Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.463
1.
Hum Vaccin Immunother ; 20(1): 2356343, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38835204

To determine the influencing factors of Chinese parents' intention and behavior for children to receive live attenuated influenza vaccine during the 2022-2023 influenza season. A theoretical model was developed and included seven constructs, and structural equation modeling was used to test 11 hypotheses. From October 2022 to December 2023, a survey was conducted across 38 medical institutions in four Chinese cities and their subordinate districts, counties, and rural areas. Parents who accompanied their children for vaccinations were selected through a randomization process based on their child's medical card numbers. Measures were taken to minimize method bias, including a diverse geographical representation and random sampling. The survey resulted in the collection of 936 valid responses, exceeding the recommended sample size for structural equation model analysis and providing robust statistical inferences. During the study period, 936 respondents were included in the study. Perceived ease of use was verified to be a predictor of perceived usefulness and perceived value. Perceived usefulness was verified as a predictor of perceived value and behavioral intention. Knowledge was a significant antecedent of perceived value and risk perception of influenza disease. Risk perception of influenza disease was proved to be a significant predictor of perceived value and self-reported vaccination behavior. Perceived value significantly affected behavioral intention, and behavioral intention significantly affected self-reported vaccination behavior. Six demographic variables significantly moderate the theoretical models. The low vaccination coverage of live attenuated influenza vaccine (LAIV) among children in China suggests a need for a deeper understanding of the factors that influence vaccination rates. Particularly, effective strategies are necessary from policymakers and practitioners to elevate childhood LAIV coverage.


Health Knowledge, Attitudes, Practice , Influenza Vaccines , Influenza, Human , Parents , Patient Acceptance of Health Care , Vaccination , Vaccines, Attenuated , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Parents/psychology , Female , Male , Vaccines, Attenuated/administration & dosage , China , Adult , Patient Acceptance of Health Care/statistics & numerical data , Patient Acceptance of Health Care/psychology , Child , Vaccination/psychology , Vaccination/statistics & numerical data , Surveys and Questionnaires , Middle Aged , Child, Preschool , Young Adult , Intention , Vaccination Coverage/statistics & numerical data
3.
PLoS Pathog ; 20(5): e1012198, 2024 May.
Article En | MEDLINE | ID: mdl-38739647

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory illness worldwide, but there is no approved pediatric vaccine. Here, we describe the development of the live-attenuated RSV vaccine candidate Min AL as well as engineered derivatives. Min AL was attenuated by codon-pair deoptimization (CPD) of seven of the 11 RSV open reading frames (ORFs) (NS1, NS2, N, P, M, SH and L; 2,073 silent nucleotide substitutions in total). Min AL replicated efficiently in vitro at the permissive temperature of 32°C but was highly temperature sensitive (shut-off temperature of 36°C). When serially passaged at increasing temperatures, Min AL retained greater temperature sensitivity compared to previous candidates with fewer CPD ORFs. However, whole-genome deep-sequencing of passaged Min AL revealed mutations throughout its genome, most commonly missense mutations in the polymerase cofactor P and anti-termination transcription factor M2-1 (the latter was not CPD). Reintroduction of selected mutations into Min AL partially rescued its replication in vitro at temperatures up to 40°C, confirming their compensatory effect. These mutations restored the accumulation of positive-sense RNAs to wild-type (wt) RSV levels, suggesting increased activity by the viral transcriptase, whereas viral protein expression, RNA replication, and virus production were only partly rescued. In hamsters, Min AL and derivatives remained highly restricted in replication in the upper and lower airways, but induced serum IgG and IgA responses to the prefusion form of F (pre F) that were comparable to those induced by wt RSV, as well as robust mucosal and systemic IgG and IgA responses against RSV G. Min AL and derivatives were fully protective against challenge virus replication. The derivatives had increased genetic stability compared to Min AL. Thus, Min AL and derivatives with selected mutations are stable, attenuated, yet highly-immunogenic RSV vaccine candidates that are available for further evaluation.


Open Reading Frames , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Vaccines, Attenuated , Virus Replication , Animals , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Cricetinae , Administration, Intranasal , Codon , Immunity, Mucosal , Antibodies, Viral/immunology , Antibodies, Viral/blood , Humans , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/genetics , Mesocricetus , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/genetics
4.
Ital J Pediatr ; 50(1): 97, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741102

BACKGROUND: In Italy, since the 2020-2021 flu season, the flu vaccine recommendation was extended to all children aged 6 months to 6 years and quadrivalent Live-Attenuated Influenza Vaccine (qLAIV) was introduced. Since school-aged children are important carriers of annual influenza epidemics, a school-based influenza vaccination program may potentially increase vaccine uptake. Recent studies, conducted in the UK and the US, show that school-based vaccination can reach higher percentage of paediatric vaccination coverage compared to children vaccinated in other settings. METHODS: During 2022-2023 flu season in 9 preschools located in Milan healthcare personnel vaccinated children with qLAIV at the end of a school day. A Google Form questionnaire was administered to preschoolers' parents of all preschools within the Municipality of Milan. RESULTS: In the preschools engaged in the vaccination program, 233 out of 1939 children were vaccinated (12%). Among these, 61 (26.2%) had never been vaccinated for influenza before. Vaccination coverage was 11.5% for Italian children and 14.3% for children coming from an immigrant background. We collected 3659 questionnaire responses, divided according to study participation status (371 from preschools that participated in the vaccination program and 3288 from other preschools in Milan). 57% of the families who answered to the questionnaire vaccinated their children for flu. qLAIV accounted for 85.6% of vaccinations. We observed a statistically significant difference in the percentage of vaccinated children between those attending a school participating in the project (67.9%) and children attending other schools (56%) (p < 0.001). Vaccination was administered by family pediatricians (48.9%), in vaccination centers (34.8%), in vaccine hubs (11.3%), in schools (2.6%), by private pediatricians (1.6%) and in other settings (0.7%). Focusing on the responses from families whose children attend schools participating in the vaccination program, 21.8% stated that the vaccination was provided in school. CONCLUSION: According to our experience, in Italy, at the moment, only the cooperation between health providers and alternative settings, including schools, may expand flu vaccination coverage. In particular, schools are to be considered a place to inform and reach out to families, useful to increase vaccination coverage.


Influenza Vaccines , Influenza, Human , Vaccines, Attenuated , Humans , Italy , Influenza Vaccines/administration & dosage , Child, Preschool , Influenza, Human/prevention & control , Male , Female , Vaccines, Attenuated/administration & dosage , Child , School Health Services , Vaccination Coverage/statistics & numerical data , Immunization Programs , Vaccination/statistics & numerical data , Surveys and Questionnaires , Seasons
5.
Vet Q ; 44(1): 1-12, 2024 Dec.
Article En | MEDLINE | ID: mdl-38726839

Duck plague (DP) is an acute, contagious and fatal disease, caused by duck enteritis virus (DEV), with worldwide distribution causing several outbreaks and posing severe economic losses. The present study was carried out with a goal of development of a live attenuated cell culture based DP vaccine using an Indian strain of DEV and evaluation of its safety, efficacy along with complete genome analysis. The live attenuated DP vaccine (DPvac/IVRI-19) was developed by serial propagation of a virulent isolate of DEV (DEV/India/IVRI-2016) in the chicken embryo fibroblast (CEF) primary cell culture. Adaptation of DEV in CEF cell culture was indicated by more rapid appearance of cytopathic effects (CPE) and gradual increase of virus titre, which reached up to 107.5 TCID50/mL after 41 passages. The safety, immunogenicity and efficacy of the vaccine were determined by immunization trials in ducklings. The DPvac/IVRI-19 was found to be avirulent and completely safe in the ducklings. Further, the vaccine induced both humoral and cell mediated immune responses and afforded 100% protection against the virulent DEV challenge. A comparison of the whole genome of DPvac/IVRI-19 (MZ911871) and DEV/India/IVRI-2016 (MZ824102) revealed significant number of mutations, which might be associated with viral attenuation. Phylogenetic tree of DEV/India/IVRI-2016 revealed its evolutionary relationship with other DEV isolates, but it formed a separate cluster with certain unique mutations. Thus, with the proven safety and 100% efficacy, the DPvac/IVRI-19 is suitable for large scale production with precisely pure form of vaccine and has potential utility at national and global levels.


Ducks , Fibroblasts , Mardivirus , Poultry Diseases , Vaccines, Attenuated , Viral Vaccines , Animals , Vaccines, Attenuated/immunology , Ducks/virology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Fibroblasts/virology , Chick Embryo , Viral Vaccines/immunology , Mardivirus/immunology , Mardivirus/pathogenicity , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , India
6.
Rev Med Suisse ; 20(872): 876-880, 2024 May 01.
Article Fr | MEDLINE | ID: mdl-38693800

Vaccine could take a central role in the strategy to reduce the burden of dengue. The development of an effective and safe vaccine must address various immunological challenges. Several vaccines are currently in development. To date, two live-attenuated vaccines have been deployed. Both have an effectiveness that varies depending on the serotypes. The deployment of the Dengvaxia vaccine, which began in 2015, was marked by a major safety alert leading to its use being restricted to previously dengue-seropositive people over 9 years old. The Qdenga vaccine is currently being deployed. There is for now insufficient data to ensure its safety in seronegative people. Some travelers, who have previously been infected with dengue, are a group for whom a vaccination recommendation applies.


Les vaccins pourraient occuper une place centrale dans la stratégie de réduction du fardeau de la dengue. Le développement d'un vaccin efficace et sûr est complexe car il doit relever plusieurs défis immunologiques. Différents vaccins sont en développement. À ce jour, deux vaccins vivants atténués ont été déployés. Tous deux ont une efficacité qui varie selon les sérotypes. Le déploiement du vaccin Dengvaxia, débuté en 2015, a été marqué par une alerte de sécurité majeure conduisant à restreindre son usage aux personnes de plus de 9 ans, préalablement séropositives pour la dengue. Le vaccin Qdenga est en cours de déploiement. Le recul est insuffisant pour assurer son innocuité chez les séronégatifs. Certains voyageurs, ayant déjà été infectés par la dengue, constituent un groupe pour lequel une recommandation vaccinale s'applique.


Dengue Vaccines , Dengue , Vaccines, Attenuated , Humans , Dengue Vaccines/administration & dosage , Dengue Vaccines/immunology , Dengue Vaccines/adverse effects , Dengue/prevention & control , Vaccines, Attenuated/administration & dosage , Vaccination/methods , Vaccination/trends
7.
Viral Immunol ; 37(4): 216-219, 2024 05.
Article En | MEDLINE | ID: mdl-38717823

In May 2022, mpox began to spread worldwide, posing a serious threat to human public health. Modified Vaccinia Ankara-Bavaria Nordic (MVA-BN) is a live attenuated orthopoxvirus vaccine that has been authorized by the U.S. Food and Drug Administration as the vaccine of choice for the prevention of mpox. In this study, we conducted a meta-analysis of all currently published literature on the efficacy and safety of the MVA-BN vaccine in the real world, showing that the MVA-BN vaccine is effective and safe, with efficacy of up to 75% with a single dose and up to 80% with a two-dose vaccine. Meanwhile, we found that subcutaneous injection has lower local and systemic adverse events than intradermal injection, regardless of single- or two-dose vaccination, and subcutaneous injection is better tolerated in children, the elderly, or people with underlying medical conditions. These results have important reference value for clinical practice.


Vaccine Efficacy , Vaccines, Attenuated , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Poxviridae Infections/prevention & control , Poxviridae Infections/immunology , Vaccinia virus/immunology , Vaccinia virus/genetics , Vaccination , Injections, Subcutaneous , Injections, Intradermal , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Orthopoxvirus/immunology , Orthopoxvirus/genetics , Child
8.
Vet Immunol Immunopathol ; 272: 110772, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704989

A live, infectious vaccine candidate for epizootic bovine abortion, designated EBAA Vaccine, USDA-APHIS Product code #1544.00, has been reported to be both safe and effective. Previous studies established that a single dose of EBAA vaccine administered to cows at potencies of either 2000 or 500 live P. abortibovis-infected murine spleen cells (P.a.-LIC) induced protective immunity for a minimum of 5 months. The current study employed 19 pregnant cows that were challenged with P. abortibovis in their 2nd trimester of gestation; 9 were vaccinated 17.2-months earlier as 1-year-olds with 2000 P.a.-LIC and 10 served as negative controls. Eighty-nine percent of the vaccinates gave birth to healthy calves as compared to 10% of challenge controls. Vaccine efficacy was significant when analyzed by prevented fractions (87.7%; 95% CI=0.4945-0.9781). Serologic data supports previous findings that pregnant cows with detectable P. abortibovis antibodies are immune to P. abortibovis challenge as demonstrated by the birth of healthy calves.


Abortion, Veterinary , Animals , Cattle , Female , Pregnancy , Abortion, Veterinary/immunology , Abortion, Veterinary/prevention & control , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Seasons , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage
9.
JCI Insight ; 9(9)2024 May 08.
Article En | MEDLINE | ID: mdl-38716733

Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.


CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Sporozoites , Humans , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , CD8-Positive T-Lymphocytes/immunology , Adult , Sporozoites/immunology , Male , CD4-Positive T-Lymphocytes/immunology , Chloroquine/therapeutic use , Chloroquine/pharmacology , Female , Young Adult , Gabon , Vaccination/methods , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Europe , Parasitemia/immunology , Adolescent , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , European People
10.
Vaccine ; 42(17): 3710-3720, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38755066

One of the main causes of human brucellosis is Brucella melitensis infecting small ruminants. To date, Rev1 is the only vaccine successfully used to control ovine and caprine brucellosis. However, it is pathogenic for pregnant animals, resulting in abortions and vaginal and milk shedding, as well as being infectious for humans. Therefore, there is an urgent need to develop an effective vaccine that is safer than Rev1. In efforts to further attenuate Rev1, we recently used wzm inactivation to generate a rough mutant (Rev1Δwzm) that retains a complete antigenic O-polysaccharide in the bacterial cytoplasm. The aim of the present study was to evaluate the placental pathogenicity of Rev1Δwzm in trophoblastic cells, throughout pregnancy in mice, and in ewes inoculated in different trimesters of pregnancy. This mutant was evaluated in comparison with the homologous 16MΔwzm derived from a virulent strain of B. melitensis and the naturally rough sheep pathogen B. ovis. Our results show that both wzm mutants triggered reduced cytotoxic, pro-apoptotic, and pro-inflammatory signaling in Bewo trophoblasts, as well as reduced relative expression of apoptosis genes. In mice, both wzm mutants produced infection but were rapidly cleared from the placenta, in which only Rev1Δwzm induced a low relative expression of pro-apoptotic and pro-inflammatory genes. In the 66 inoculated ewes, Rev1Δwzm was safe and immunogenic, displaying a transient serological interference in standard RBT but not CFT S-LPS tests; this serological response was minimized by conjunctival administration. In conclusion, these results support that B. melitensis Rev1Δwzm is a promising vaccine candidate for use in pregnant ewes and its efficacy against B. melitensis and B. ovis infections in sheep warrants further study.


Brucella melitensis , Brucellosis , Placenta , Animals , Brucella melitensis/pathogenicity , Brucella melitensis/immunology , Brucella melitensis/genetics , Female , Sheep , Brucellosis/prevention & control , Brucellosis/immunology , Brucellosis/veterinary , Pregnancy , Placenta/microbiology , Mice , Sheep Diseases/prevention & control , Sheep Diseases/immunology , Sheep Diseases/microbiology , Trophoblasts/immunology , Trophoblasts/microbiology , Brucella Vaccine/immunology , Brucella Vaccine/administration & dosage , Brucella Vaccine/genetics , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage
11.
Methods Mol Biol ; 2775: 411-422, 2024.
Article En | MEDLINE | ID: mdl-38758334

Cryptococcus neoformans infections are a major worldwide concern as current treatment strategies are becoming less effective in alleviating the infection. The most extreme and fatal cases are those of immunocompromised individuals. Clinical treatments for cryptococcosis are limited to a few classes of approved drugs, and due to a rise in drug resistance, these drugs are becoming less effective. Therefore, it is essential to develop innovative ways to control this infection. Vaccinations have emerged as a safe, viable, and cost-effective solution to treat a number of diseases over the years. Currently, there are no clinically available vaccines to treat cryptococcal infections, but a number of studies have shown promising results in animal models. Here, we present step-by-step experimental protocols using live-attenuated or heat-killed C. neoformans cells as a vaccination strategy in a preventive or in a therapeutic murine model of cryptococcosis.


Cryptococcosis , Cryptococcus neoformans , Disease Models, Animal , Fungal Vaccines , Cryptococcus neoformans/immunology , Cryptococcosis/immunology , Cryptococcosis/prevention & control , Animals , Fungal Vaccines/immunology , Mice , Vaccination/methods , Vaccines, Attenuated/immunology , Humans
12.
Methods Mol Biol ; 2775: 393-410, 2024.
Article En | MEDLINE | ID: mdl-38758333

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Chitosan , Cryptococcosis , Cryptococcus neoformans , Fungal Vaccines , Animals , Chitosan/chemistry , Mice , Fungal Vaccines/immunology , Fungal Vaccines/genetics , Fungal Vaccines/administration & dosage , Cryptococcosis/immunology , Cryptococcosis/prevention & control , Cryptococcosis/microbiology , Cryptococcus neoformans/immunology , Cryptococcus neoformans/genetics , Disease Models, Animal , Vaccination/methods , Female , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics
13.
Nat Commun ; 15(1): 3021, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589401

Preterm birth is currently the leading cause of neonatal morbidity and mortality. Genetic, immunological and infectious causes are suspected. Preterm infants have a higher risk of severe bacterial neonatal infections, most of which are caused by Escherichia coli an in particular E. coli K1strains. Women with history of preterm delivery have a high risk of recurrence and therefore constitute a target population for the development of vaccine against E. coli neonatal infections. Here, we characterize the immunological, microbiological and protective properties of a live attenuated vaccine candidate in adult female mice and their pups against after a challenge by K1 and non-K1 strains of E. coli. Our results show that the E. coli K1 E11 ∆aroA vaccine induces strong immunity, driven by polyclonal bactericidal antibodies. In our model of meningitis, mothers immunized prior to mating transfer maternal antibodies to pups, which protect newborn mice against various K1 and non-K1 strains of E. coli. Given the very high mortality rate and the neurological sequalae associated with neonatal E. coli K1 meningitis, our results constitute preclinical proof of concept for the development of a live attenuated vaccine against severe E. coli infections in women at risk of preterm delivery.


Escherichia coli Infections , Infant, Newborn, Diseases , Meningitis , Premature Birth , Infant , Adult , Infant, Newborn , Female , Animals , Mice , Humans , Escherichia coli/genetics , Vaccines, Attenuated , Premature Birth/prevention & control , Infant, Premature , Escherichia coli Infections/prevention & control , Infant, Newborn, Diseases/etiology , Antibodies , Meningitis/etiology
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 441-446, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645870

Objective: To study the immunoadjuvant effects of chitosan oligosaccharide (COS), including the immune activation and the triggering of lysosomal escape, and to explore whether COS can be used as an adjuvant for attenuated live bacteria vector vaccines. Methods: 1) Mouse macrophages RAW264.7 cells were cultured with COS at 0 mg/mL (the control group) and 0.1-4 mg/mL for 24 h and the effect on cell viability was measured by CCK8 assay. Mouse macrophages RAW264.7 were treated with COS at 0 (the control group), 1, 2, and 4 mg/mL for 24 h. Then, the mRNA expression levels of the cytokines, including IFN-γ, IL-10, TGF-ß, and TLR4, were determined by RT-qPCR assay. 2) RAW264.7 cells were treated with 1 mL of PBS containing different components, including calcein at 50 µg/mL, COS at 2 mg/mL, and bafilomycin A1, an inhibitor, at 1 µmol/mL, for culturing. The cells were divided into the Calcein group, Calcein+COS group, and Calcein+COS+Bafilomycin A1 group accordingly. Laser scanning confocal microscopy was used to observe the phagocytosis and the intracellular fluorescence distribution of calcein, a fluorescent dye, in RAW264.7 cells in the presence or absence of COS intervention to determine whether COS was able to trigger lysosomal escape. 3) LM∆E6E7 and LI∆E6E7, the attenuated Listeria vector candidate therapeutic vaccines for cervical cancer, were encapsulated with COS at the mass concentrations of 0.5 mg/mL, 1 mg/mL, 2 mg/mL , 4 mg/mL, and 8 mg/mL. Then, the changes in zeta potential were measured to select the concentration of COS that successfully encapsulated the bacteria. Phagocytosis of the vaccine strains by RAW264.7 cells was measured before and after LM∆E6E7 and LI∆E6E7 were coated with COS at 2 mg/mL. Results: 1) CCK8 assays showed that, compared with the findings for the control group, the intervention of RAW264.7 cells with COS at different concentrations for 24 h was not toxic to the cells and promoted cell proliferation, with the difference being statistically significant (P<0.05). According to the RT-qPCR results, compared with those of the control group, the COS intervention up-regulated the mRNA levels of TLR4 and IFN-γ in RAW264.7 cells, while it inhibited the mRNA expression levels of TGF-ß and IL-10, with the most prominent effect being observed in the 4 mg/mL COS group (P<0.05). 2) Laser scanning confocal microscopy revealed that the amount of fluorescent dye released from lysosomes into the cells was greater in the Calcein+COS group than that in the Calcein group. In other words, a greater amount of fluorescent dye was released from lysosomes into the cells under COS intervention. Furthermore, this process could be blocked by bafilomycin A1. 3) The zeta potential results showed that COS could successfully encapsulate the surface of bacteria when its mass concentration reached 2 mg/mL. Before and after the vaccine strain was encapsulated by COS, the phagocytosis of LM∆E6E7 by RAW264.7 cells was 5.70% and 22.00%, respectively, showing statistically significant differences (P<0.05); the phagocytosis of LI∆E6E7 by RAW264.7 cells was 1.55% and 6.12%, respectively, showing statistically significant differences (P<0.05). Conclusion: COS has the effect of activating the immune response of macrophages and triggering lysosomal escape. The candidates strains of coated live attenuated bacterial vector vaccines can promote the phagocytosis of bacteria by macrophages. Further research is warranted to develop COS into an adjuvant for bacterial vector vaccine.


Adjuvants, Immunologic , Bacterial Vaccines , Chitosan , Oligosaccharides , Animals , Mice , RAW 264.7 Cells , Oligosaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Bacterial Vaccines/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Vaccines, Attenuated/immunology , Cytokines/metabolism , Cell Survival/drug effects
15.
Hum Vaccin Immunother ; 20(1): 2328406, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38573783

During the 2022-2023 season, the Region of Murcia (an autonomous community of Spain) introduced the influenza vaccination campaign in children aged 24-59 months with the live-attenuated influenza nasal spray vaccine. To expand coverage, a pilot study was conducted to include the 3- to 4-year population in 24 public schools. The aim of the study was to assess the experiences of parents and teachers involved in the project. This was a psychosocial qualitative study in which information was collected from a cohort of 23 parents and 17 teachers who attended three and two focus group sessions, respectively. A high degree of satisfaction with the school-located influenza vaccination program was consistently reported. The teachers reported creating a friendly environment and acting as companions to support children in the absence of their parents. They also considered the intranasal route, which avoids intramuscular puncture, as a facilitating element that turned the vaccination process into a kind of game. Parents emphasized the importance of vaccination to protect their children, and secondarily, to ensure protection of the family nucleus. Some parents who had their children already vaccinated in the health care center reported preference for the school setting, probably selecting this option in the future. The availability of school-based influenza vaccination promoted greater equity in accessing the vaccine and facilitated family reconciliation. To optimize coverage and minimize potential reluctance, providing the necessary information to parents both before and after vaccination was considered. School-located influenza vaccination was feasible and is a valuable strategy to be implemented in future campaigns.


Influenza Vaccines , Influenza, Human , Child , Humans , Influenza, Human/prevention & control , Pilot Projects , Spain , Vaccination , Parents/psychology , Vaccines, Attenuated
16.
Avian Dis ; 68(1): 18-24, 2024 Mar.
Article En | MEDLINE | ID: mdl-38687103

The application of live attenuated Salmonella Typhimurium vaccines has significantly helped control Salmonella in poultry products. Because the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) scores all Salmonella as positive, regardless of serovar, attenuated vaccine strains that are identified at processing contribute negatively toward Salmonella performance standards. This study was designed to determine the incidence of a live attenuated Salmonella serovar Typhimurium vaccine identified in broiler products by FSIS and to develop a PCR assay for screening of isolates. Salmonella Typhimurium short-read sequences from broiler samples uploaded to the National Center for Biotechnology Information (NCBI) Pathogen Detection database by the USDA-FSIS from 2016 to 2022 were downloaded and assembled. These were analyzed using the Basic Local Alignment Search Tool (BLAST) with a sequence unique to field strains, followed by a sequence unique to the vaccine strain. The PCR assays were developed against field and vaccine strains by targeting transposition events in the crp and cya genes and validated by screening Salmonella serovar Typhimurium isolates. Between 2016 and 2022, 1708 Salmonella Typhimurium isolates of chicken origin were found in the NCBI Pathogen Detection database, corresponding to 7.99% of all Salmonella identified. Of these, 104 (5.97%) were identified as the vaccine strain. The PCR assay differentiated field strains from the vaccine strain when applied to isolates and was also able to detect the vaccine strain from DNA isolated from mixed serovar overnight Salmonella enrichment cultures. Live attenuated Salmonella vaccines are a critical preharvest tool for Salmonella control and are widely used in industry. With forthcoming regulations that will likely focus on Salmonella Typhimurium, along with other serovars, there is a need to distinguish between isolates belonging to the vaccine strain and those that are responsible for causing human illness.


Detección in silico y por PCR de una cepa vacunal viva atenuada de Salmonella Typhimurium. La aplicación de vacunas vivas atenuadas contra Salmonella Typhimurium ha ayudado significativamente a controlar Salmonella en productos avícolas. Debido a que el Servicio de Inspección de Seguridad Alimentaria del Departamento de Agricultura de los Estados Unidos. (USDA-FSIS) califica todas las Salmonella como positivas, independientemente del serovar. Las cepas atenuadas de la vacuna que se identifican en el procesamiento contribuyen negativamente a los estándares de desempeño de Salmonella. Este estudio fue diseñado para determinar la incidencia de una vacuna viva atenuada de Salmonella serovar Typhimurium identificada en productos de pollo de engorde por el FSIS y para desarrollar un ensayo de PCR para la detección de aislados. Se recolectaron y ensamblaron secuencias de lectura corta de Salmonella Typhimurium de muestras de pollos de engorde introducidas en la plataforma de detección de patógenos del Centro Nacional de Información Biotecnológica (NCBI) por el USDA-FSIS entre los años 2016 al 2022. Estos se analizaron utilizando la herramienta de búsqueda de alineación local básica con una secuencia exclusiva para las cepas de campo, seguida de una secuencia exclusiva para la cepa vacunal. Los ensayos de PCR se desarrollaron contra cepas de campo y vacunales centrándose en eventos de transposición en los genes crp y cya y se validaron mediante la detección de aislados de Salmonella serovar Typhimurium. Entre 2016 y 2022, se encontraron 1708 aislados de Salmonella Typhimurium de origen avícola en el sistema de detección de patógenos del NCBI, lo que corresponde al 7.99 % de todas las Salmonellas identificadas. De ellas, 104 (5.97%) fueron identificadas como cepa vacunal. El ensayo de PCR diferenció las cepas de campo de la cepa de la vacuna cuando se aplicó a los aislados y también fue capaz de detectar la cepa de la vacuna a partir del ADN aislado de cultivos de enriquecimiento por toda la noche de Salmonella con serovares mixtos. Las vacunas vivas atenuadas contra Salmonella son una herramienta fundamental para el control de Salmonella y se utilizan ampliamente en la industria. Con las próximas regulaciones que probablemente se centrarán en Salmonella Typhimurium, junto con otros serovares, es necesario distinguir entre los aislados que pertenecen a la cepa vacunal y los que son responsables de causar enfermedades humanas.


Chickens , Polymerase Chain Reaction , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Salmonella typhimurium , Vaccines, Attenuated , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Vaccines, Attenuated/immunology , Animals , Salmonella Vaccines/immunology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Polymerase Chain Reaction/veterinary , Computer Simulation
17.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38673913

Shigellosis is a severe gastrointestinal disease that annually affects approximately 270 million individuals globally. It has particularly high morbidity and mortality in low-income regions; however, it is not confined to these regions and occurs in high-income nations when conditions allow. The ill effects of shigellosis are at their highest in children ages 2 to 5, with survivors often exhibiting impaired growth due to infection-induced malnutrition. The escalating threat of antibiotic resistance further amplifies shigellosis as a serious public health concern. This review explores Shigella pathology, with a primary focus on the status of Shigella vaccine candidates. These candidates include killed whole-cells, live attenuated organisms, LPS-based, and subunit vaccines. The strengths and weaknesses of each vaccination strategy are considered. The discussion includes potential Shigella immunogens, such as LPS, conserved T3SS proteins, outer membrane proteins, diverse animal models used in Shigella vaccine research, and innovative vaccine development approaches. Additionally, this review addresses ongoing challenges that necessitate action toward advancing effective Shigella prevention and control measures.


Dysentery, Bacillary , Shigella Vaccines , Shigella , Humans , Shigella Vaccines/immunology , Shigella Vaccines/administration & dosage , Dysentery, Bacillary/prevention & control , Dysentery, Bacillary/immunology , Animals , Shigella/immunology , Shigella/pathogenicity , Vaccines, Subunit/immunology , Vaccine Development , Vaccines, Attenuated/immunology
18.
Proc Natl Acad Sci U S A ; 121(17): e2321170121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38630724

Global control of infectious diseases depends on the continuous development and deployment of diverse vaccination strategies. Currently available live-attenuated and killed virus vaccines typically take a week or longer to activate specific protection by the adaptive immunity. The mosquito-transmitted Nodamura virus (NoV) is attenuated in mice by mutations that prevent expression of the B2 viral suppressor of RNA interference (VSR) and consequently, drastically enhance in vivo production of the virus-targeting small-interfering RNAs. We reported recently that 2 d after immunization with live-attenuated VSR-disabled NoV (NoVΔB2), neonatal mice become fully protected against lethal NoV challenge and develop no detectable infection. Using Rag1-/- mice that produce no mature B and T lymphocytes as a model, here we examined the hypothesis that adaptive immunity is dispensable for the RNAi-based protective immunity activated by NoVΔB2 immunization. We show that immunization of both neonatal and adult Rag1-/- mice with live but not killed NoVΔB2 induces full protection against NoV challenge at 2 or 14 d postimmunization. Moreover, NoVΔB2-induced protective antiviral immunity is virus-specific and remains effective in adult Rag1-/- mice 42 and 90 d after a single-shot immunization. We conclude that immunization with the live-attenuated VSR-disabled RNA virus vaccine activates rapid and long-lasting protective immunity against lethal challenges by a distinct mechanism independent of the adaptive immunity mediated by B and T cells. Future studies are warranted to determine whether additional animal and human viruses attenuated by VSR inactivation induce similar protective immunity in healthy and adaptive immunity-compromised individuals.


Influenza Vaccines , Viral Vaccines , Viruses , Animals , Humans , Mice , T-Lymphocytes , RNA Interference , Vaccines, Attenuated , Homeodomain Proteins , Antibodies, Viral
19.
Nat Commun ; 15(1): 3553, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670948

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Male , Antibodies, Viral/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , Genetic Vectors/genetics , Antibodies, Neutralizing/immunology , Administration, Intranasal , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Immunoglobulin A/immunology , CD4-Positive T-Lymphocytes/immunology , Humans
20.
Eur J Immunol ; 54(5): e2250133, 2024 May.
Article En | MEDLINE | ID: mdl-38571392

Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.


Vaccines, Attenuated , Yellow Fever Vaccine , Yellow fever virus , Humans , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology , Vaccines, Attenuated/immunology , Animals , Yellow Fever/prevention & control , Yellow Fever/immunology , Vaccination/methods
...