Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 321
Filter
1.
Nat Commun ; 15(1): 6059, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025847

ABSTRACT

Synthetic lethality provides an attractive strategy for developing targeted cancer therapies. For example, cancer cells with high levels of microsatellite instability (MSI-H) are dependent on the Werner (WRN) helicase for survival. However, the mechanisms that regulate WRN spatiotemporal dynamics remain poorly understood. Here, we used single-molecule tracking (SMT) in combination with a WRN inhibitor to examine WRN dynamics within the nuclei of living cancer cells. WRN inhibition traps the helicase on chromatin, requiring p97/VCP for extraction and proteasomal degradation in a MSI-H dependent manner. Using a phenotypic screen, we identify the PIAS4-RNF4 axis as the pathway responsible for WRN degradation. Finally, we show that co-inhibition of WRN and SUMOylation has an additive toxic effect in MSI-H cells and confirm the in vivo activity of WRN inhibition using an MSI-H mouse xenograft model. This work elucidates a regulatory mechanism for WRN that may facilitate identification of new therapeutic modalities, and highlights the use of SMT as a tool for drug discovery and mechanism-of-action studies.


Subject(s)
Chromatin , Protein Inhibitors of Activated STAT , Valosin Containing Protein , Werner Syndrome Helicase , Werner Syndrome Helicase/metabolism , Werner Syndrome Helicase/genetics , Humans , Animals , Chromatin/metabolism , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Protein Inhibitors of Activated STAT/metabolism , Protein Inhibitors of Activated STAT/genetics , Mice , Cell Line, Tumor , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Microsatellite Instability , Proteolysis/drug effects , Sumoylation/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Xenograft Model Antitumor Assays , Female
2.
Cell Rep ; 43(7): 114492, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39002125

ABSTRACT

In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown. Here, we show that Tof2 exhibits cell-cycle-regulated nucleolar delocalization and turnover. Depletion of the nuclear small ubiquitin-like modifier (SUMO) protease Ulp2 not only causes Tof2 polySUMOylation, nucleolar delocalization, and degradation but also leads to Cdc14 nucleolar release and activation. This outcome depends on polySUMOylation and the activity of downstream enzymes, including SUMO-targeted ubiquitin ligase and Cdc48/p97 segregase. We further developed a system to tether SUMO machinery to Tof2 and generated a SUMO-deficient tof2 mutant, and the results indicate that Tof2 polySUMOylation is necessary and sufficient for its nucleolar delocalization and degradation. Together, our work reveals a polySUMO-dependent mechanism that delocalizes Tof2 from the nucleolus to facilitate mitotic exit.


Subject(s)
Cell Nucleolus , Mitosis , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Sumoylation , Cell Nucleolus/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Protein Tyrosine Phosphatases/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Nuclear Proteins/metabolism , Endopeptidases/metabolism , Valosin Containing Protein/metabolism
3.
Subcell Biochem ; 104: 485-501, 2024.
Article in English | MEDLINE | ID: mdl-38963497

ABSTRACT

Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.


Subject(s)
Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/chemistry , Humans , Protein Multimerization , Animals , Mutation , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/chemistry , Osteitis Deformans/genetics , Osteitis Deformans/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/metabolism , Muscular Dystrophies, Limb-Girdle
4.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928151

ABSTRACT

Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.


Subject(s)
Heart Failure , Mechanistic Target of Rapamycin Complex 2 , Mice, Knockout , Protein Phosphatase 1 , Valosin Containing Protein , Animals , Heart Failure/metabolism , Heart Failure/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Mice , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Myocardium/metabolism , Myocardium/pathology , Male , Disease Models, Animal
5.
Proc Natl Acad Sci U S A ; 121(24): e2316892121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833472

ABSTRACT

The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.


Subject(s)
Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/chemistry , Valosin Containing Protein/genetics , Allosteric Regulation , Humans , Protein Binding , Molecular Mimicry , Cryoelectron Microscopy , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Binding Sites , Allosteric Site , Models, Molecular , Protein Conformation
6.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891822

ABSTRACT

In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict.


Subject(s)
Phenotype , Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Humans , Animals , Mutation , Autophagy/genetics , DNA Repair
7.
Reproduction ; 168(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38912971

ABSTRACT

Valosin-containing protein (VCP; aka p97), a member of the AAA (ATPases Associated with various cellular Activities) family, has been associated with a wide range of cellular functions. While previous evidence has shown its presence in mammalian sperm, our study unveils its function in mouse sperm. Notably, we found that mouse VCP does not undergo tyrosine phosphorylation during capacitation and exhibits distinct localization patterns. In the sperm head, it resides within the equatorial segment and, following acrosomal exocytosis, it is released and cleaved. In the flagellum, VCP is observed in the principal and midpiece. Furthermore, our research highlights a unique role for VCP in the cAMP/PKA pathway during capacitation. Pharmacological inhibition of sperm VCP led to reduced intracellular cAMP levels that resulted in decreased phosphorylation in PKA substrates and tyrosine residues and diminished fertilization competence. Our results show that in mouse sperm, VCP plays a pivotal role in regulating cAMP production, probably by the modulation of soluble adenylyl cyclase activity.


Subject(s)
Cyclic AMP , Sperm Capacitation , Spermatozoa , Valosin Containing Protein , Animals , Male , Sperm Capacitation/drug effects , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Spermatozoa/metabolism , Mice , Cyclic AMP/metabolism , Phosphorylation , Cyclic AMP-Dependent Protein Kinases/metabolism , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
8.
Nat Commun ; 15(1): 5359, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918402

ABSTRACT

SDS22 forms an inactive complex with nascent protein phosphatase PP1 and Inhibitor-3. SDS22:PP1:Inhibitor-3 is a substrate for the ATPase p97/VCP, which liberates PP1 for binding to canonical regulatory subunits. The exact role of SDS22 in PP1-holoenzyme assembly remains elusive. Here, we show that SDS22 stabilizes nascent PP1. In the absence of SDS22, PP1 is gradually lost, resulting in substrate hyperphosphorylation and a proliferation arrest. Similarly, we identify a female individual with a severe neurodevelopmental disorder bearing an unstable SDS22 mutant, associated with decreased PP1 levels. We furthermore find that SDS22 directly binds to Inhibitor-3 and that this is essential for the stable assembly of SDS22:PP1: Inhibitor-3, the recruitment of p97/VCP, and the extraction of SDS22 during holoenzyme assembly. SDS22 with a disabled Inhibitor-3 binding site co-transfers with PP1 to canonical regulatory subunits, thereby forming non-functional holoenzymes. Our data show that SDS22, through simultaneous interaction with PP1 and Inhibitor-3, integrates the major steps of PP1 holoenzyme assembly.


Subject(s)
Protein Phosphatase 1 , Female , Humans , HEK293 Cells , Holoenzymes/metabolism , Phosphorylation , Protein Binding , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
9.
Sci Adv ; 10(18): eadl6082, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701207

ABSTRACT

The AAA+-ATPase valosin-containing protein (VCP; also called p97 or Cdc48), a major protein unfolding machinery with a variety of essential functions, localizes to different subcellular compartments where it has different functions. However, the processes regulating the distribution of VCP between the cytosol and nucleus are not understood. Here, we identified p37 (also called UBXN2B) as a major factor regulating VCP nucleocytoplasmic shuttling. p37-dependent VCP localization was crucial for local cytosolic VCP functions, such as autophagy, and nuclear functions in DNA damage repair. Mutations in VCP causing multisystem proteinopathy enhanced its association with p37, leading to decreased nuclear localization of VCP, which enhanced susceptibility to DNA damage accumulation. Both VCP localization and DNA damage susceptibility in cells with such mutations were normalized by lowering p37 levels. Thus, we uncovered a mechanism by which VCP nucleocytoplasmic distribution is fine-tuned, providing a means for VCP to respond appropriately to local needs.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Nucleus , Cytosol , Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Humans , Cytosol/metabolism , Cell Nucleus/metabolism , Mutation , Active Transport, Cell Nucleus , DNA Damage , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Transport , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA Repair , Autophagy , Protein Binding , HEK293 Cells
10.
DNA Repair (Amst) ; 139: 103691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744091

ABSTRACT

The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.


Subject(s)
DNA Repair , Saccharomyces cerevisiae Proteins , Valosin Containing Protein , Valosin Containing Protein/metabolism , Humans , Saccharomyces cerevisiae Proteins/metabolism , DNA/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , DNA Damage , Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism , Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Animals , Intracellular Signaling Peptides and Proteins
11.
Nat Commun ; 15(1): 3894, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719837

ABSTRACT

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Subject(s)
Cadmium , Protein Binding , SKP Cullin F-Box Protein Ligases , Cadmium/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological , F-Box Proteins/metabolism , F-Box Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitination , Protein Domains , Humans , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
12.
Cells ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727283

ABSTRACT

The unfolded protein response is an intricate system of sensor proteins in the endoplasmic reticulum (ER) that recognizes misfolded proteins and transmits information via transcription factors to either regain proteostasis or, depending on the severity, to induce apoptosis. The main transmembrane sensor is IRE1α, which contains cytoplasmic kinase and RNase domains relevant for its activation and the mRNA splicing of the transcription factor XBP1. Mast cell leukemia (MCL) is a severe form of systemic mastocytosis. The inhibition of IRE1α in the MCL cell line HMC-1.2 has anti-proliferative and pro-apoptotic effects, motivating us to elucidate the IRE1α interactors/regulators in HMC-1.2 cells. Therefore, the TurboID proximity labeling technique combined with MS analysis was applied. Gene Ontology and pathway enrichment analyses revealed that the majority of the enriched proteins are involved in vesicle-mediated transport, protein stabilization, and ubiquitin-dependent ER-associated protein degradation pathways. In particular, the AAA ATPase VCP and the oncoprotein MTDH as IRE1α-interacting proteins caught our interest for further analyses. The pharmacological inhibition of VCP activity resulted in the increased stability of IRE1α and MTDH as well as the activation of IRE1α. The interaction of VCP with both IRE1α and MTDH was dependent on ubiquitination. Moreover, MTDH stability was reduced in IRE1α-knockout cells. Hence, pharmacological manipulation of IRE1α-MTDH-VCP complex(es) might enable the treatment of MCL.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Endoribonucleases , Leukemia, Mast-Cell , Protein Serine-Threonine Kinases , Humans , Cell Line, Tumor , Endoplasmic Reticulum-Associated Degradation/genetics , Endoribonucleases/metabolism , Leukemia, Mast-Cell/metabolism , Leukemia, Mast-Cell/pathology , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
13.
J Clin Invest ; 134(14)2024 May 23.
Article in English | MEDLINE | ID: mdl-38787785

ABSTRACT

Pathogenic variants in valosin-containing protein (VCP) cause multisystem proteinopathy (MSP), a disease characterized by multiple clinical phenotypes including inclusion body myopathy, Paget's disease of the bone, and frontotemporal dementia (FTD). How such diverse phenotypes are driven by pathogenic VCP variants is not known. We found that these diseases exhibit a common pathologic feature: ubiquitinated intranuclear inclusions affecting myocytes, osteoclasts, and neurons. Moreover, knock-in cell lines harboring MSP variants show a reduction in nuclear VCP. Given that MSP is associated with neuronal intranuclear inclusions comprised of TDP-43 protein, we developed a cellular model whereby proteostatic stress results in the formation of insoluble intranuclear TDP-43 aggregates. Consistent with a loss of nuclear VCP function, cells harboring MSP variants or cells treated with VCP inhibitor exhibited decreased clearance of insoluble intranuclear TDP-43 aggregates. Moreover, we identified 4 compounds that activate VCP primarily by increasing D2 ATPase activity, where pharmacologic VCP activation appears to enhance clearance of insoluble intranuclear TDP-43 aggregate. Our findings suggest that VCP function is important for nuclear protein homeostasis, that impaired nuclear proteostasis may contribute to MSP, and that VCP activation may be a potential therapeutic by virtue of enhancing the clearance of intranuclear protein aggregates.


Subject(s)
DNA-Binding Proteins , Frontotemporal Dementia , Myositis, Inclusion Body , Proteostasis , Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/drug therapy , Myositis, Inclusion Body/metabolism , Myositis, Inclusion Body/pathology , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/drug therapy , Osteitis Deformans/metabolism , Osteitis Deformans/genetics , Osteitis Deformans/pathology , Osteitis Deformans/drug therapy , Protein Aggregates/drug effects , Cell Nucleus/metabolism , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/drug therapy , Animals , Mice , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Intranuclear Inclusion Bodies/genetics
14.
Plant Physiol Biochem ; 211: 108714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749374

ABSTRACT

The CDC48 protein, highly conserved in the living kingdom, is a player of the ubiquitin proteasome system and contributes to various cellular processes. In plants, CDC48 is involved in cell division, plant growth and, as recently highlighted in several reports, in plant immunity. In the present study, to further extend our knowledge about CDC48 functions in plants, we analysed the incidence of its overexpression on tobacco development and immune responses. CDC48 overexpression disrupted plant development and morphology, induced changes in plastoglobule appearance and exacerbated ROS production. In addition, levels of salicylic acid (SA) and glycosylated SA were higher in transgenic plants, both in the basal state and in response to cryptogein, a protein produced by the oomycete Phytophthora cryptogea triggering defence responses. The expression of defence genes, notably those coding for some pathogenesis-related (PR) proteins, was also exacerbated in the basal state in transgenic plant lines. Finally, tobacco plants overexpressing CDC48 did not develop necrosis in response to tobacco mosaic virus (TMV) infection, suggesting a role for CDC48 in virus resistance.


Subject(s)
Nicotiana , Plant Immunity , Plant Proteins , Plants, Genetically Modified , Nicotiana/genetics , Nicotiana/virology , Nicotiana/immunology , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Plant Diseases/virology , Plant Diseases/immunology , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Tobacco Mosaic Virus/physiology , Phytophthora/physiology , Phytophthora/pathogenicity
15.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38570188

ABSTRACT

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Subject(s)
Prion Proteins , Prions , Prion Proteins/metabolism , Valosin Containing Protein/metabolism , Adenosine Triphosphatases/metabolism , Proteostasis , Ubiquitin/metabolism , Prions/metabolism
16.
Redox Biol ; 72: 103166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685170

ABSTRACT

S-nitrosylation (SNO) is an emerging paradigm of redox signaling protecting cells against oxidative stress in the heart. Our previous studies demonstrated that valosin-containing protein (VCP), an ATPase-associated protein, is a vital mediator protecting the heart against cardiac stress and ischemic injury. However, the molecular regulations conferred by VCP in the heart are not fully understood. In this study, we explored the potential role of VCP in cardiac protein SNO using multiple cardiac-specific genetically modified mouse models and various analytical techniques including biotin switch assay, liquid chromatography, mass spectrometry, and western blotting. Our results showed that cardiac-specific overexpression of VCP led to an overall increase in the levels of SNO-modified cardiac proteins in the transgenic (TG) vs. wild-type (WT) mice. Mass spectrometry analysis identified mitochondrial proteins involved in respiration, metabolism, and detoxification as primary targets of SNO modification in VCP-overexpressing mouse hearts. Particularly, we found that VCP itself underwent SNO modification at a specific cysteine residue in its N-domain. Additionally, our study demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, also experienced increased SNO in response to VCP overexpression. While deletion of inducible nitric oxide synthase (iNOS) in VCP TG mice did not affect VCP SNO, it did abolish SNO modification in mitochondrial complex proteins, suggesting a dual mechanism of regulation involving both iNOS-dependent and independent pathways. Overall, our findings shed light on post-translational modification of VCP in the heart, unveiling a previously unrecognized role for VCP in regulating cardiac protein SNO and offering new insights into its function in cardiac protection.


Subject(s)
Myocardium , Protein Processing, Post-Translational , Valosin Containing Protein , Animals , Mice , Mice, Transgenic , Myocardium/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Oxidation-Reduction , Oxidative Stress , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
17.
Neurobiol Dis ; 196: 106517, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38679111

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.


Subject(s)
Aging , Amyotrophic Lateral Sclerosis , Brain , Drosophila Proteins , Inclusion Bodies , Animals , Aging/metabolism , Aging/pathology , Aging/physiology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Animals, Genetically Modified , Autophagy/physiology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Drosophila , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Neurons/metabolism , Neurons/pathology , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
18.
Nat Cell Biol ; 26(5): 784-796, 2024 May.
Article in English | MEDLINE | ID: mdl-38600234

ABSTRACT

DNA-protein crosslinks (DPCs) induced by aldehydes interfere with replication and transcription. Hereditary deficiencies in DPC repair and aldehyde clearance processes cause progeria, including Ruijs-Aalfs syndrome (RJALS) and AMeD syndrome (AMeDS) in humans. Although the elimination of DPC during replication has been well established, how cells overcome DPC lesions in transcription remains elusive. Here we show that endogenous aldehyde-induced DPC roadblocks are efficiently resolved by transcription-coupled repair (TCR). We develop a high-throughput sequencing technique to measure the genome-wide distribution of DPCs (DPC-seq). Using proteomics and DPC-seq, we demonstrate that the conventional TCR complex as well as VCP/p97 and the proteasome are required for the removal of formaldehyde-induced DPCs. TFIIS-dependent cleavage of RNAPII transcripts protects against transcription obstacles. Finally, a mouse model lacking both aldehyde clearance and TCR confirms endogenous DPC accumulation in actively transcribed regions. Collectively, our data provide evidence that transcription-coupled DPC repair (TC-DPCR) as well as aldehyde clearance are crucial for protecting against metabolic genotoxin, thus explaining the molecular pathogenesis of AMeDS and other disorders associated with defects in TCR, such as Cockayne syndrome.


Subject(s)
Aldehydes , DNA Repair , Transcription, Genetic , Animals , Humans , Aldehydes/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Mice , DNA/metabolism , DNA/genetics , DNA Damage , Mice, Knockout , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Mice, Inbred C57BL , Formaldehyde/toxicity , Formaldehyde/pharmacology , Excision Repair
19.
Nat Commun ; 15(1): 2459, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503733

ABSTRACT

The hexameric AAA+ ATPase p97/VCP functions as an essential mediator of ubiquitin-dependent cellular processes, extracting ubiquitylated proteins from macromolecular complexes or membranes by catalyzing their unfolding. p97 is directed to ubiquitylated client proteins via multiple cofactors, most of which interact with the p97 N-domain. Here, we discover that FAM104A, a protein of unknown function also named VCF1 (VCP/p97 nuclear Cofactor Family member 1), acts as a p97 cofactor in human cells. Detailed structure-function studies reveal that VCF1 directly binds p97 via a conserved α-helical motif that recognizes the p97 N-domain with unusually high affinity, exceeding that of other cofactors. We show that VCF1 engages in joint p97 complex formation with the heterodimeric primary p97 cofactor UFD1-NPL4 and promotes p97-UFD1-NPL4-dependent proteasomal degradation of ubiquitylated substrates in cells. Mechanistically, VCF1 indirectly stimulates UFD1-NPL4 interactions with ubiquitin conjugates via its binding to p97 but has no intrinsic affinity for ubiquitin. Collectively, our findings establish VCF1 as an unconventional p97 cofactor that promotes p97-dependent protein turnover by facilitating p97-UFD1-NPL4 recruitment to ubiquitylated targets.


Subject(s)
Cell Cycle Proteins , Ubiquitin , Humans , Protein Binding , Ubiquitin/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
20.
J Integr Plant Biol ; 66(5): 1007-1023, 2024 May.
Article in English | MEDLINE | ID: mdl-38501483

ABSTRACT

In plants, thousands of nucleus-encoded proteins translated in the cytosol are sorted to chloroplasts and mitochondria by binding to specific receptors of the TOC (translocon on the outer chloroplast membrane) and the TOM (translocon on the outer mitochondrial membrane) complexes for import into those organelles. The degradation pathways for these receptors are unclear. Here, we discovered a converged ubiquitin-proteasome pathway for the degradation of Arabidopsis thaliana TOC and TOM tail-anchored receptors. The receptors are ubiquitinated by E3 ligase(s) and pulled from the outer membranes by the AAA+ adenosine triphosphatase CDC48, after which a previously uncharacterized cytosolic protein, transmembrane domain (TMD)-binding protein for tail-anchored outer membrane proteins (TTOP), binds to the exposed TMDs at the C termini of the receptors and CDC48, and delivers these complexes to the 26S proteasome.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Proteasome Endopeptidase Complex , Ubiquitin , Proteasome Endopeptidase Complex/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ubiquitin/metabolism , Proteolysis , Valosin Containing Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL