and relatively quantified 6739 proteins. We selected proteins that showed significant changes compared to control (no pain group) after intravesical PAR4 (sham or IgG i.t. treatment) and showed no significant change after i.t. MIF antagonism. Six proteins decreased during persistent BHA (V-set transmembrane domain-containing protein 2-like confirmed by immunohistochemistry), while two proteins increased. Spinal MIF antagonism reversed protein changes. Therefore, spinal MIF and MIF receptors mediate persistent BHA and changes in specific spinal proteins. These novel MIF-modulated spinal proteins represent possible new targets to disrupt spinal mechanisms that mediate persistent bladder pain.


Subject(s)
Macrophage Migration-Inhibitory Factors , Proteomics , Receptors, CXCR4 , Animals , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Female , Mice , Proteomics/methods , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Hyperalgesia/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/antagonists & inhibitors , Antigens, Differentiation, B-Lymphocyte/metabolism , Histocompatibility Antigens Class II/metabolism , Cystitis, Interstitial/metabolism , Cystitis, Interstitial/pathology , Spinal Cord/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Disease Models, Animal , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL