Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.266
Filter
1.
Hum Vaccin Immunother ; 20(1): 2368288, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38953250

ABSTRACT

Many pathogens enter the host through mucosal sites. Thus, interfering with pathogen entry through local neutralization at mucosal sites therefore is an effective strategy for preventing disease. Mucosally administered vaccines have the potential to induce protective immune responses at mucosal sites. This manuscript delves into some of the latest developments in mucosal vaccination, particularly focusing on advancements in adjuvant technologies and the role of these adjuvants in enhancing vaccine efficacy against respiratory pathogens. It highlights the anatomical and immunological complexities of the respiratory mucosal immune system, emphasizing the significance of mucosal secretory IgA and tissue-resident memory T cells in local immune responses. We further discuss the differences between immune responses induced through traditional parenteral vaccination approaches vs. mucosal administration strategies, and explore the protective advantages offered by immunization through mucosal routes.


Subject(s)
Immunity, Mucosal , Respiratory Mucosa , Humans , Respiratory Mucosa/immunology , Animals , Vaccines/immunology , Vaccines/administration & dosage , Administration, Mucosal , Adjuvants, Vaccine , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Respiratory Tract Infections/immunology , Respiratory Tract Infections/prevention & control , Memory T Cells/immunology , Immunoglobulin A, Secretory/immunology
2.
Medicine (Baltimore) ; 103(27): e38809, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968522

ABSTRACT

In kidney transplant recipients (KTRs), viral infection can lead to antibody and/or T-cell mediated rejection, resulting in kidney transplant dysfunction. Therefore, it is critical to prevent infections. However, KTRs exhibit suboptimal responses to SARS-CoV-2 and/or influenza vaccines, partly due to immunosuppressant therapy. Inter- and intra-individual differences in the biological responses to vaccines may also affect patients' antibody production ability. This study included KTRs who received an messenger RNA SARS-CoV-2 vaccine (3 doses), and an inactivated quadrivalent influenza vaccine (1 or 2 doses). We measured the patients' total antibody titers against SARS-CoV-2 spike antigen, and hemagglutination inhibition (HI) titers against influenza A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. Five patients were eligible for this study. Of these 5 KTRs, two produced anti-SARS-CoV-2 spike antibody titers to a seroprotective level, and also produced HI titers against A/H1N1 to a seroprotective level. Another 2 KTRs did not produce seroprotective anti-SARS-CoV-2 antibody titers, but produced seroprotective HI titers against A/H1N1. The remaining KTR produced a seroprotective anti-SARS-CoV-2 antibody titer, but did not produce a seroprotective HI titer against A/H1N1. The 2 KTRs who did not produce seroprotective anti-SARS-CoV-2 antibody titers following vaccination, later developed COVID-19, and this infection increased their titers over the seroprotective level. This study demonstrated that inter- and intra-individual differences in biological responses to vaccines should be considered in pediatric KTRs, in addition to immunosuppressant effects. Personalized regimens, such as augmented or booster doses of vaccines, could potentially improve the vaccination efficacy against SARS-CoV-2 and influenza.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Influenza Vaccines , Influenza, Human , Kidney Transplantation , SARS-CoV-2 , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Male , Female , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Child , Adolescent , Transplant Recipients , Influenza A Virus, H1N1 Subtype/immunology , Vaccination/methods
3.
JCI Insight ; 9(13)2024 May 28.
Article in English | MEDLINE | ID: mdl-38973612

ABSTRACT

Staphylococcus aureus is a major human pathogen. An effective anti-S. aureus vaccine remains elusive as the correlates of protection are ill-defined. Targeting specific T cell populations is an important strategy for improving anti-S. aureus vaccine efficacy. Potential bottlenecks that remain are S. aureus-induced immunosuppression and the impact this might have on vaccine-induced immunity. S. aureus induces IL-10, which impedes effector T cell responses, facilitating persistence during both colonization and infection. Thus, it was hypothesized that transient targeting of IL-10 might represent an innovative way to improve vaccine efficacy. In this study, IL-10 expression was elevated in the nares of persistent carriers of S. aureus, and this was associated with reduced systemic S. aureus-specific Th1 responses. This suggests that systemic responses are remodeled because of commensal exposure to S. aureus, which negatively implicates vaccine function. To provide proof of concept that targeting immunosuppressive responses during immunization may be a useful approach to improve vaccine efficacy, we immunized mice with T cell-activating vaccines in combination with IL-10-neutralizing antibodies. Blocking IL-10 during vaccination enhanced effector T cell responses and improved bacterial clearance during subsequent systemic and subcutaneous infection. Taken together, these results reveal a potentially novel strategy for improving anti-S. aureus vaccine efficacy.


Subject(s)
Interleukin-10 , Staphylococcal Infections , Staphylococcal Vaccines , Staphylococcus aureus , Interleukin-10/metabolism , Interleukin-10/immunology , Animals , Staphylococcal Infections/prevention & control , Staphylococcal Infections/immunology , Staphylococcal Vaccines/immunology , Mice , Staphylococcus aureus/immunology , Female , Mice, Inbred C57BL , Th1 Cells/immunology , Immunization/methods , Humans , Antibodies, Neutralizing/immunology , Vaccine Efficacy , Vaccination/methods
4.
Cleve Clin J Med ; 91(7): 437-445, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950984

ABSTRACT

Herpes zoster (HZ) incidence is much higher in immunocompromised individuals than in immunocompetent individuals. HZ also occurs at a younger age and is often more severe in immunocompromised persons. Preventive strategies center around the recombinant zoster vaccine (RZV), which is approved for immunocompromised adults age 19 and older. Identifying those at greatest risk is critical. For those considering vaccination, evidence gaps regarding vaccine efficacy, toxicity, length of protection, and potential effects on underlying conditions may complicate shared and informed decision-making. Recent data have filled some of these gaps, with several societies issuing recommendations regarding vaccination. Remaining gaps are currently addressed by expert opinion.


Subject(s)
Herpes Zoster Vaccine , Herpes Zoster , Immunocompromised Host , Humans , Herpes Zoster/prevention & control , Herpes Zoster/epidemiology , Vaccination/methods
5.
BMJ Open Gastroenterol ; 11(1)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897611

ABSTRACT

OBJECTIVE: To investigate (1) the UK-wide inactivated influenza vaccine (IIV) uptake in adults with inflammatory bowel disease (IBD), (2) the association between vaccination against influenza and IBD flare and (3) the effectiveness of IIV in preventing morbidity and mortality. DESIGN: Data for adults with IBD diagnosed before the 1 September 2018 were extracted from the Clinical Practice Research Datalink Gold. We calculated the proportion of people vaccinated against seasonal influenza in the 2018-2019 influenza cycle. To investigate vaccine effectiveness, we calculated the propensity score (PS) for vaccination and conducted Cox proportional hazard regression with inverse-probability treatment weighting on PS. We employed self-controlled case series analysis to investigate the association between vaccination and IBD flare. RESULTS: Data for 13 631 people with IBD (50.4% male, mean age 52.9 years) were included. Fifty percent were vaccinated during the influenza cycle, while 32.1% were vaccinated on time, that is, before the seasonal influenza virus circulated in the community. IIV was associated with reduced all-cause mortality (aHR (95% CI): 0.73 (0.55,0.97) but not hospitalisation for pneumonia (aHR (95% CI) 0.52 (0.20-1.37), including in the influenza active period (aHR (95% CI) 0.48 (0.18-1.27)). Administration of the IIV was not associated with IBD flare. CONCLUSION: The uptake of influenza vaccine was low in people with IBD, and the majority were not vaccinated before influenza virus circulated in the community. Vaccination with the IIV was not associated with IBD flare. These findings add to the evidence to promote vaccination against influenza in people with IBD.


Subject(s)
Inflammatory Bowel Diseases , Influenza Vaccines , Influenza, Human , Vaccines, Inactivated , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Male , Female , United Kingdom/epidemiology , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Middle Aged , Inflammatory Bowel Diseases/complications , Adult , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccine Efficacy/statistics & numerical data , Vaccination/statistics & numerical data , Vaccination/adverse effects , Vaccination/methods , Hospitalization/statistics & numerical data , Aged , Proportional Hazards Models
6.
Proc Natl Acad Sci U S A ; 121(25): e2322264121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865265

ABSTRACT

Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (µEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The µEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the µEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.


Subject(s)
Electroporation , Immunotherapy , Vaccines, DNA , Animals , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Electroporation/methods , Mice , Immunotherapy/methods , Administration, Cutaneous , Neoplasms/therapy , Neoplasms/immunology , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Ovalbumin/immunology , Ovalbumin/administration & dosage , Antigen-Presenting Cells/immunology , Female , Mice, Inbred C57BL , Humans , Vaccination/methods
7.
Expert Rev Vaccines ; 23(1): 636-644, 2024.
Article in English | MEDLINE | ID: mdl-38869028

ABSTRACT

BACKGROUND: Protection provided by seasonal influenza vaccination (SIV) may be measured against numerous outcomes, and their heterogeneity may hamper decision-making. The aim of this study was to explore outcomes used for estimation of SIV efficacy/effectiveness (VE) and obtain expert consensus on their importance. RESEARCH DESIGN AND METHODS: An umbrella review was first conducted to collect and map outcomes considered in systematic reviews of SIV VE. A Delphi study was then performed to reach expert convergence on the importance of single outcomes, measured on a 9-point Likert scale, in principal target groups, namely children, working-age adults, older adults, subjects with co-morbidities and pregnant women. RESULTS: The literature review identified 489 outcomes. Following data reduction, 20 outcomes were selected for the Delphi process. After two Delphi rounds and a final consensus meeting, convergence was reached. All 20 outcomes were judged to be important or critically important. More severe outcomes, such as influenza-related hospital encounters and mortality with or without laboratory confirmation, were generally top-ranked across all target groups (median scores ≥8 out of 9). CONCLUSIONS: Rather than focusing on laboratory-confirmed infection per se, experimental and observational VE studies should include more severe influenza-related outcomes because they are expected to exercise a greater impact on decision-making.


Subject(s)
Delphi Technique , Influenza Vaccines , Influenza, Human , Vaccine Efficacy , Humans , Influenza, Human/prevention & control , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Female , Pregnancy , Vaccination/methods , Seasons , Adult , Decision Making , Child
8.
Methods Mol Biol ; 2815: 131-142, 2024.
Article in English | MEDLINE | ID: mdl-38884916

ABSTRACT

Streptococcus suis is a bacterial pathogen that can cause significant economic losses in the swine industry due to high morbidity and mortality rates in infected animals. Vaccination with bacterins, which consist of inactivated bacteria and adjuvants to enhance the pig's immune response, is an effective approach to control S. suis infections in piglets. Here we provide a description of S. suis bacterins and the methods for vaccine preparation. Moreover, this chapter also describes the addition of recombinant Sao (rSao-L) protein to the S. suis bacterin, aiming to enhance the efficacy of the bacterins against S. suis in piglets. Furthermore, the methods for evaluating the immune response elicited by the bacterins are also covered in this chapter.


Subject(s)
Streptococcus suis , Animals , Swine , Streptococcus suis/immunology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Swine Diseases/immunology , Vaccination/methods , Bacterial Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Antibodies, Bacterial/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage
9.
Hum Vaccin Immunother ; 20(1): 2361946, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38845409

ABSTRACT

Introduction COVID-19 vaccines may be administered with other vaccines during the same healthcare visit. COVID-19 monovalent (Fall 2021) and bivalent (Fall 2022) vaccine recommendations coincided with annual seasonal influenza vaccination. Data describing the frequency of the co-administration of COVID-19 vaccines with other vaccines are limited. Methods We used V-safe, a voluntary smartphone-based U.S. safety surveillance system established by the CDC, to describe trends in the administration of COVID-19 vaccines with other vaccines reported to V-safe during December 14, 2020 - May 19, 2023. Results Of the 21 million COVID-19 vaccinations reported to V-safe, 2.2% (459,817) were administered with at least 1 other vaccine. Co-administration most frequently occurred during the first week of October 2023 (27,092; 44.1%). Most reports of co-administration included influenza vaccine (393,003; 85.5%). Co-administration was most frequently reported for registrants aged 6 months-6 years (4,872; 4.4%). Conclusion Reports of co-administration to V-safe peaked during October 2023, when influenza vaccination most often occurs, possibly reflecting increased opportunities for multiple vaccinations and greater acceptability of the co-administration of COVID-19 vaccine with other vaccines, especially influenza vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , United States , Adolescent , Adult , COVID-19/prevention & control , COVID-19/epidemiology , Young Adult , Child , Middle Aged , Aged , Male , Female , Child, Preschool , Infant , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Vaccination/methods , Vaccination/trends , Vaccination/statistics & numerical data , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Aged, 80 and over , SARS-CoV-2/immunology
10.
PLoS One ; 19(6): e0303450, 2024.
Article in English | MEDLINE | ID: mdl-38843267

ABSTRACT

BACKGROUND: The MIMIX platform is a novel microneedle array patch (MAP) characterized by slowly dissolving microneedle tips that deploy into the dermis following patch application. We describe safety, reactogenicity, tolerability and immunogenicity for MIMIX MAP vaccination against influenza. METHODOLOGY: The trial was a Phase 1, exploratory, first-in-human, parallel randomized, rater, participant, study analyst-blinded, placebo-controlled study in Canada. Forty-five healthy participants (18 to 39 years of age, inclusive) were randomized in a 1:1:1 ratio to receive either 15 µg or 7.5 µg of an H1N1 influenza vaccine, or placebo delivered via MIMIX MAP to the volar forearm. A statistician used a computer program to create a randomization scheme with a block size of 3. Post-treatment follow-up was approximately 180 days. Primary safety outcomes included the incidence of study product related serious adverse events and unsolicited events within 180 days, solicited application site and systemic reactogenicity through 7 days after administration and solicited application site erythema and/or pigmentation 14, 28, 56 and 180 days after administration. Immunogenicity outcomes included antibody titers and percentage of seroconversion (SCR) and seroprotection (SPR) rates determined by the hemagglutination inhibition (HAI) assay. Exploratory outcomes included virus microneutralization (MN) titers, durability and breadth of the immune response. The trial was registered with ClinicalTrials.gov, number NCT06125717. FINDINGS: Between July 7, 2022 and March 13, 2023 45 participants were randomized to a treatment group. One participant was lost to follow up in the 15 µg group and 1 participant withdrew from the 7.5 µg dose group. Safety analyses included n = 15 per group, immunogenicity analyses included n = 14 for the 15 µg and 7.5 µg treatment groups and n = 15 for the placebo group. No SAEs were reported in any of the treatment groups. All treatment groups reported solicited local events within 7 days after vaccination, with mild (Grade 1) erythema being the most frequent symptom reported. Other local symptoms reported included mostly mild (Grade 1) induration/swelling, itching, pigmentation, skin flaking, and tenderness. Within 7 days after vaccination, 2 participants (4.4%) reported moderate (Grade 2) erythema, 1 participant (2.2%) reported moderate (Grade 2) induration/swelling, and 1 participant (2.2%) reported moderate (Grade 2) itching. There was an overall reduction in erythema and pigmentation reported on Days 15, 29, 57, and 180 among all treatment groups. Systemic symptoms reported within 7 days after vaccination, included mild (Grade 1) fatigue reported among all treatment groups, and mild (Grade 1) headache reported by 1 participant in the 7.5 µg treatment group. No study drug related severe symptoms were reported in the study. Group mean fold rises in HAI titers ranged between 8.7 and 12-fold, SCRs were >76% and SPRs were >92% for both VX-103 dose groups thereby fulfilling serological criteria established by the EMA and FDA for seasonal influenza vaccines. Longitudinal assessments demonstrate persistence of the immune response through at least Day 180. CONCLUSIONS: The MIMIX MAP platform is safe, well tolerated and elicits robust antibody responses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Adult , Influenza Vaccines/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/administration & dosage , Male , Female , Influenza A Virus, H1N1 Subtype/immunology , Young Adult , Adolescent , Influenza, Human/prevention & control , Influenza, Human/immunology , Needles , Healthy Volunteers , Vaccination/methods , Antibodies, Viral/blood , Antibodies, Viral/immunology , Double-Blind Method , Immunogenicity, Vaccine
11.
BMC Cancer ; 24(1): 751, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902718

ABSTRACT

BACKGROUND: Despite the availability of effective vaccines, human papillomavirus (HPV) vaccine uptake remains low in most resource-limited settings including Nigeria. Mobile health technology (mHealth) has the potential to empower patients to manage their health, reduce health disparities, and enhance the uptake of HPV vaccination. AIM: The "mHealth-HPVac" study will assess the effects of mHealth using short text messages on the uptake of HPV vaccination among mothers of unvaccinated girls aged 9-14 years and also determine the factors influencing the uptake of HPV vaccination among these mothers. METHODS: This protocol highlights a randomised controlled trial involving women aged 25-65 years who will be enrolled on attendance for routine care at the General Outpatient clinics of Lagos University Teaching Hospital, Lagos, Nigeria between July and December 2024. At baseline, n = 123 women will be randomised to either a short text message or usual care (control) arm. The primary outcome is vaccination of the participant's school-age girl(s) at any time during the 6 months of follow-up. The associations between any two groups of continuous variables will be assessed using the independent sample t-test for normally distributed data, or the Mann-Whitney U test for skewed data. For two groups of categorical variables, the Chi-square (X2) test or Fisher's exact test will be used, as appropriate. Using the multivariable binary logistic regression model, we will examine the effects of all relevant sociodemographic and clinical variables on HPV vaccination uptake among mothers of unvaccinated but vaccine-eligible school-age girls. Statistical significance will be reported as P < 0.05. DISCUSSION: The mHealth-Cervix study will evaluate the impact of mobile technologies on HPV vaccination uptake among mothers of unvaccinated but vaccine-eligible school-age girls in Lagos, Nigeria as a way of contributing to the reduction in the wide disparities in cervical cancer incidence through primary prevention facilitated using health promotion to improve HPV vaccination uptake. REGISTRATION: PACTR202406727470443 (6th June 2024).


Subject(s)
Mothers , Papillomavirus Infections , Papillomavirus Vaccines , Telemedicine , Vaccination , Humans , Female , Papillomavirus Vaccines/administration & dosage , Adolescent , Nigeria , Child , Adult , Papillomavirus Infections/prevention & control , Vaccination/statistics & numerical data , Vaccination/methods , Middle Aged , Text Messaging , Patient Acceptance of Health Care/statistics & numerical data , Aged , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Human Papillomavirus Viruses
12.
Curr Pharm Des ; 30(13): 1031-1047, 2024.
Article in English | MEDLINE | ID: mdl-38898820

ABSTRACT

Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of "isolate-inactivateinject", which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.


Subject(s)
Precision Medicine , Vaccines , Humans , Precision Medicine/methods , Vaccines/immunology , Vaccines/administration & dosage , HLA Antigens/immunology , HLA Antigens/genetics , Immunization/methods , Vaccination/methods
13.
Expert Rev Vaccines ; 23(1): 655-673, 2024.
Article in English | MEDLINE | ID: mdl-38924461

ABSTRACT

INTRODUCTION: The global measles incidence has decreased from 145 to 49 cases per 1 million population from 2000 to 2018, but evaluating the economic benefits of a second measles-containing vaccine (MCV2) is crucial. This study reviewed the evidence and quality of economic evaluation studies to guide MCV2 introduction. METHODS: The systematic review of model-based economic evaluation studies was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search yielded 2231 articles, with 876 duplicates removed and 1355 articles screened, with nine studies included for final analysis. RESULTS: Six studies reported a positive benefit-cost ratio with one resulting in net savings of $11.6 billion, and two studies estimated a 2-dose MMR vaccination program would save $119.24 to prevent one measles case, and a second dose could prevent 9,200 cases at 18 months, saving $548.19 per case. The most sensitive variables were the discount rate and vaccination administration cost. CONCLUSIONS: Two MCV doses or a second opportunity with an additional dose of MCV were highly cost-beneficial and resulted in substantial cost savings compared to a single routine vaccine. But further research using high-quality model-based health economic evaluation studies of MCV2 should be made available to decision-makers. PROSPERO REGISTRATION: CRD42020200669.


Subject(s)
Cost-Benefit Analysis , Immunization Programs , Measles Vaccine , Measles , Humans , Immunization Programs/economics , Immunization, Secondary/economics , Measles/prevention & control , Measles/economics , Measles/epidemiology , Measles Vaccine/economics , Measles Vaccine/administration & dosage , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles-Mumps-Rubella Vaccine/economics , Vaccination/economics , Vaccination/methods
14.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932158

ABSTRACT

Humans continue to be at risk from the Zika virus. Although there have been significant research advancements regarding Zika, the absence of a vaccine or approved treatment poses further challenges for healthcare providers. In this study, we developed a microparticulate Zika vaccine using an inactivated whole Zika virus as the antigen that can be administered pain-free via intranasal (IN) immunization. These microparticles (MP) were formulated using a double emulsion method developed by our lab. We explored a prime dose and two-booster-dose vaccination strategy using MPL-A® and Alhydrogel® as adjuvants to further stimulate the immune response. MPL-A® induces a Th1-mediated immune response and Alhydrogel® (alum) induces a Th2-mediated immune response. There was a high recovery yield of MPs, less than 5 µm in size, and particle charge of -19.42 ± 0.66 mV. IN immunization of Zika MP vaccine and the adjuvanted Zika MP vaccine showed a robust humoral response as indicated by several antibodies (IgA, IgM, and IgG) and several IgG subtypes (IgG1, IgG2a, and IgG3). Vaccine MP elicited a balance Th1- and Th2-mediated immune response. Immune organs, such as the spleen and lymph nodes, exhibited a significant increase in CD4+ helper and CD8+ cytotoxic T-cell cellular response in both vaccine groups. Zika MP vaccine and adjuvanted Zika MP vaccine displayed a robust memory response (CD27 and CD45R) in the spleen and lymph nodes. Adjuvanted vaccine-induced higher Zika-specific intracellular cytokines than the unadjuvanted vaccine. Our results suggest that more than one dose or multiple doses may be necessary to achieve necessary immunological responses. Compared to unvaccinated mice, the Zika vaccine MP and adjuvanted MP vaccine when administered via intranasal route demonstrated robust humoral, cellular, and memory responses. In this pre-clinical study, we established a pain-free microparticulate Zika vaccine that produced a significant immune response when administered intranasally.


Subject(s)
Administration, Intranasal , Antibodies, Viral , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/prevention & control , Zika Virus Infection/immunology , Zika Virus/immunology , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Immunization/methods , Adjuvants, Immunologic/administration & dosage , Disease Models, Animal , Adjuvants, Vaccine/administration & dosage , Vaccination/methods , Cytokines/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology
15.
Hum Vaccin Immunother ; 20(1): 2361500, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38904423

ABSTRACT

To assess the impact of vaccines on clinical outcomes among hospitalized COVID-19-infected patients requiring oxygen supplementation during the Beijing Omicron outbreak. We conducted a retrospective cohort study at Beijing Chaoyang Hospital, Capital Medical University, from November 15, 2022, to March 31, 2023. Vaccination statuses were categorized into 3 doses, 2 doses, and unvaccinated (0 dose). The primary outcome was 28-day all-cause mortality. Secondary outcomes included poor outcomes, intensive care unit admission, cardiovascular thromboembolism events, and hospital readmission. Among the included patients, 117 were 2 doses, 285 received booster doses, and 503 were unvaccinated. After propensity score inverse probability weighting, the 3 doses group showed a significantly lower 28-day all-cause mortality compared to the unvaccinated group (inverse probability of treatment weighting-adjusted HR: 0.64, 95% CI: 0.50-0.81). No significant difference was observed in all-cause mortality between the 2 doses and unvaccinated groups. No significant differences were observed in secondary outcome analyses when comparing the 3 doses or 2 doses group to the unvaccinated group. Subgroup analysis revealed significant benefits of booster vaccination in patients with shorter symptom duration, lower Charlson Comorbidity Index, and without immunosuppression status. Our study highlights the significant reduction in all-cause mortality among hospitalized Omicron-infected patients who received a third dose vaccine. These findings underscore the importance of prioritizing booster vaccinations, especially among the elderly. Further research is warranted to confirm and extend these observations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hospitalization , Immunization, Secondary , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/mortality , COVID-19/immunology , Male , Retrospective Studies , Female , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Middle Aged , Aged , SARS-CoV-2/immunology , Hospitalization/statistics & numerical data , Disease Outbreaks/prevention & control , Adult , Vaccination/methods
16.
Front Immunol ; 15: 1425842, 2024.
Article in English | MEDLINE | ID: mdl-38915410

ABSTRACT

Vaccination against influenza virus can reduce the risk of influenza by 40% to 60%, they rely on the production of neutralizing antibodies specific to influenza hemagglutinin (HA) ignoring the neuraminidase (NA) as an important surface target. Vaccination with standardized NA concentration may offer broader and longer-lasting protection against influenza infection. In this regard, we aimed to compare the potency of a NA displayed on the surface of a VLP with a soluble NA. The baculovirus expression system (BEVS) and the novel virus-free Tnms42 insect cell line were used to express N2 NA on gag-based VLPs. To produce VLP immunogens with high levels of purity and concentration, a two-step chromatography purification process combined with ultracentrifugation was used. In a prime/boost vaccination scheme, mice vaccinated with 1 µg of the N2-VLPs were protected from mortality, while mice receiving the same dose of unadjuvanted NA in soluble form succumbed to the lethal infection. Moreover, NA inhibition assays and NA-ELISAs of pre-boost and pre-challenge sera confirm that the VLP preparation induced higher levels of NA-specific antibodies outperforming the soluble unadjuvanted NA.


Subject(s)
Antibodies, Viral , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Neuraminidase/immunology , Neuraminidase/genetics , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/administration & dosage , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Female , Mice, Inbred BALB C , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Vaccine Efficacy , Humans , Vaccination/methods
17.
Medicina (Kaunas) ; 60(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38929483

ABSTRACT

Background and Objectives: Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine administration has been suggested to prevent glucose metabolism abnormalities and fatty liver in genetically obese ob/ob mice; however, it is not clear whether the beneficial effects of BCG are also observed in the progression of glucose intolerance induced by a high-fat diet (HFD). Therefore, the effects of BCG vaccination on changes in glucose tolerance and insulin response were investigated in HFD-fed C57BL/6 mice. Materials and Methods: We used the BCG Tokyo 172 strain to determine effects on abnormalities in glucose metabolism. For vaccination, five-week-old male mice were injected intraperitoneally with BCG and maintained on a HFD for three weeks. The mice were regularly subjected to intraperitoneal glucose tolerance and insulin tolerance tests (IGTTs and ITTs). These tests were also performed in mice transplanted with bone marrow cells from BCG-vaccinated donor mice. Results: Significant effects of BCG vaccination on blood glucose levels in the IGTTs and ITTs were observed from week 12 of the experiment. BCG vaccination significantly improved changes in fasting glucose and insulin levels, insulin resistance indexes, and glucagon-to-insulin ratios in conjunction with the HFD at the end of the experiment. Significant inhibitory effects in the IGTTs and ITTs on glucose intolerance were also observed with transplantation with bone marrow cells derived from BCG-vaccinated donor mice. Conclusions: BCG vaccination significantly delayed glucose intolerance progression, suggesting a beneficial effect of BCG on the pathogenesis of type 2 diabetes. It has also been suggested that the effects of BCG vaccination may be at least partially due to an immune memory (trained immunity) for hematopoietic stem and progenitor cells of the bone marrow.


Subject(s)
BCG Vaccine , Diet, High-Fat , Glucose Intolerance , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , BCG Vaccine/administration & dosage , Mice , Male , Blood Glucose/analysis , Insulin Resistance , Disease Progression , Glucose Tolerance Test , Insulin/blood , Disease Models, Animal , Vaccination/methods
18.
Medicina (Kaunas) ; 60(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38929574

ABSTRACT

Background and Objectives: New investigations have detected an enhanced probability for women to develop menstrual cycle alterations after anti-COVID-19 vaccination. Moreover, given that the protective immunity provided by anti-COVID-19 vaccination appears to wane quickly, booster vaccination has been recommended. Nonetheless, whether adverse events arise from such repeated immunization has not been studied. Materials and Methods: We studied the incidence of menstrual cycle alterations, the quantity of menstrual cycle alterations per subject, and of altered menstrual cycles in nonpregnant women of fertile age after anti-COVID-19 vaccination in a cohort of vaccinated female subjects by the means of a standardized questionary that was applied via telephone calls each month. Subjects that received up to four doses were studied for 6 months after each dose. We calculated the odds ratio for enhanced incidence, as well as quadratic functions for the tendencies. A sensitivity analysis excluding subjects taking hormonal birth control and those with polycystic ovary syndrome was performed. Results: Anti-COVID-19 vaccination enhanced the probability to develop menstrual cycle alterations (OR 1.52, CI at 95% 1.2-1.8, p < 0.0001) and, interestingly, such a tendency was enhanced when subjects received more doses (R2 = 0.91). Furthermore, the same trends repeated for the quantity of alterations per subject, and of altered cycles. Such an effect was further demonstrated to be independent upon the vaccine brand being applied, the birth control status, and the diagnosis of polycystic ovary syndrome. Conclusions: Vaccination is the most cost-effective measure for primary prevention and is considered to be safe. Nonetheless, in this article, we show data that suggest that repeated vaccination of adult female subjects may lead to an enhanced incidence of menstrual cycle-related adverse events, quantity of alterations per subject, and altered cycles. We therefore think that the development of new vaccine formulations that produce longer-lasting immunity is of paramount importance to reduce the potential for dose accumulation-dependent enhanced risk.


Subject(s)
COVID-19 Vaccines , COVID-19 , Menstrual Cycle , Humans , Female , Adult , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Menstrual Cycle/drug effects , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Vaccination/adverse effects , Menstruation Disturbances/epidemiology , Cohort Studies , Immunization, Secondary/methods , Incidence , Young Adult
19.
Prev Vet Med ; 229: 106241, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878496

ABSTRACT

Oral vaccination is one of the most effective interventions for disease control in wildlife. As a result of the recent global reemergence of African swine fever and ongoing classical swine fever and animal tuberculosis, oral vaccination of Eurasian wild boar (Sus scrofa) receives increased interest. Several baits for wild boar and feral pigs have been described, but developing more stable and personalized formulations is important. This paper proposes a new bait formulation primarily composed of corn flour, piglet feed, sugar, and honey as a binder to obtain improved elasticity. The bait consists of a matrix with no protective coats, has a hemispherical shape (ø 3.4 ×1.6 cm), and displays an anise aroma and blue color. The color and aroma did not affect bait choice by wild boar, while bait coloring contributed to avoid consumption by non-target species (corvids). Baits with the new formulation were significantly more resistant to humidity and high temperatures than previous versions. Simulations suggest that baits with the new formulation are elastic enough to resist impacts from a maximum altitude of 750 m. Thus, the new bait prototype solves several problems of previous bait formulations while keeping a format that can be selectively consumed by piglets and adult wild boar.


Subject(s)
Sus scrofa , Animals , Administration, Oral , Swine , Vaccination/veterinary , Vaccination/methods , Animal Feed/analysis , Vaccines/administration & dosage , Honey/analysis , Zea mays , Animals, Wild , Sugars
20.
Age Ageing ; 53(Suppl 2): ii70-ii79, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38745493

ABSTRACT

This systematic review evaluated the impact of oral probiotics on the immune response to vaccination in older people. A literature search was performed in three electronic databases up to January 2023. Randomised controlled trials (RCTs) conducted in older people (age ≥ 60 years) investigating oral probiotics and vaccine response outcomes were included. Characteristics and outcome data of the included studies were extracted and analysed and study quality was assessed using the Cochrane Risk of Bias Tool for randomised trials. Ten RCTs involving 1,560 participants, reported in 9 papers, were included. Nine studies involved the seasonal influenza vaccine and one a COVID-19 vaccine. All studies used lactobacilli, some in combination with bifidobacteria. Studies reported outcomes including anti-vaccine antibody titres or concentrations, seroconversion and seroprotection. When comparing antibody titres, seroprotection rate and seroconversion rate between probiotic and placebo groups expressed as a response ratio, the weighted mean values were 1.29, 1.16 and 2.00, respectively. Meta-analysis showed that probiotics increase seroconversion rates to all three strains of the seasonal influenza vaccine: odds ratio (95% confidence interval) 2.74 (1.31, 5.70; P = 0.007) for the H1N1 strain; 1.90 (1.04, 3.44; P = 0.04) for the H3N2 strain; 1.72 (1.05, 2.80; P = 0.03) for the B strain. There was a low level of heterogeneity in these findings. Several studies were at high risk of bias due to missing outcome data. Lactobacilli may improve the vaccine response, but further research is needed to be more certain of this.


Subject(s)
Influenza Vaccines , Probiotics , Randomized Controlled Trials as Topic , Humans , Probiotics/therapeutic use , Probiotics/administration & dosage , Aged , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Administration, Oral , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Vaccination/methods , Middle Aged , COVID-19/prevention & control , COVID-19/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...