Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.019
Filter
1.
Front Immunol ; 15: 1384442, 2024.
Article in English | MEDLINE | ID: mdl-38947333

ABSTRACT

The One Health approach, which integrates the health of humans, animals, plants, and ecosystems at various levels, is crucial for addressing interconnected health threats. This is complemented by the advent of mRNA vaccines, which have revolutionized disease prevention. They offer broad-spectrum effectiveness and can be rapidly customized to target specific pathogens. Their utility extends beyond human medicine, showing potential in veterinary practices to control diseases and reduce the risk of zoonotic transmissions. This review place mRNA vaccines and One Health in the context of tick-borne diseases. The potential of these vaccines to confer cross-species immunity is significant, potentially disrupting zoonotic disease transmission cycles and protecting the health of both humans and animals, while reducing tick populations, infestations and circulation of pathogens. The development and application of mRNA vaccines for tick and tick-borne pathogens represent a comprehensive strategy in global health, fostering a healthier ecosystem for all species in our interconnected world.


Subject(s)
One Health , Tick-Borne Diseases , Ticks , mRNA Vaccines , Animals , Humans , Tick-Borne Diseases/prevention & control , Tick-Borne Diseases/immunology , Tick-Borne Diseases/transmission , Ticks/microbiology , Ticks/immunology , Zoonoses/prevention & control , RNA, Messenger/genetics , RNA, Messenger/immunology , Vaccines, Synthetic/immunology
2.
Parasit Vectors ; 17(1): 277, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943202

ABSTRACT

BACKGROUND: Chicken coccidiosis is a protozoan disease that leads to considerable economic losses in the poultry industry. Live oocyst vaccination is currently the most effective measure for the prevention of coccidiosis. However, it provides limited protection with several drawbacks, such as poor immunological protection and potential reversion to virulence. Therefore, the development of effective and safe vaccines against chicken coccidiosis is still urgently needed. METHODS: In this study, a novel oral vaccine against Eimeria tenella was developed by constructing a recombinant Lactobacillus plantarum (NC8) strain expressing the E. tenella RON2 protein. We administered recombinant L. plantarum orally at 3, 4 and 5 days of age and again at 17, 18 and 19 days of age. Meanwhile, each chick in the commercial vaccine group was immunized with 3 × 102 live oocysts of coccidia. A total of 5 × 104 sporulated oocysts of E. tenella were inoculated in each chicken at 30 days. Then, the immunoprotection effect was evaluated after E. tenella infection. RESULTS: The results showed that the proportion of CD4+ and CD8+ T cells, the proliferative ability of spleen lymphocytes, inflammatory cytokine levels and specific antibody titers of chicks immunized with recombinant L. plantarum were significantly increased (P < 0.05). The relative body weight gains were increased and the number of oocysts per gram (OPG) was decreased after E. tenella challenge. Moreover, the lesion scores and histopathological cecum sections showed that recombinant L. plantarum can significantly relieve pathological damage in the cecum. The ACI was 170.89 in the recombinant L. plantarum group, which was higher than the 150.14 in the commercial vaccine group. CONCLUSIONS: These above results indicate that L. plantarum expressing RON2 improved humoral and cellular immunity and enhanced immunoprotection against E. tenella. The protective efficacy was superior to that of vaccination with the commercial live oocyst vaccine. This study suggests that recombinant L. plantarum expressing the RON2 protein provides a promising strategy for vaccine development against coccidiosis.


Subject(s)
Chickens , Coccidiosis , Eimeria tenella , Lactobacillus plantarum , Poultry Diseases , Protozoan Proteins , Protozoan Vaccines , Vaccination , Animals , Eimeria tenella/immunology , Eimeria tenella/genetics , Coccidiosis/prevention & control , Coccidiosis/veterinary , Coccidiosis/immunology , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Protozoan Vaccines/immunology , Protozoan Vaccines/genetics , Protozoan Vaccines/administration & dosage , Lactobacillus plantarum/genetics , Lactobacillus plantarum/immunology , Administration, Oral , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Vaccination/veterinary , Antibodies, Protozoan/blood , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics
4.
Bull Exp Biol Med ; 176(6): 776-780, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38896316

ABSTRACT

We studied a needle-free jet injection delivery of an experimental mRNA vaccine encoding the receptor-binding domain of the SARS-CoV-2 S protein (mRNA-RBD). Immunization of BALB/c mice with mRNA-RBD by a needle-free jet injector induced high levels of antibodies with virus-neutralizing activity and a virus-specific T-cell response. The immune response was low in the group of mice that received intramuscular injection of mRNA-RBD. The effectiveness of this simple and safe method of mRNA delivering has been demonstrated. Thus, jet injection of mRNA vaccine can be a good alternative to lipid nanoparticles.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Mice , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Injections, Jet , mRNA Vaccines , RNA, Messenger/genetics , RNA, Messenger/immunology , Injections, Intramuscular , Female , Humans , T-Lymphocytes/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage
5.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825711

ABSTRACT

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Subject(s)
Adjuvants, Immunologic , Cancer Vaccines , Nanotechnology , Neoplasms , mRNA Vaccines , Humans , Cancer Vaccines/immunology , Nanotechnology/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Drug Delivery Systems/methods , COVID-19/prevention & control , Adjuvants, Vaccine , RNA, Messenger/genetics , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology
6.
Pharmacol Res Perspect ; 12(3): e1218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867495

ABSTRACT

According to the CDC, both Pfizer and Moderna COVID-19 vaccines contain nucleoside-modified messenger RNA (mRNA) encoding the viral spike glycoprotein of severe acute respiratory syndrome caused by corona virus (SARS-CoV-2), administered via intramuscular injections. Despite their worldwide use, very little is known about how nucleoside modifications in mRNA sequences affect their breakdown, transcription and protein synthesis. It was hoped that resident and circulating immune cells attracted to the injection site make copies of the spike protein while the injected mRNA degrades within a few days. It was also originally estimated that recombinant spike proteins generated by mRNA vaccines would persist in the body for a few weeks. In reality, clinical studies now report that modified SARS-CoV-2 mRNA routinely persist up to a month from injection and can be detected in cardiac and skeletal muscle at sites of inflammation and fibrosis, while the recombinant spike protein may persist a little over half a year in blood. Vaccination with 1-methylΨ (pseudouridine enriched) mRNA can elicit cellular immunity to peptide antigens produced by +1 ribosomal frameshifting in major histocompatibility complex-diverse people. The translation of 1-methylΨ mRNA using liquid chromatography tandem mass spectrometry identified nine peptides derived from the mRNA +1 frame. These products impact on off-target host T cell immunity that include increased production of new B cell antigens with far reaching clinical consequences. As an example, a highly significant increase in heart muscle 18-flourodeoxyglucose uptake was detected in vaccinated patients up to half a year (180 days). This review article focuses on medical biochemistry, proteomics and deutenomics principles that explain the persisting spike phenomenon in circulation with organ-related functional damage even in asymptomatic individuals. Proline and hydroxyproline residues emerge as prominent deuterium (heavy hydrogen) binding sites in structural proteins with robust isotopic stability that resists not only enzymatic breakdown, but virtually all (non)-enzymatic cleavage mechanisms known in chemistry.


Subject(s)
COVID-19 Vaccines , COVID-19 , RNA, Messenger , Spike Glycoprotein, Coronavirus , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , mRNA Vaccines/immunology , Pseudouridine , Recombinant Proteins/administration & dosage , RNA, Viral , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage
7.
J Med Virol ; 96(6): e29749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888113

ABSTRACT

Human immunodeficiency virus (HIV) infection is still a global public health issue, and the development of an effective prophylactic vaccine inducing potent neutralizing antibodies remains a significant challenge. This study aims to explore the inflammation-related proteins associated with the neutralizing antibodies induced by the DNA/rTV vaccine. In this study, we employed the Olink chip to analyze the inflammation-related proteins in plasma in healthy individuals receiving HIV candidate vaccine (DNA priming and recombinant vaccinia virus rTV boosting) and compared the differences between neutralizing antibody-positive (nab + ) and -negative(nab-) groups. We identified 25 differentially expressed factors and conducted enrichment and correlation analysis on them. Our results revealed that significant expression differences in artemin (ARTN) and C-C motif chemokine ligand 23 (CCL23) between nab+ and -nab- groups. Notably, the expression of CCL23 was negatively corelated to the ID50 of neutralizing antibodies and the intensity of the CD4+ T cell responses. This study enriches our understanding of the immune picture induced by the DNA/rTV vaccine, and provides insights for future HIV vaccine development.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Proteomics , Vaccinia virus , Humans , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Vaccinia virus/immunology , Vaccinia virus/genetics , HIV Antibodies/blood , HIV Antibodies/immunology , HIV-1/immunology , HIV-1/genetics , Adult , AIDS Vaccines/immunology , Male , HIV Infections/immunology , Vaccines, DNA/immunology , Female , Healthy Volunteers , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Plasma/immunology , Young Adult
8.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-38862192

ABSTRACT

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Chlamydia Infections , Chlamydia muridarum , Cytokines , Mice, Inbred BALB C , Animals , Female , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Chlamydia muridarum/immunology , Cytokines/metabolism , Chlamydia Infections/prevention & control , Chlamydia Infections/immunology , Mice , Antibodies, Bacterial/blood , Injections, Intramuscular , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Immunization, Secondary , Disease Models, Animal , Immunogenicity, Vaccine , Injections, Subcutaneous , Nanoparticles/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/administration & dosage , Vaccine Efficacy , Th1 Cells/immunology , Nanovaccines
9.
Harm Reduct J ; 21(1): 120, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890611

ABSTRACT

BACKGROUND: During the initial wave of the COVID-19 pandemic, there was a surprisingly low incidence of SARS-CoV-2 among People Who Use Drugs (PWUD) in Oslo, Norway, despite their heightened vulnerability regarding risk of infection and severe courses of the disease.This study aims to investigate the seroprevalence of SARS-CoV-2 antibodies among PWUD, their antibody responses to relevant virus infections and COVID-19 mRNA vaccines, and their vaccination coverage compared to the general population. METHODS: Conducted as a prospective cohort study, data was collected from residents in six institutions for homeless PWUD and users of a low-threshold clinic for opioid agonist treatment. Ninety-seven participants were recruited for SARS-CoV-2 seroprevalence analysis. Additional two participants with known positive SARS-CoV-2 test results were recruited for further analyses. Twenty-five participants completed follow-up. Data included questionnaires, nasal swabs and blood samples. Data on vaccination coverage was obtained from the National Vaccine Register. Serologic methods included detection of antibodies to relevant virus proteins, neutralizing antibodies to SARS-CoV-2, antibodies to the full-length spike protein, and receptor-binding domain from SARS-CoV-2. RESULTS: Among PWUD, antibodies to SARS-CoV-2 were detected in 2 out of 97 samples before vaccines against SARS-CoV-2 were available, comparable to a 2.8% frequency in population-based screening. Levels of serum antibodies to seasonal coronaviruses and Epstein-Barr-Virus (EBV) in PWUD were similar to population-based levels. After the second vaccine dose, binding and neutralizing antibody levels to SARS-CoV-2 in PWUD were comparable to controls. Eighty-four of PWUD received at least one dose of COVID-19 mRNA vaccine, compared to 89% in the general population. CONCLUSION: Results indicate that PWUD did not exhibit increased SARS-CoV-2 seroprevalence or elevated serum antibodies to seasonal coronaviruses and EBV. Moreover, vaccine responses in PWUD were comparable to controls, suggesting that vaccination is effective in conferring protection against SARS-CoV-2 also in this population.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , Seroepidemiologic Studies , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Male , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Adult , SARS-CoV-2/immunology , Antibodies, Viral/blood , Middle Aged , Prospective Studies , Norway/epidemiology , Immunity, Humoral , mRNA Vaccines , Drug Users/statistics & numerical data , Antibodies, Neutralizing/blood , Vaccines, Synthetic/immunology , Vaccination Coverage/statistics & numerical data , Cohort Studies
10.
Hum Vaccin Immunother ; 20(1): 2351584, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38838170

ABSTRACT

Phase III multi-country studies (ZOE-50/70) demonstrated that the adjuvanted recombinant zoster vaccine (RZV) was well tolerated and prevented herpes zoster (HZ) in healthy ≥ 50-year-olds, with a vaccine efficacy (VE) > 90% across age groups. These pivotal trials did not enroll participants from mainland China where RZV is licensed, therefore similar clinical data are missing for this population. In this phase IV observer-blind study (NCT04869982) conducted between 2021 and 2023 in China, immunocompetent and medically stable ≥ 50-year-olds were randomized 1:1 to receive two RZV or placebo doses, 2 months apart. This study assessed the VE (overall, as confirmatory objective, and descriptively by age category [50-69-year-olds/≥ 70-year-olds]), reactogenicity, and safety of RZV in this Chinese population. Of the 6138 enrolled participants, 99.2% completed the study. During a mean follow-up period of 15.2 (±1.1) months, 31 HZ episodes were confirmed (RZV = 0; placebo = 31) for an incidence rate of 0.0 vs 8.2 per 1000 person-years and an overall VE of 100% (89.82-100). The descriptive VE was 100% (85.29-100) for 50-69-year-olds and 100% (60.90-100) for ≥ 70-year-olds. Solicited adverse events (AEs) were more frequent in the RZV vs the placebo group (median duration: 1-3 days for both groups). Pain and fatigue were the most frequent local and general AEs (RZV: 72.1% and 43.4%; placebo: 9.2% and 5.3%). The frequencies of unsolicited AEs, serious AEs, potential immune-mediated diseases, and deaths were similar between both groups. RZV is well tolerated and efficacious in preventing HZ in Chinese ≥ 50-year-olds, consistent with efficacy studies including worldwide populations with similar age and medical characteristics.


What is the context? Herpes zoster, commonly known as shingles, is a painful rash resulting from the reactivation of the dormant virus causing chickenpox.Vaccines preventing shingles, such as Shingrix, were shown to be well tolerated and efficacious in healthy adults over 50 years of age from Europe, North and Latin America, Australia, and Asia (Taiwan, Hong Kong, Korea, Japan).However, data on real-world protective effect of Shingrix are limited in some regions where the vaccine is licensed for use, such as mainland China.What is new? We analyzed data from Chinese adults aged 50 years or older to determine the efficacy and safety of Shingrix.Around 6000 participants were divided in two equal groups to receive two doses of Shingrix or two doses of a placebo, given 2 months apart.We found that, during the study period, the vaccine was 100% efficacious in preventing shingles.We showed that the vaccine had an acceptable safety profile in this Chinese population.What is the impact? Shingrix is efficacious and well tolerated in Chinese adults over 50 years of age, as it is in similarly aged populations from other evaluated regions.


Subject(s)
Herpes Zoster Vaccine , Herpes Zoster , Vaccines, Synthetic , Humans , Herpes Zoster Vaccine/adverse effects , Herpes Zoster Vaccine/administration & dosage , Herpes Zoster Vaccine/immunology , Herpes Zoster/prevention & control , Male , Female , Aged , Middle Aged , China/epidemiology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Vaccine Efficacy , Aged, 80 and over , East Asian People
11.
Hum Vaccin Immunother ; 20(1): 2363016, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38839044

ABSTRACT

Recombinant protein vaccines represent a well-established, reliable and safe approach for pandemic vaccination. SpikoGen® is a recombinant spike protein trimer manufactured in insect cells and formulated with Advax-CpG55.2 adjuvant. In murine, hamster, ferret and non-human primate studies, SpikoGen® consistently provided protection against a range of SARS-CoV-2 variants. A pivotal Phase 3 placebo-controlled efficacy trial involving 16,876 participants confirmed the ability of SpikoGen® to prevent infection and severe disease caused by the virulent Delta strain. SpikoGen® subsequently received a marketing authorization from the Iranian FDA in early October 2021 for prevention of COVID-19 in adults. Following a successful pediatric study, its approval was extended to children 5 years and older. Eight million doses of SpikoGen® have been delivered, and a next-generation booster version is currently in development. This highlights the benefits of adjuvanted protein-based approaches which should not overlook when vaccine platforms are being selected for future pandemics.


SpikoGen is a more traditional COVID-19 vaccine comprising SARS-CoV-2 spike protein extracellular domain formulated with Advax-CpG adjuvantSpikoGen differs from the Novavax vaccine in major ways including its use of the soluble secreted spike protein ECD rather than nanoparticle formulation and the use of a different adjuvantSpikoGen demonstrates robust protection against homologous and heterologous SARS-CoV-2 strains in hamster, ferret and non-human primate challenge modelsSpikoGen induces broadly cross-neutralizing antibodies, but still protects even after these antibody levels waneIn a pivotal Phase 3 clinical trial, SpikoGen reduced the risk of severe infection by 77.5% and was not associated with myocarditis, thrombosis or any other adverse safety signalsSpikoGen received an Emergency Use Authorization in the Middle East on 6 October 2021, making it the first recombinant spike protein vaccine to achieve this milestoneEight million doses of SpikoGen vaccine have been safely delivered to dateProtein-based vaccines have a long history of reliability and safety.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Animals , Spike Glycoprotein, Coronavirus/immunology , Humans , COVID-19/prevention & control , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , SARS-CoV-2/immunology , Adjuvants, Vaccine/administration & dosage , Adjuvants, Immunologic/administration & dosage , Vaccine Development
12.
Front Immunol ; 15: 1407826, 2024.
Article in English | MEDLINE | ID: mdl-38903523

ABSTRACT

Background: We aimed to evaluate the efficacy, safety, and immunogenicity of a SARS-CoV-2 mRNA vaccine (Omicron BA.5) LVRNA012 given as the booster in immunized but SARS-CoV-2 infection-free adults in China. Methods: This is a single-center, randomized, double-blind, placebo-controlled phase 3 clinical trial enrolling healthy adult participants (≥18 years) who had completed two or three doses of inactivated COVID-19 vaccines at least 6 months before, in Bengbu, Anhui province, China. Eligible participants were randomly assigned (1:1) to receive a booster intramuscular vaccination with an LVRNA012 vaccine (100ug) or placebo. The primary endpoint was the protective efficacy of a booster dose of the LVRNA012 vaccine or placebo against symptomatic COVID-19 of any severity 14 days after vaccination. Laboratory-confirmed COVID-19 infections were identified from 14 days to 180 days after intervention, with active surveillance for symptomatic illness 8 times per month between 7 to 90 days and at least once per month between 90 to 180 days after intervention. Results: 2615 participants were recruited and randomly assigned in a 1:1 ratio to either the vaccine group (1308) or the placebo group (1307). A total of 141 individuals (46 in the LVRNA012 group and 95 in the placebo group) developed symptomatic COVID-19 infection 14 days after the booster immunization, showing a vaccine efficacy of 51.9% (95% CI, 31.3% to 66.4%). Most infections were detected 90 days after intervention during a period when XBB was prevalent in the community. Adverse reactions were reported by 64% of participants after the LVRNA012 vaccination, but most of them were mild or moderate. The booster vaccination with the LVRNA012 mRNA vaccine could significantly enhance neutralizing antibody titers against the Omicron variant XBB.1.5 (GMT 132.3 [99.8, 175.4]) than did those in the placebo group (GMT 12.5 [8.4, 18.7]) at day 14 for the previously immunized individuals. Conclusion: The LVRNA012 mRNA vaccine is immunogenic, and shows robust efficacy in preventing COVID-19 during the omicron-predominate period. Clinical trial registration: ClinicalTrials.gov, identifier NCT05745545.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Male , Female , COVID-19/prevention & control , COVID-19/immunology , Adult , Double-Blind Method , SARS-CoV-2/immunology , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , mRNA Vaccines , Vaccine Efficacy , Young Adult , China , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/administration & dosage
13.
Emerg Microbes Infect ; 13(1): 2320913, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38860446

ABSTRACT

Continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), enhanced transmissibility, significant immune escape, and waning immunity call for booster vaccination. We evaluated the safety, immunogenicity, and efficacy of heterologous booster with a SARS-CoV-2 mRNA vaccine SYS6006 versus an active control vaccine in a randomized, open-label, active-controlled phase 3 trial in healthy adults aged 18 years or more who had received two or three doses of SARS-CoV-2 inactivated vaccine in China. The trial started in December 2022 and lasted for 6 months. The participants were randomized (overall ratio: 3:1) to receive one dose of SYS6006 (N = 2999) or an ancestral receptor binding region-based, alum-adjuvanted recombinant protein SARS-CoV-2 vaccine (N = 1000), including 520 participants in an immunogenicity subgroup. SYS6006 boosting showed good safety profiles with most AEs being grade 1 or 2, and induced robust wild-type and Omicron BA.5 neutralizing antibody response on Days 14 and 28, demonstrating immunogenicity superiority versus the control vaccine and meeting the primary objective. The relative vaccine efficacy against COVID-19 of any severity was 51.6% (95% CI, 35.5-63.7) for any variant, 66.8% (48.6-78.5) for BA.5, and 37.7% (2.4-60.3) for XBB, from Day 7 through Month 6. In the vaccinated and infected hybrid immune participants, the relative vaccine efficacy was 68.4% (31.1-85.5) against COVID-19 of any severity caused by a second infection. All COVID-19 cases were mild. SYS6006 heterologous boosting demonstrated good safety, superior immunogenicity and high efficacy against BA.5-associated COVID-19, and protected against XBB-associated COVID-19, particularly in the hybrid immune population.Trial registration: Chinese Clinical Trial Registry: ChiCTR2200066941.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , mRNA Vaccines , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Adult , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Female , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , China , Middle Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Young Adult , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Adolescent , Vaccine Efficacy , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , East Asian People
14.
Hum Vaccin Immunother ; 20(1): 2358570, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38853516

ABSTRACT

Among all natural and synthetic toxins, botulinum neurotoxins (BoNTs), produced by Clostridium botulinum in an anaerobic environment, are the most toxic polymer proteins. Currently, the most effective modalities for botulism prevention and treatment are vaccination and antitoxin use, respectively. However, these modalities are associated with long response time for active immunization, side effects, and donor limitations. As such, the development of more promising botulism prevention and treatment modalities is warranted. Here, we designed an mRNA encoding B9-hFc - a heavy-chain antibody fused to VHH and human Fc that can neutralize BoNT serotype B (BoNT/B) effectively - and assessed its expression in vitro and in vivo. The results confirmed that our mRNA demonstrates good expression in vitro and in vivo. Moreover, a single mRNA lipid nanoparticle injection effectively prevents BoNT/B intoxication in vivo, with effects comparable to those of protein antibodies. In conclusion, we explored and clarified whether mRNA drugs encoding neutralizing antibodies prevent BoNT/B intoxication. Our results provide an efficient strategy for further research on the prevention and treatment of intoxication by botulinum toxin.


Subject(s)
Antibodies, Neutralizing , Botulinum Toxins, Type A , Botulism , RNA, Messenger , Antibodies, Neutralizing/immunology , Animals , Botulism/prevention & control , Botulism/immunology , Botulinum Toxins, Type A/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Mice , Humans , Female , Nanoparticles , Mice, Inbred BALB C , Antibodies, Bacterial/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Liposomes
15.
Int Immunopharmacol ; 136: 112214, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823176

ABSTRACT

In the face of global health threats, there is a growing demand for vaccines that can be manufactured on a large scale within compressed timeline. This study responds to this imperative by delving into the evaluation of FluGuard, a novel recombinant influenza vaccine developed by Nivad Pharmed Salamat Company in Iran. Positioned as a phase 3 extension, the research aimed to evaluate the safety and immunogenicity of FluGuard in volunteers aged 18 and above. The study was conducted as a single-center, open-label clinical trial. All eligible volunteers received FluGuard (2021-2022 Formula) on day 0. Safety assessments occurred at days 1, 4, 7, 14, 28 and 42 post-vaccination. Immunogenicity was measured through seroconversion, seroprotection, and geometric mean titer fold increase in subgroups of 250 volunteers. Among the 4,260 volunteers were screened and assessed for eligibility, 1000 were enrolled. At day 28 post-vaccination, seroconversion rates for A/H1N1, A/H3N2, B/Yamagata, B/Victoria were 53.4 % [95 %CI: 46.7-60], 57.7 % [95 %CI: 51.1-64.3], 54.3 % [95 %CI: 47.7-60.9], and 36.2 % [95 %CI: 29.8-42.6], respectively in volunteers 18 years and above. The most common solicited adverse events were pain at the injection site, malaise, and headache. No suspected unexpected adverse events and adverse events of special interest occurred during the study period. Our findings suggested that FluGuard® exhibits a desirable safety profile and provides sufficient immunogenicity against influenza virus types A and B. However, extended studies are warranted to assess the long-term protective efficacy. Trial Registration: The study protocol was accepted by Iranian registry of clinical trial; https://www.irct.ir; IRCT20201104049265N2.


Subject(s)
Antibodies, Viral , Influenza Vaccines , Influenza, Human , Vaccines, Synthetic , Humans , Influenza Vaccines/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/administration & dosage , Adult , Male , Female , Middle Aged , Influenza, Human/prevention & control , Influenza, Human/immunology , Antibodies, Viral/blood , Young Adult , Adolescent , Vaccines, Synthetic/immunology , Vaccines, Synthetic/adverse effects , Baculoviridae/genetics , Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/immunology , Influenza B virus/immunology , Influenza B virus/genetics , Vaccination , Iran
16.
Hum Vaccin Immunother ; 20(1): 2366353, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38925145

ABSTRACT

The recombinant zoster vaccine (RZV) is included in the Spanish National Immunisation Programme for adults 65 years of age (years), with a potential progressive catch-up program for adults 66-80 years, starting with 80 years. However, the risk of herpes zoster (HZ) increases significantly from 50 years. We estimated the public health impact (PHI) of vaccinating adults ≥50 years in Spain versus no vaccination, using a Markov model adapted to the Spanish setting. The model simulated a hypothetical ≥50 years cohort over a lifetime, with inputs from Spanish publications, databases, or publications from other countries where Spanish data were unavailable. Base case inputs included 67.7% RZV coverage and 61.1% second dose compliance. Outputs included clinical outcomes avoided, healthcare resource use avoided, and number-needed-to-vaccinate (NNV) to prevent one HZ case. Deterministic (DSA) and probabilistic sensitivity analyses (PSA) were also conducted. The model estimated that, compared with no vaccination, vaccinating adults ≥50 years in Spain (N = 19,850,213) with RZV could prevent 1,533,353 HZ cases, 261,610 postherpetic neuralgia episodes, 274,159 other complications, and 138 deaths through the cohorts' remaining lifetime, mostly in the 50-59 years cohort. Furthermore, 3,500,492 primary care visits and 71,156 hospitalizations could be avoided, with NNV = 9 to prevent one HZ case. DSA predicted NNV = 7 to prevent one HZ case when second dose compliance was increased to 100%. PSA demonstrated ≥200,000 and ≥1,400,000 cases could be prevented in 86.9% and 18.4% of simulations, respectively. Starting RZV from 50 years could therefore prevent a substantial number of HZ cases and complications. Increasing RZV coverage and second dose compliance could further alleviate PHI of HZ.


Subject(s)
Herpes Zoster Vaccine , Herpes Zoster , Public Health , Vaccination , Humans , Herpes Zoster Vaccine/administration & dosage , Herpes Zoster Vaccine/immunology , Spain/epidemiology , Herpes Zoster/prevention & control , Herpes Zoster/epidemiology , Aged , Middle Aged , Aged, 80 and over , Male , Female , Vaccination/statistics & numerical data , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Markov Chains , Neuralgia, Postherpetic/prevention & control , Neuralgia, Postherpetic/epidemiology , Immunization Programs
17.
Viruses ; 16(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932234

ABSTRACT

The thermostability of vaccines, particularly enveloped viral vectored vaccines, remains a challenge to their delivery wherever needed. The freeze-drying of viral vectored vaccines is a promising approach but remains challenging due to the water removal process from the outer and inner parts of the virus. In the case of enveloped viruses, freeze-drying induces increased stress on the envelope, which often leads to the inactivation of the virus. In this study, we designed a method to freeze-dry a recombinant vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike glycoprotein. Since the envelope of VSV is composed of 50% lipids and 50% protein, the formulation study focused on both the protein and lipid portions of the vector. Formulations were prepared primarily using sucrose, trehalose, and sorbitol as cryoprotectants; mannitol as a lyoprotectant; and histidine as a buffer. Initially, the infectivity of rVSV-SARS-CoV-2 and the cake stability were investigated at different final moisture content levels. High recovery of the infectious viral titer (~0.5 to 1 log loss) was found at 3-6% moisture content, with no deterioration in the freeze-dried cakes. To further minimize infectious viral titer loss, the composition and concentration of the excipients were studied. An increase from 5 to 10% in both the cryoprotectants and lyoprotectant, together with the addition of 0.5% gelatin, resulted in the improved recovery of the infectious virus titer and stable cake formation. Moreover, the secondary drying temperature of the freeze-drying process showed a significant impact on the infectivity of rVSV-SARS-CoV-2. The infectivity of the vector declined drastically when the temperature was raised above 20 °C. Throughout a long-term stability study, formulations containing 10% sugar (sucrose/trehalose), 10% mannitol, 0.5% gelatin, and 10 mM histidine showed satisfactory stability for six months at 2-8 °C. The development of this freeze-drying process and the optimized formulation minimize the need for a costly cold chain distribution system.


Subject(s)
COVID-19 Vaccines , Cryoprotective Agents , Freeze Drying , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Freeze Drying/methods , SARS-CoV-2/immunology , SARS-CoV-2/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Trehalose/chemistry , COVID-19/prevention & control , COVID-19/virology , Animals , Humans , Mannitol/chemistry , Sucrose/chemistry , Vero Cells , Chlorocebus aethiops , Sorbitol/chemistry , Drug Stability , Histidine/chemistry , Vesicular stomatitis Indiana virus/genetics , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology
18.
Avian Dis ; 68(2): 117-128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885053

ABSTRACT

Cytokines are co-administrated with vaccines or co-expressed in the vaccine virus genome to improve protective efficacy by stimulating immune responses. Using glycosylphosphatidylinositol (GPI) anchoring by attachment to the target cytokine, we constructed recombinant Marek's disease virus (MDV) vaccine strain 301B/1 (v301B/1-rtg-IL-15) that expresses chicken interleukin-15 (IL-15) as the membrane-bound form at the cell surface. We evaluated the vaccine efficacy of v301B/1-rtg-IL-15 given as a bivalent Marek's disease (MD) vaccine in combination with turkey herpesvirus (HVT) against a very virulent plus MDV strain 648A challenge. The efficacy was compared with that of conventional bivalent MD vaccine, as a mixture with HVT plus parental v301B/1 or v301B/1-IL-15, which expresses a natural form of IL-15. The membrane-bound IL-15 expression did not interfere with the virus growth of recombinant v301B/1-rtg-IL-15. However, the MD incidence in birds vaccinated with v301B/1-rtg-IL-15 was higher than that of birds given the conventional bivalent MD vaccine containing parental v301B/1 virus, although the v301B/1-rtg-IL-15 vaccinated group showed increased natural killer cell activation at day 5 postvaccination, the same day as challenge. Overall, the protection of v301B/1-rtg-IL-15 was not improved from that of v301B/1 against very virulent plus MDV challenge.


Eficacia de una vacuna contra el virus de la enfermedad de Marek cepa 301B/1 recombinante que expresa la interleucina-15 de pollo anclada a la membrana. Las citocinas se administran junto con vacunas o se co-expresan en el genoma del virus de la vacuna para mejorar la eficacia protectora mediante la estimulación de respuestas inmunitarias. Utilizando el anclaje de glicosilfosfatidilinositol (GPI) mediante unión a la citoquina objetivo, se construyó una cepa de vacuna recombinante del virus de la enfermedad de Marek (MDV) 301B/1 (v301B/1-rtg-IL-15) que expresa la interleucina-15 de pollo (IL-15) como la forma unida a la membrana en la superficie celular. Se evaluó la eficacia de la vacuna v301B/1-rtg-IL-15 administrada como vacuna bivalente en combinación con el herpesvirus del pavo (HVT) contra el desafío con un virus muy virulento cepa 648A de la enfermedad de Marek (MD). La eficacia se comparó con la de la vacuna bivalente convencional contra la enfermedad de Marek, como una mezcla con HVT más la cepa v301B/1 parental o con el virus recombinante v301B/1-IL-15, que expresa una forma natural de IL-15. La expresión de IL-15 unida a membrana no interfirió con el crecimiento del virus de v301B/1-rtg-IL-15 recombinante. Sin embargo, la incidencia de la enfermedad de Marek en aves vacunadas con v301B/1-rtg-IL-15 fue mayor que la de las aves que recibieron la vacuna de Marek bivalente convencional que contenía el virus v301B/1 parental, aunque el grupo vacunado con v301B/1-rtg-IL-15 mostró una mayor activación de las células asesinas naturales en el día 5 después de la vacunación, que fue el mismo día del desafío. En general, la protección por la vacuna v301B/1-rtg-IL-15 no mejoró con respecto a la conferida por v301B/1 contra un desafío muy virulento de la enfermedad de Marek.


Subject(s)
Chickens , Herpesvirus 2, Gallid , Interleukin-15 , Marek Disease Vaccines , Marek Disease , Vaccines, Synthetic , Animals , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-15/metabolism , Marek Disease/prevention & control , Marek Disease/immunology , Marek Disease Vaccines/immunology , Marek Disease Vaccines/genetics , Vaccines, Synthetic/immunology , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics , Herpesvirus 1, Meleagrid/metabolism
19.
Antiviral Res ; 227: 105905, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740191

ABSTRACT

The rapid emergence of Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) variants, coupled with severe immune evasion and imprinting, has jeopardized the vaccine efficacy, necessitating urgent development of broad protective vaccines. Here, we propose a strategy employing recombinant rabies viruses (RABV) to create a universal SARS-CoV-2 vaccine expressing heterologous tandem receptor-binding domain (RBD) trimer from the SARS-CoV-2 Prototype, Delta, and Omicron strains (SRV-PDO). The results of mouse immunization indicated that SRV-PDO effectively induced cellular and humoral immune responses, and demonstrated higher immunogenicity and broader SARS-CoV-2 neutralization compared to the recombinant RABVs that only expressed RBD monomers. Moreover, SRV-PDO exhibited full protection against SARS-CoV-2 in the challenge assay. This study demonstrates that recombinant RABV expressing tandem RBD-heterotrimer as a multivalent immunogen could elicit a broad-spectrum immune response and potent protection against SARS-CoV-2, making it a promising candidate for future human or veterinary vaccines and offering a novel perspective in other vaccine design.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Mice, Inbred BALB C , Rabies virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Rabies virus/immunology , Rabies virus/genetics , COVID-19 Vaccines/immunology , Mice , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Female , Humans , Immunity, Humoral , Genetic Vectors , Vaccine Efficacy , Vaccines, Synthetic/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...