Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.292
Filter
2.
Front Immunol ; 15: 1376395, 2024.
Article in English | MEDLINE | ID: mdl-38975350

ABSTRACT

Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFß or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses.


Subject(s)
Antibodies, Viral , Immunity, Mucosal , Influenza A virus , Influenza Vaccines , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Animals , Mice , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Antibodies, Viral/immunology , Influenza A virus/immunology , Female , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Respiratory Syncytial Viruses/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Humans , Adenoviridae/immunology , Adenoviridae/genetics , Genetic Vectors
3.
Hum Vaccin Immunother ; 20(1): 2372884, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38957938

ABSTRACT

To fully understand the safety of DTaP-IPV/Hib vaccination, we evaluated the differences between DTaP-IPV/Hib co-administration and separate administration of the DTaP, IPV and Hib vaccines (DTaP+IPV+Hib) based on adverse events following immunization (AEFI). All AEFI reported in Hebei Province, China, between 2020 and 2022 were included in this study. The risk difference (RD%), relative risk (RR), and Chi-square value were used to compare the differences in reported rates of AEFI between the DTaP-IPV/Hib and DTaP+IPV+Hib groups. From 2020 to 2022, 130 AEFI cases were reported in Hebei Province after DTaP-IPV/Hib vaccination, corresponding to an AEFI reported rate of 66.9/million doses, which was significantly lower than that for DTaP+IPV+Hib (9836 AEFI with a reported rate of 637.8/million doses). The overall reported rate of non-severe AEFI for DTaP+IPV+Hib vaccines was 9.5 times that of DTaP-IPV/Hib vaccination [95% confidence interval (CI): 8.0, 11.3]. Meanwhile, the reported rate of AEFI among infants aged 0-1 y was 9.8 times higher for DTaP+IPV+Hib than for DTaP-IPV/Hib (95% CI: 8.2, 11.7). DTaP+IPV+Hib vaccination also resulted in higher risks of high fever, localized redness and swelling, localized induration, and allergic rash compared with DTaP-IPV/Hib vaccination. The risk of AEFI, which were mostly mild reaction, was higher after vaccination with DTaP+IPV+Hib than after DTaP-IPV/Hib vaccination.


Subject(s)
Diphtheria-Tetanus-Pertussis Vaccine , Haemophilus Vaccines , Poliovirus Vaccine, Inactivated , Vaccines, Combined , Humans , Haemophilus Vaccines/adverse effects , Haemophilus Vaccines/administration & dosage , Poliovirus Vaccine, Inactivated/adverse effects , Poliovirus Vaccine, Inactivated/administration & dosage , Diphtheria-Tetanus-Pertussis Vaccine/adverse effects , Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage , Infant , Vaccines, Combined/adverse effects , Vaccines, Combined/administration & dosage , China/epidemiology , Female , Male , Vaccination/adverse effects , Haemophilus Infections/prevention & control , Immunization Schedule , Drug-Related Side Effects and Adverse Reactions/epidemiology , Diphtheria-Tetanus-acellular Pertussis Vaccines/adverse effects , Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage
6.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034396

ABSTRACT

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Vaccinology , Humans , Epitopes, T-Lymphocyte/immunology , Vaccinology/methods , Epitopes, B-Lymphocyte/immunology , Vaccines, Combined/immunology , Genomics/methods , Enterohemorrhagic Escherichia coli/immunology , Salmonella/immunology , Animals , Computational Biology/methods , Molecular Docking Simulation , Escherichia coli Vaccines/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/immunology , Salmonella Infections/immunology , Salmonella Infections/prevention & control , Antigens, Bacterial/immunology , Vaccine Development/methods , Bacterial Vaccines/immunology
8.
PLoS Med ; 21(6): e1004414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857311

ABSTRACT

BACKGROUND: In many countries, infant vaccination with acellular pertussis (aP) vaccines has replaced use of more reactogenic whole-cell pertussis (wP) vaccines. Based on immunological and epidemiological evidence, we hypothesised that substituting the first aP dose in the routine vaccination schedule with wP vaccine might protect against IgE-mediated food allergy. We aimed to compare reactogenicity, immunogenicity, and IgE-mediated responses of a mixed wP/aP primary schedule versus the standard aP-only schedule. METHODS AND FINDINGS: OPTIMUM is a Bayesian, 2-stage, double-blind, randomised trial. In stage one, infants were assigned (1:1) to either a first dose of a pentavalent wP combination vaccine (DTwP-Hib-HepB, Pentabio PT Bio Farma, Indonesia) or a hexavalent aP vaccine (DTaP-Hib-HepB-IPV, Infanrix hexa, GlaxoSmithKline, Australia) at approximately 6 weeks old. Subsequently, all infants received the hexavalent aP vaccine at 4 and 6 months old as well as an aP vaccine at 18 months old (DTaP-IPV, Infanrix-IPV, GlaxoSmithKline, Australia). Stage two is ongoing and follows the above randomisation strategy and vaccination schedule. Ahead of ascertainment of the primary clinical outcome of allergist-confirmed IgE-mediated food allergy by 12 months old, here we present the results of secondary immunogenicity, reactogenicity, tetanus toxoid IgE-mediated immune responses, and parental acceptability endpoints. Serum IgG responses to diphtheria, tetanus, and pertussis antigens were measured using a multiplex fluorescent bead-based immunoassay; total and specific IgE were measured in plasma by means of the ImmunoCAP assay (Thermo Fisher Scientific). The immunogenicity of the mixed schedule was defined as being noninferior to that of the aP-only schedule using a noninferiority margin of 2/3 on the ratio of the geometric mean concentrations (GMR) of pertussis toxin (PT)-IgG 1 month after the 6-month aP. Solicited adverse reactions were summarised by study arm and included all children who received the first dose of either wP or aP. Parental acceptance was assessed using a 5-point Likert scale. The primary analyses were based on intention-to-treat (ITT); secondary per-protocol (PP) analyses were also performed. The trial is registered with ANZCTR (ACTRN12617000065392p). Between March 7, 2018 and January 13, 2020, 150 infants were randomised (75 per arm). PT-IgG responses of the mixed schedule were noninferior to the aP-only schedule at approximately 1 month after the 6-month aP dose [GMR = 0·98, 95% credible interval (0·77 to 1·26); probability (GMR > 2/3) > 0·99; ITT analysis]. At 7 months old, the posterior median probability of quantitation for tetanus toxoid IgE was 0·22 (95% credible interval 0·12 to 0·34) in both the mixed schedule group and in the aP-only group. Despite exclusions, the results were consistent in the PP analysis. At 6 weeks old, irritability was the most common systemic solicited reaction reported in wP (65 [88%] of 74) versus aP (59 [82%] of 72) vaccinees. At the same age, severe systemic reactions were reported among 14 (19%) of 74 infants after wP and 8 (11%) of 72 infants after aP. There were 7 SAEs among 5 participants within the first 6 months of follow-up; on blinded assessment, none were deemed to be related to the study vaccines. Parental acceptance of mixed and aP-only schedules was high (71 [97%] of 73 versus 69 [96%] of 72 would agree to have the same schedule again). CONCLUSIONS: Compared to the aP-only schedule, the mixed schedule evoked noninferior PT-IgG responses, was associated with more severe reactions, but was well accepted by parents. Tetanus toxoid IgE responses did not differ across the study groups. TRIAL REGISTRATION: Trial registered at the Australian and New Zealand Clinical 207 Trial Registry (ACTRN12617000065392p).


Subject(s)
Diphtheria-Tetanus-Pertussis Vaccine , Immunization Schedule , Immunoglobulin E , Humans , Infant , Double-Blind Method , Immunoglobulin E/immunology , Immunoglobulin E/blood , Female , Male , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage , Diphtheria-Tetanus-Pertussis Vaccine/adverse effects , Australia , Vaccines, Combined/immunology , Vaccines, Combined/adverse effects , Vaccines, Combined/administration & dosage , Pertussis Vaccine/immunology , Pertussis Vaccine/adverse effects , Pertussis Vaccine/administration & dosage , Food Hypersensitivity/immunology , Food Hypersensitivity/prevention & control , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/adverse effects , Poliovirus Vaccine, Inactivated/administration & dosage , Haemophilus Vaccines/immunology , Haemophilus Vaccines/adverse effects , Haemophilus Vaccines/administration & dosage , Whooping Cough/prevention & control , Whooping Cough/immunology , Immunogenicity, Vaccine , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology
9.
Front Cell Infect Microbiol ; 14: 1412478, 2024.
Article in English | MEDLINE | ID: mdl-38903942

ABSTRACT

In the post-COVID-19 era, the co-circulation of respiratory viruses, including influenza, SARS-CoV-2, and respiratory syncytial virus (RSV), continues to have significant health impacts and presents ongoing public health challenges. Vaccination remains the most effective measure for preventing viral infections. To address the concurrent circulation of these respiratory viruses, extensive efforts have been dedicated to the development of combined vaccines. These vaccines utilize a range of platforms, including mRNA-based vaccines, viral vector vaccines, and subunit vaccines, providing opportunities in addressing multiple pathogens at once. This review delves into the major advancements in the field of combined vaccine research, underscoring the strategic use of various platforms to tackle the simultaneous circulation of respiratory viruses effectively.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , SARS-CoV-2 , Humans , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19 Vaccines/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccine Development , Viral Vaccines/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Respiratory Syncytial Virus Vaccines/immunology , Vaccination , Animals
11.
J Hypertens ; 42(7): 1184-1196, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38690916

ABSTRACT

PURPOSE: Compared with monotherapy, combination therapy with multiple antihypertensive drugs has demonstrated superior efficacy in the management of hypertension. The aim of this study was to explore the efficacy of multitarget combined vaccines in achieving simultaneous antihypertensive and target organ protection effects. METHODS: Our team has developed ATRQß-001 and ADRQß-004 vaccines targeting Ang II type 1 receptor (AT1R) and α1D-adrenergic receptor (α1D-AR), respectively. In NG-nitroarginine methyl ester ( l -NAME) + abilities spontaneously hypertensive rats (SHRs) model, SHRs were simultaneously inoculated with ATRQß-001 and ADRQß-004 vaccines. Histological and biochemical analyses were performed to evaluate the antihypertensive effects and target organ protection of the ATRQß-001 and ADRQß-004 combined vaccines in comparison with those of the single vaccine. RESULTS: Both ATRQß-001 and ADRQß-004 vaccines induced robust antibody production, resulting in persistent high antibody titers in rats. Notably, the combined administration of both vaccines significantly decreased SBP in SHRs compared with treatment with a single vaccine, both before and after l -NAME administration. Furthermore, the combined vaccine regimen demonstrated superior efficacy in protecting against vascular remodeling, myocardial hypertrophy and fibrosis, and kidney injury in SHRs. Mechanistically, the combined vaccines exhibited significantly downregulated the expression of angiotensin II type 1 receptor (AT1R) and α1D-adrenergic receptor (α1D-AR). Importantly, no apparent immune-related adverse effects were observed in animals immunized with the combined vaccines. CONCLUSION: Preliminary findings from this investigation suggest that co-administration of the novel ATRQß-001 and ADRQß-004 vaccines holds potential as a groundbreaking therapeutic strategy for managing hypertension.


Subject(s)
Hypertension , Rats, Inbred SHR , Receptor, Angiotensin, Type 1 , Receptors, Adrenergic, alpha-1 , Animals , Receptor, Angiotensin, Type 1/immunology , Rats , Male , Vaccines, Combined/immunology , NG-Nitroarginine Methyl Ester/pharmacology , Blood Pressure/drug effects
12.
Vaccine ; 42(18): 3789-3801, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38714448

ABSTRACT

Inactivated vaccines lack the capability to serologically differentiate between infected and vaccinated animals, thereby impeding the effective eradication of pathogen. Conversely, vaccines based on virus-like particles (VLPs) emulate natural viruses in both size and antigenic structure, presenting a promising alternative to overcome these limitations. As the complexity of swine infectious diseases increases, the increase of vaccine types and doses may intensify the stress response. This exacerbation can lead to diminished productivity, failure of immunization, and elevated costs. Given the critical dynamics of co-infection and the clinically indistinguishable symptoms associated with foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), there is a dire need for an efficacious intervention. To address these challenges, we developed a combined vaccine composed of three distinct VLPs, specifically designed to target SVA and FMDV serotypes O and A. Our research demonstrates that this trivalent VLP vaccine induces antigen-specific and robust serum antibody responses, comparable to those produced by the respective monovalent vaccines. Moreover, the immune sera from the combined VLP vaccine strongly neutralized FMDV type A and O, and SVA, with neutralization titers comparable to those of the individual vaccines, indicating a high level of immunogenic compatibility among the three VLP components. Importantly, the combined VLPs vaccines-immunized sera conferred efficient protection against single or mixed infections with FMDV type A and O, and SVA viruses in pigs. In contrast, individual vaccines could only protect pigs against homologous virus infections and not against heterologous challenges. This study presents a novel combined vaccines candidate against FMD and SVA, and provides new insights for the development of combination vaccines for other viral swine diseases.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Picornaviridae , Swine Diseases , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease Virus/immunology , Swine , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Swine Diseases/prevention & control , Swine Diseases/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Picornaviridae/immunology , Picornaviridae Infections/prevention & control , Picornaviridae Infections/immunology , Picornaviridae Infections/veterinary , Female , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Coinfection/prevention & control , Coinfection/immunology
13.
Hum Vaccin Immunother ; 20(1): 2352909, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38752802

ABSTRACT

Thailand has incorporated the whole-cell (wP) pertussis vaccine into the expanded program on immunization since 1977 and has offered the acellular pertussis (aP) vaccine as an optional vaccine for infants since 2001. We followed healthy children from a clinical trial (ClinicalTrials.gov NCT02408926) in which children were randomly assigned to receive either pentavalent (DTwP-HB-Hib) or hexavalent (DTaP-IPV-HB-Hib) vaccines for their primary series (administered at 2, 4, and 6 months) and first booster vaccination (18 months). Both groups received Tdap-IPV as a second booster at the age of 4 y. Blood samples were collected for evaluation of antibody persistence to diphtheria toxoid (DT), tetanus toxoid (TT), and Bordetella pertussis (B. pertussis) between 2 and 6 y of age annually, and for the immunogenicity study of Tdap-IPV at 1 month after the second booster. Antibody persistence to Haemophilus influenzae type b (Hib) was followed until 3 y of age. A total of 105 hexavalent-vaccinated children and 91 pentavalent-vaccinated children completed this study. Both pentavalent and hexavalent groups demonstrated increased antibody levels against DT, TT, and B. pertussis antigens following the second booster with Tdap-IPV. All children achieved a seroprotective concentration for anti-DT and anti-TT IgG at 1 month post booster. The hexavalent group possessed significantly higher anti-pertactin IgG (adjusted p = .023), whereas the pentavalent group possessed significantly higher anti-pertussis toxin IgG (adjusted p < .001) after the second booster. Despite declining levels post-second booster, a greater number of children sustained protective levels of anti-DT and anti-TT IgG compared to those after the first booster.


Subject(s)
Antibodies, Bacterial , Bordetella pertussis , Diphtheria-Tetanus-Pertussis Vaccine , Haemophilus Vaccines , Haemophilus influenzae type b , Immunization, Secondary , Vaccines, Combined , Whooping Cough , Child, Preschool , Female , Humans , Infant , Male , Antibodies, Bacterial/blood , Bordetella pertussis/immunology , Diphtheria/prevention & control , Diphtheria/immunology , Diphtheria Toxoid/immunology , Diphtheria Toxoid/administration & dosage , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage , Haemophilus Infections/prevention & control , Haemophilus Infections/immunology , Haemophilus influenzae type b/immunology , Haemophilus Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Tetanus Toxoid/immunology , Tetanus Toxoid/administration & dosage , Thailand , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Whooping Cough/prevention & control , Whooping Cough/immunology , Follow-Up Studies
14.
Hum Vaccin Immunother ; 20(1): 2345493, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38780074

ABSTRACT

The surge in recommended vaccinations for child's has spurred the development of combination vaccines, notably hexavalent vaccines, which provide multiple immunizations in a single dose. These vaccines offer various advantages, such as streamlining vaccination schedules, minimizing injection-related pain and exposure to preservatives, expanding vaccine coverage, and reducing administration costs. However, the intricate and expensive development of these vaccines presents substantial challenges, requiring increased investment and healthcare provider education to optimize their utilization and sustain high vaccination rates. Turkey, known for its robust vaccine coverage, strategic geographic location, and the influx of refugees, is at a critical juncture for integrating hexavalent vaccines into national programs. This transition is especially relevant given the rising vaccine hesitancy and the potential resurgence of vaccine-preventable diseases. This review assesses the deployment of hexavalent vaccines, examining their benefits and challenges through clinical trials and global experiences, with a specific emphasis on Turkiye's public health context.


Subject(s)
Vaccine-Preventable Diseases , Vaccines, Combined , Humans , Immunization Programs , Immunization Schedule , Turkey , Vaccination , Vaccination Coverage , Vaccination Hesitancy/statistics & numerical data , Vaccine-Preventable Diseases/prevention & control , Vaccines, Combined/administration & dosage , Vaccines, Combined/immunology
15.
MMWR Morb Mortal Wkly Rep ; 73(15): 345-350, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635488

ABSTRACT

Meningococcal disease is a life-threatening invasive infection caused by Neisseria meningitidis. Two quadrivalent (serogroups A, C, W, and Y) meningococcal conjugate vaccines (MenACWY) (MenACWY-CRM [Menveo, GSK] and MenACWY-TT [MenQuadfi, Sanofi Pasteur]) and two serogroup B meningococcal vaccines (MenB) (MenB-4C [Bexsero, GSK] and MenB-FHbp [Trumenba, Pfizer Inc.]), are licensed and available in the United States and have been recommended by CDC's Advisory Committee on Immunization Practices (ACIP). On October 20, 2023, the Food and Drug Administration approved the use of a pentavalent meningococcal vaccine (MenACWY-TT/MenB-FHbp [Penbraya, Pfizer Inc.]) for prevention of invasive disease caused by N. meningitidis serogroups A, B, C, W, and Y among persons aged 10-25 years. On October 25, 2023, ACIP recommended that MenACWY-TT/MenB-FHbp may be used when both MenACWY and MenB are indicated at the same visit for the following groups: 1) healthy persons aged 16-23 years (routine schedule) when shared clinical decision-making favors administration of MenB vaccine, and 2) persons aged ≥10 years who are at increased risk for meningococcal disease (e.g., because of persistent complement deficiencies, complement inhibitor use, or functional or anatomic asplenia). Different manufacturers' serogroup B-containing vaccines are not interchangeable; therefore, when MenACWY-TT/MenB-FHbp is used, subsequent doses of MenB should be from the same manufacturer (Pfizer Inc.). This report summarizes evidence considered for these recommendations and provides clinical guidance for the use of MenACWY-TT/MenB-FHbp.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Neisseria meningitidis , Humans , Advisory Committees , Immunization , Meningococcal Infections/prevention & control , United States/epidemiology , Vaccines, Combined , Adolescent , Young Adult
16.
Nat Commun ; 15(1): 3077, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594497

ABSTRACT

Knowledge is limited as to how prior SARS-CoV-2 infection influences cellular and humoral immunity after booster-vaccination with bivalent BA.4/5-adapted mRNA-vaccines, and whether vaccine-induced immunity may indicate subsequent infection. In this observational study, individuals with prior infection (n = 64) showed higher vaccine-induced anti-spike IgG-antibodies and neutralizing titers, but the relative increase was significantly higher in non-infected individuals (n = 63). In general, both groups showed higher neutralizing activity towards the parental strain than towards Omicron-subvariants BA.1, BA.2 and BA.5. In contrast, CD4 or CD8 T cell levels towards spike from the parental strain and the Omicron-subvariants, and cytokine expression profiles were similar irrespective of prior infection. Breakthrough infections occurred more frequently among previously non-infected individuals, who had significantly lower vaccine-induced spike-specific neutralizing activity and CD4 T cell levels. In summary, we show that immunogenicity after BA.4/5-bivalent vaccination differs between individuals with and without prior infection. Moreover, our results may help to improve prediction of breakthrough infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Humoral , Breakthrough Infections , COVID-19/prevention & control , Vaccination , Vaccines, Combined , Antibodies, Neutralizing , Antibodies, Viral
17.
Can J Vet Res ; 88(2): 38-44, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38595949

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.


Escherichia coli entérotoxinogènes (ETEC) est un type important de bactéries pathogènes qui cause de la diarrhée chez les porcs. L'objectif de l'étude était de préparer un nouveau vaccin tétravalent pour prévenir efficacement la diarrhée causée par E. coli chez les porcelets. Afin de réaliser la production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB, les caractéristiques biologiques, la stabilité, les conditions de conservation, et la sécurité de la souche recombinante (BL21(DE3)(pXKKSL4) ont été étudiées et l'efficacité du vaccin et la dose immunitaire minimum ont été mesurées. Les résultats indiquent que les caractéristiques biologiques, l'expression des protéines cibles, et l'immunogénicité de la 1ère à la 10e génération de la souche étaient stables. Ainsi, la génération germinale de base a été établie de manière préliminaire comme étant de la 1ère à la 10e générations. Les résultats des tests d'efficacité ont démontré que le taux de protection immunitaire pouvait atteindre 90 % avec une attaque au moyen de 1 dose léthale minimale (MLD) d'une souche virulente chez les souris. L'immunogénicité était stable et la dose immunitaire minimum était de 0,1 mL par souris. Nos travaux ont démontré que le vaccin génétiquement élaboré développé de cette façon pourrait prévenir la diarrhée chez les porcelets causée par des E. coli entérotoxigénique via les adhésines et les entérotoxines. Afin d'atteindre la production industrielle de ce vaccin aussitôt que possible, nous avons mené des tests immunologiques et de la recherche sur le processus de production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB. Les résultats de la présente étude fournissent des données scientifiques expérimentales pour la production commerciale de vaccins et jettent une base solide pour leur production industrielle.(Traduit par Docteur Serge Messier).


Subject(s)
Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Rodent Diseases , Swine Diseases , Animals , Swine , Mice , Enterotoxins , Vaccines, Combined , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/microbiology , Escherichia coli Proteins/genetics , Vaccines, Inactivated , Antibodies, Bacterial , Swine Diseases/microbiology
18.
MMWR Morb Mortal Wkly Rep ; 73(13): 286-290, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573866

ABSTRACT

The Federal Retail Pharmacy Program (FRPP) facilitated integration of pharmacies as partners in national efforts to scale up vaccination capacity during the COVID-19 pandemic emergency response. To evaluate FRPP's contribution to vaccination efforts across various sociodemographic groups, data on COVID-19 bivalent mRNA vaccine doses administered during September 1, 2022-September 30, 2023, were evaluated from two sources: 1) FRPP data reported directly to CDC and 2) jurisdictional immunization information systems data reported to CDC from all 50 states, the District of Columbia, U.S. territories, and freely associated states. Among 59.8 million COVID-19 bivalent vaccine doses administered in the United States during this period, 40.5 million (67.7%) were administered by FRPP partners. The proportion of COVID-19 bivalent doses administered by FRPP partners ranged from 5.9% among children aged 6 months-4 years to 70.6% among adults aged 18-49 years. Among some racial and ethnic minority groups (e.g., Hispanic or Latino, non-Hispanic Black or African American, non-Hispanic Native Hawaiian or other Pacific Islander, and non-Hispanic Asian persons), ≥45% of COVID-19 bivalent vaccine doses were administered by FRPP partners. Further, in urban and rural areas, FRPP partners administered 81.6% and 60.0% of bivalent vaccine doses, respectively. The FRPP partnership administered approximately two thirds of all bivalent COVID-19 vaccine doses in the United States and provided vaccine access for persons across a wide range of sociodemographic groups, demonstrating that this program could serve as a model to address vaccination services needs for routine vaccines and to provide health services in other public health emergencies.


Subject(s)
COVID-19 , Pharmacy , Adult , Child , Humans , United States/epidemiology , Ethnicity , COVID-19 Vaccines , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Minority Groups , Vaccination , Vaccines, Combined
19.
PLoS One ; 19(4): e0301340, 2024.
Article in English | MEDLINE | ID: mdl-38625924

ABSTRACT

A safe, highly immunogenic multivalent vaccine to protect against all nine serotypes of African horse sickness virus (AHSV), will revolutionise the AHS vaccine industry in endemic countries and beyond. Plant-produced AHS virus-like particles (VLPs) and soluble viral protein 2 (VP2) vaccine candidates were developed that have the potential to protect against all nine serotypes but can equally well be formulated as mono- and bi-valent formulations for localised outbreaks of specific serotypes. In the first interferon α/ß receptor knock-out (IFNAR-/-) mice trial conducted, a nine-serotype (nonavalent) vaccine administered as two pentavalent (5 µg per serotype) vaccines (VLP/VP2 combination or exclusively VP2), were directly compared to the commercially available AHS live attenuated vaccine. In a follow up trial, mice were vaccinated with an adjuvanted nine-serotype multivalent VP2 vaccine in a prime boost strategy and resulted in the desired neutralising antibody titres of 1:320, previously demonstrated to confer protective immunity in IFNAR-/- mice. In addition, the plant-produced VP2 vaccine performed favourably when compared to the commercial vaccine. Here we provide compelling data for a nonavalent VP2-based vaccine candidate, with the VP2 from each serotype being antigenically distinguishable based on LC-MS/MS and ELISA data. This is the first preclinical trial demonstrating the ability of an adjuvanted nonavalent cocktail of soluble, plant-expressed AHS VP2 proteins administered in a prime-boost strategy eliciting high antibody titres against all 9 AHSV serotypes. Furthermore, elevated T helper cells 2 (Th2) and Th1, indicative of humoral and cell-mediated memory T cell immune responses, respectively, were detected in mouse serum collected 14 days after the multivalent prime-boost vaccination. Both Th2 and Th1 may play a role to confer protective immunity. These preclinical immunogenicity studies paved the way to test the safety and protective efficacy of the plant-produced nonavalent VP2 vaccine candidate in the target animals, horses.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Viral Vaccines , Animals , Mice , Horses , African Horse Sickness Virus/genetics , African Horse Sickness/prevention & control , Vaccines, Combined , Chromatography, Liquid , Capsid Proteins , Tandem Mass Spectrometry , Antibodies, Viral
20.
Vaccine ; 42(12): 3134-3143, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38582691

ABSTRACT

OBJECTIVE: This study investigated the immunogenicity and safety of a pentavalent vaccine Gobik (DPT-IPV-Haemophilus influenzae type b [Hib]) in healthy Japanese infants aged ≥ 2 and < 43 months using a concomitant vaccination with ActHIB® (Hib) and Tetrabik (DPT-IPV) as a comparator. METHODS: This study was conducted as a phase 3, multicenter, active controlled, assessor-blinded, randomized, parallel-group study. Participants received a total of 4 subcutaneous doses (3 primary immunization doses and a booster dose) of either the experimental drug (DPT-IPV-Hib) or the active comparator (Hib + DPT-IPV). The primary endpoints were the anti-PRP antibody prevalence rate with ≥ 1 µg/mL, and the antibody prevalence rates against pertussis, diphtheria toxin, tetanus toxin, and attenuated poliovirus after the primary immunization. RESULTS: In 267 randomized participants (133 in the DPT-IPV-Hib group and 134 in the Hib + DPT-IPV group), the antibody prevalence rates after the primary immunization in both groups were 100.0 % and 88.7 % for anti-PRP antibody with ≥ 1 µg/mL, 99.2 % and 98.5 % against diphtheria toxin, and 100.0 % and 99.2 % against tetanus toxin, respectively. The antibody prevalence rates against pertussis and attenuated poliovirus were 100.0 % in both groups. The non-inferiority of the DPT-IPV-Hib group to the Hib + DPT-IPV group was verified for all measured antibodies. In both groups, all the GMTs of antibodies after the primary immunization were higher than those before the first dose, and those after the booster dose were higher than those after the primary immunization. No safety issues were identified. CONCLUSION: A single-agent Gobik, the first DPT-IPV-Hib pentavalent vaccine approved in Japan, was confirmed to simultaneously provide primary and booster immunizations against Hib infection, pertussis, diphtheria, tetanus, and poliomyelitis and to have a preventive effect and safety comparable to concomitant vaccination with Hib (ActHIB®) and DPT-IPV quadrivalent vaccine (Tetrabik).


Subject(s)
Diphtheria , Haemophilus Vaccines , Haemophilus influenzae type b , Poliomyelitis , Tetanus , Whooping Cough , Infant , Humans , Japan , Tetanus/prevention & control , Diphtheria/prevention & control , Whooping Cough/prevention & control , Tetanus Toxin , Diphtheria Toxin , Poliovirus Vaccine, Inactivated , Immunization Schedule , Antibodies, Bacterial , Diphtheria-Tetanus-Pertussis Vaccine , Vaccines, Combined , Poliomyelitis/prevention & control , Vaccines, Conjugate
SELECTION OF CITATIONS
SEARCH DETAIL