Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters











Publication year range
1.
Chemosphere ; 362: 142791, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972456

ABSTRACT

To obtain fossil fuels with ultra-low S levels at friendly conditions, different V oxides formulations on alumina modified with Fe were characterized and selected to oxidize dibenzothiophene (DBT), 4-methyl DBT and 4,6-dimethyl DBT prevailing in diesel fuel. V-Fe based catalysts (5 or 10 wt% of V) were obtained by impregnation of ammonium metavanadate solutions on Fe-modified alumina, obtained by impregnation of Mohr salt on pseudoboehmite (2 wt% of Fe). The catalysts were calcined in air atmosphere, and after were partially reduced with H2 flux to obtain a mix of several oxidation states of V and Fe species, to evaluate the interaction of Fe in VOx/Al2O3 catalysts and determine its effect on the oxidation processes. The structural and optical properties, as well as surface species, were determined by SEM-EDS, TPR, XRD, Raman, ATR-FTIR, photoluminescence, UV-Vis diffuse reflectance, and XPS spectroscopy. The catalytic performance was evaluated in oxidative desulfurization (ODS) and photocatalytic ODS (PODS) processes. The experimental results showed the addition of Fe promoted the catalytic activity of both ODS and PODS reactions. ODS activities of V-Fe catalysts increase up to 7.5 times with respect to V catalysts without Fe, and the most active catalyst (V5Fer) presents a characteristic oxidation time of 50 min for 4,6-DMDBT. The PODS activity of V10Fec was like ODS activity, showing it is possible to oxidize the dibenzothiophenes under friendly conditions to obtain lower S levels. The promoting effect of Fe was due to the interaction of Fe2+ and Fe3+ with the catalytic support, favoring the distribution of surface V3+ and V4+ species. Additionally, Fe improved the optical properties of the catalysts since the bandgap energy decrease and low recombination rate of the electron-hole pair were observed. Therefore, V-Fe based catalysts are photocatalytically actives to be used in PODS processes.


Subject(s)
Iron , Oxidation-Reduction , Thiophenes , Thiophenes/chemistry , Catalysis , Iron/chemistry , Vanadium/chemistry
2.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666341

ABSTRACT

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Subject(s)
Antineoplastic Agents , Coordination Complexes , DNA , Organophosphorus Compounds , Vanadium , Humans , Vanadium/chemistry , Vanadium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , DNA/metabolism , DNA/chemistry , Cell Survival/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Molecular Docking Simulation , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Molecular Structure , Ligands , Cell Line, Tumor , Drug Screening Assays, Antitumor
3.
J Mol Graph Model ; 122: 108511, 2023 07.
Article in English | MEDLINE | ID: mdl-37167701

ABSTRACT

The scarcity of efficient force fields to describe metal complexes may be a problem for new advances in medicinal chemistry. Thus, the development of force fields for these compounds can be valuable for the scientific community, especially when it comes to molecules that show interesting outputs regarding potential treating of diseases. Vanadium complexes, for instance, have shown promising results towards therapeutics of Alzheimer's Disease, most notably the bis(maltolato)oxovanadium (IV). Therefore, the mainly goal of this work is to develop and validate a new set of parameters for this vanadium complex from a minimum energy structure, obtained by DFT calculations, where great results of the new force field are found when confronted with experimental and quantum reference values. Moreover, the new force field showed to be quite effective to describe the molecule of under study whilst GAFF could not describe it effectively. In addition, a case study points out hydrogen bonds in the vanadium complex-PTP1B system.


Subject(s)
Alzheimer Disease , Coordination Complexes , Humans , Vanadium/chemistry , Alzheimer Disease/drug therapy
4.
J Inorg Biochem ; 241: 112127, 2023 04.
Article in English | MEDLINE | ID: mdl-36822888

ABSTRACT

This study describes the synthesis, characterization, and biological activity of a new class of antidiabetic oxidovanadium(IV)-complexes with S2O2 coordination mode. The target complex 3,6-dithio-1,8-octanediolatooxidovanadium(IV), abbreviated as ([VIVO(octd)]), where octd = 3,6-dithio-1,8-octanediol, is formed from the reaction between the 3,6-dithio-1,8-octanediol and vanadyl sulfate (VIVOSO4). The effects of treatment with ([VIVO(octd)] on blood glucose, lipidic profile, body weight, food intake, water intake, urinary volume, glycogen levels, and biomarkers for liver toxicity were investigated using a streptozotocin (STZ)-induced diabetic Wistar rats model. The results have shown that the [VIVO(octd)] complex caused a significant decrease in blood glucose (247.6 ± 19.3 mg/dL vs 430.1 ± 37.6 mg/dL diabetic group, p < 0.05), triglycerides (TG, 50%) and very low-density cholesterol (VLDL-C, 50%) levels in STZ-diabetic rats after 3 weeks of treatment. The [VIVO(octd)] has shown antihyperglycemic activity in diabetic rats as well as a reduction in elevated lipid levels. Time-dependent studies using EPR and 51V NMR spectroscopy of [VIVO(octd)] were done in aqueous solutions to determine the complex stability and species present in the oral gavage solution used for complex administration. The spectroscopic studies have shown that the antidiabetic/hypolipidemic activity could be attributed to [VIVO(octd)], vanadium species resulting from redox processes, the hydrolysis of [VIVO(octd)] and its decomposition products, or some combination of these factors. In summary, the oxidovanadium(IV) complex containing the S2O2 donor ligand has desirable antidiabetic properties eliminating the symptoms of Diabetes mellitus and its comorbidities.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemic Agents , Rats , Animals , Hypoglycemic Agents/pharmacology , Blood Glucose , Rats, Wistar , Vanadium/chemistry
5.
J Phys Chem B ; 127(2): 495-504, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36603208

ABSTRACT

A large part of the world's population is affected by Alzheimer's disease (AD) and diabetes mellitus type 2, which cause both social and economic impacts. These two conditions are associated with one protein, AMPK. Studies have shown that vanadium complexes, such as bis(N',N'-dimethylbiguanidato)-oxovanadium(IV), VO(metf)2·H2O, are potential agents against AD. A crucial step in drug design studies is obtaining information about the structure and interaction of these complexes with the biological targets involved in the process through molecular dynamics (MD) simulations. However, MD simulations depend on the choice of a good force field that could present reliable results. Moreover, general force fields are not efficient for describing the properties of metal complexes, and a VO(metf)2·H2O-specific force field does not yet exist; thus, the proper development of a parameter set is necessary. Furthermore, this investigation is essential and relevant given the importance for both the scientific community and the population that is affected by this neurodegenerative disease. Therefore, the present work aims to develop and validate the AMBER force field parameters for VO(metf)2·H2O since the literature lacks such information on metal complexes and investigate through classical molecular dynamics the interactions made by the complex with the protein. The proposed force field proved to be effective for describing the vanadium complex (VC), supported by different analyses and validations. Moreover, it had a great performance when compared to the general AMBER force field. Beyond that, MD findings provided an in-depth perspective of vanadium complex-protein interactions that should be taken into consideration in future studies.


Subject(s)
Alzheimer Disease , Coordination Complexes , Neurodegenerative Diseases , Humans , Alzheimer Disease/drug therapy , AMP-Activated Protein Kinases/chemistry , Coordination Complexes/therapeutic use , Molecular Dynamics Simulation , Vanadium/chemistry
6.
J Inorg Biochem ; 239: 112070, 2023 02.
Article in English | MEDLINE | ID: mdl-36450221

ABSTRACT

With the increasing development of metallopharmaceuticals, coordination compounds become viable alternatives for therapeutic uses. Despite the importance of platinum derivatives in this area, first-row transition metals complexes are welcome due to their characteristics. Vanadium is a promising metal in this context, as it has a range of compounds with different biological applications, including anticancer therapeutic effects. In this effort, the study of interactions between coordination compounds with deoxyribonucleic acid and with human serum albumin is fundamental. In this way, ten iminic ligands were synthesized by condensing p-substituted aromatic benzohydrazides (OH, CH3, H, NO2, and NH2) with salicylaldehyde (L1As-L5As) or pyridoxal hydrochloride (L1P-L5P). These ligands have characteristics that allow the tridentate coordination of vanadium cations, leading to the formation of ten vanadium(V) complexes (C1As-C5As and C1P-C5P) with different structural features, all characterized by single-crystal X-ray diffraction, UV-Vis and infrared spectroscopies, and cyclic voltammetry. In addition, the complexes were tested for their interactions with calf thymus deoxyribonucleic acid and human serum albumin by spectroscopic assays and molecular docking calculations. These new results can contribute to further research and provide different ways to design new vanadium complexes with biological applications.


Subject(s)
Coordination Complexes , Vanadium , Humans , Vanadium/chemistry , Molecular Docking Simulation , Ligands , Serum Albumin, Human/chemistry , DNA/chemistry , Tomography, X-Ray Computed , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
7.
Biometals ; 35(5): 903-919, 2022 10.
Article in English | MEDLINE | ID: mdl-35778658

ABSTRACT

Diabetes mellitus, a complex and heterogeneous disease associated with hyperglycemia, is a leading cause of mortality and reduces life expectancy. Vanadium complexes have been studied for the treatment of diabetes. The effect of complex [VO(bpy)(mal)]·H2O (complex A) was evaluated in a human hepatocarcinoma (HepG2) cell line and in streptozotocin (STZ)-induced diabetic male Wistar rats conditioned in seven groups with different treatments (n = 10 animals per group). Electron paramagnetic resonance and 51V NMR analyses of complex A in high-glucose Dulbecco's Modified Eagle Medium (DMEM) revealed the oxidation and hydrolysis of the oxidovanadium(IV) complex over a period of 24 h at 37 °C to give low-nuclearity vanadates "V1" (H2VO4-), "V2" (H2V2O72-), and "V4" (V4O124-). In HepG2 cells, complex A exhibited low cytotoxic effects at concentrations 2.5 to 7.5 µmol L-1 (IC50 10.53 µmol L-1) and increased glucose uptake (2-NBDG) up to 93%, an effect similar to insulin. In STZ-induced diabetic rats, complex A at 10 and 30 mg kg-1 administered by oral gavage for 12 days did not affect the animals, suggesting low toxicity or metabolic impairment during the experimental period. Compared to insulin treatment alone, complex A (30 mg kg-1) in association with insulin was found to improve glycemia (30.6 ± 6.3 mmol L-1 vs. 21.1 ± 8.6 mmol L-1, respectively; p = 0.002), resulting in approximately 30% additional reduction in glycemia. The insulin-enhancing effect of complex A was associated with low toxicity and was achieved via oral administration, suggesting the potential of complex A as a promising candidate for the adjuvant treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Humans , Hypoglycemic Agents/adverse effects , Insulin/metabolism , Insulin/pharmacology , Malates , Male , Rats , Rats, Wistar , Streptozocin , Vanadates/chemistry , Vanadium/chemistry , Vanadium/pharmacology
8.
Molecules ; 26(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34500808

ABSTRACT

Five heteroleptic compounds, [VVO(IN-2H)(L-H)], where L are 8-hydroxyquinoline derivatives and IN is a Schiff base ligand, were synthesized and characterized in both the solid and solution state. The compounds were evaluated on epimastigotes and trypomastigotes of Trypanosoma cruzi as well as on VERO cells, as a mammalian cell model. Compounds showed activity against trypomastigotes with IC50 values of 0.29-3.02 µM. IN ligand and the new [VVO2(IN-H)] complex showed negligible activity. The most active compound [VVO(IN-2H)(L2-H)], with L2 = 5-chloro-7-iodo-8-hydroxyquinoline, showed good selectivity towards the parasite and was selected to carry out further biological studies. Stability studies suggested a partial decomposition in solution. [VVO(IN-2H)(L2-H)] affects the infection potential of cell-derived trypomastigotes. Low total vanadium uptake by parasites and preferential accumulation in the soluble proteins fraction were determined. A trypanocide effect was observed when incubating epimastigotes with 10 × IC50 values of [VVO(IN-2H)(L2-H)] and the generation of ROS after treatments was suggested. Fluorescence competition measurements with DNA:ethidium bromide adduct showed a moderate DNA interaction of the complexes. In vivo toxicity study on C. elegans model showed no toxicity up to a 100 µM concentration of [VVO(IN-2H)(L2-H)]. This compound could be considered a prospective anti-T. cruzi agent that deserves further research.


Subject(s)
Caenorhabditis elegans/drug effects , Coordination Complexes/pharmacology , Oxyquinoline/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Vanadium/pharmacology , Animals , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Molecular Structure , Oxyquinoline/chemistry , Parasitic Sensitivity Tests , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Vanadium/chemistry
9.
J Inorg Biochem ; 219: 111438, 2021 06.
Article in English | MEDLINE | ID: mdl-33823363

ABSTRACT

Two mixed-valence octadecavanadates, (NH4)2(Me4N)5[VIV12VV6O42I]·Me4NI·5H2O (V18I) and [{K6(OH2)12VIV11VV7O41(PO4)·4H2O}n] (V18P), were synthesized and characterized by single-crystal X-ray diffraction analysis and FTIR, Raman, 51V NMR, EPR and UV/Vis/NIR spectroscopies. The chemoprotective activity of V18I and V18P towards the alkylating agent diethyl sulfate was assessed in E. coli cultures. The complex V18I was nontoxic in concentrations up to 5.0 mmol L-1, while V18P presented moderate toxicity in the concentration range 0.10 - 10 mmol L-1. Conversely, a ca. 35% enhancement in culture growth as compared to cells treated only with diethyl sulfate was observed upon addition of V18I (0.10 to 2.5 mmol L-1), while the combination of diethyl sulfate with V18P increased the cytotoxicity presented by diethyl sulfate alone. 51V NMR and EPR speciation studies showed that V18I is stable in solution, while V18P suffers partial breakage to give low nuclearity oxidometalates of vanadium(V) and (IV). According to the results, the chemoprotective effect depends strongly on the direct reactivity of the polyoxidovanadates (POV) towards the alkylating agent. The reaction of diethyl sulfate with V18I apparently produces a new, rearranged POV instead of poorly-reactive breakage products, while V18P shows the formation and subsequent consumption of low-nuclearity species. The correlation of this chemistry with that of other mixed-valence polyoxidovanadates, [H6VIV2VV12O38PO4]5- (V14) and [VIV8VV7O36Cl]6- (V15), suggests a relationship between stability in solution and chemoprotective performance.


Subject(s)
Escherichia coli/drug effects , Protective Agents/pharmacology , Vanadates/chemistry , Vanadates/pharmacology , Alkylating Agents/adverse effects , Crystallography, X-Ray/methods , Magnetic Resonance Spectroscopy/methods , Spectroscopy, Fourier Transform Infrared/methods , Sulfuric Acid Esters/adverse effects , Vanadium/chemistry , X-Ray Diffraction/methods
10.
J Biomed Mater Res B Appl Biomater ; 109(9): 1380-1388, 2021 09.
Article in English | MEDLINE | ID: mdl-33470054

ABSTRACT

The cytotoxic and genotoxic effects of commercial endodontic sealers (AH Plus, Sealer 26 and Endomethasone N) incorporated with nanostructured silver vanadate decorated with silver nanoparticles (AgVO3 - at concentrations 2.5, 5, and 10%) on human gingival fibroblast (HGF), and the silver (Ag+ ) and vanadium (V4+ /V5+ ) ions release were evaluated. Cytotoxicity, cell death, and genotoxicity tests were carried out with extract samples of 24-hr and 7-days. The release of Ag+ and V4+ /V5+ was evaluated. Cytotoxicity in HGF was caused by AH Plus (AP) with 5 and 10% of AgVO3 (83.84 and 67.49% cell viability, respectively) with 24-hr extract (p < 0.05), as well as all concentrations of AP with 7-days extract (p < 0.05 -AP 0% = 73.17%; AP 2.5% = 75.07%; AP 5% = 70.62%; AP 10% = 68.46% cell viability). The commercial sealers Sealer 26 (S26) and Endomethasone N (EN) were cytotoxic (p < 0.05 - S26 0% = 34.81%; EN 0% = 20.99% cell viability with 7-days extract). AP 10% with 7-days extract induced 32% apoptotic cells in HGF (p < 0.05). Genotoxic effect was not observed. The AP groups released more Ag+ , while S26 and EN released more V4+ /V5+ in 24 hr. The Ag+ can be cytotoxic. In conclusion, the cytotoxicity caused to HGF can be attributed by the commercial sealers and enhanced by incorporation of AgVO3 , was not observed genotoxic effect, and apoptosis was induced only by AH Plus 10% 7-days extract. Ag+ can influence cell viability.


Subject(s)
Anti-Bacterial Agents/chemistry , Bismuth/chemistry , Calcium Hydroxide/chemistry , Fibroblasts/cytology , Gingiva/cytology , Root Canal Filling Materials/chemistry , Silver/chemistry , Vanadium/chemistry , Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Biocompatible Materials/chemistry , Cell Line , Cell Survival/drug effects , DNA Damage/drug effects , Dexamethasone/chemistry , Drug Combinations , Drug Liberation , Epoxy Resins/chemistry , Formaldehyde/chemistry , Humans , Hydrocortisone/chemistry , Ions/chemistry , Silver/pharmacology , Structure-Activity Relationship , Thymol/analogs & derivatives , Thymol/chemistry , Titanium/chemistry
11.
J Inorg Biochem ; 216: 111312, 2021 03.
Article in English | MEDLINE | ID: mdl-33388704

ABSTRACT

The insulin enhancing activity, histological analysis and, testicular degeneration by a VIVO-complex containing the 2,2'-(ethane-1,2-diylbis(azanediyl))diethanolate ligand, VOIV(C6H14N2O2-κ2N,κ2O), abbreviated VIVO(BHED), were investigated in diabetic male Wistar rats. The complex was administered by oral gavage of freshly prepared solutions of vanadium complex. Biological studies demonstrated that the vanadium complex normalized the elevated glucose levels in male Wistar rats with streptozotocin-induced diabetes and these compounds also avoided common responses in diabetic animals such as weight loss and reduction in the size of the epididymis, prostate, testis and seminal gland. The 51V NMR and EPR studies showed the formation of VIVO(BHED) and the oxidation product [VVO2BHED]- with two possible decomposition pathways. In summary, these studies demonstrate that the VIVO(BHED) complex or its decomposition products show similar effects as insulin in decreasing elevated blood glucose levels.


Subject(s)
Coordination Complexes , Diabetes Mellitus, Experimental/drug therapy , Diamines , Hypoglycemic Agents , Testicular Diseases/drug therapy , Testis , Vanadium , Animals , Atrophy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diamines/chemistry , Diamines/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Male , Rats , Rats, Wistar , Testicular Diseases/metabolism , Testicular Diseases/pathology , Testis/metabolism , Testis/pathology , Vanadium/chemistry , Vanadium/pharmacology
12.
Int J Biol Macromol ; 161: 1568-1580, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32777416

ABSTRACT

The discovery of new alternatives for the treatment of infectious diseases has become the focus of burgeoning global interest. The complexation of the wide-spectrum antibiotic nalidixic acid (NA) with oxidovanadium(IV) ion and its incorporation into hybrid nanoparticulate systems were explored. The V-NA complex proved to be a stronger antimicrobial agent against E. coli, B. cereus, S. aureus and P. aeruginosa than NA, based on inhibition experiments. Myristyl myristate nanostructured lipid carriers (NLCs) and polymeric nanoparticles of Eudragit NE30D (EuNPs) were hybridized with chitosan (chi) to increase their stability and mucoadhesivity. They showed V-NA encapsulation of 97.8 ± 0.5% and 96.1 ± 0.1% respectively. TEM and DLS characterization ascertained the presence of spherical positive charged NPs ranging from 170 to 330 nm. Controlled release of V-NA from NPs was observed with 30-40% release in 3 days. A considerable potentiation of V-NA antimicrobial activity from 5 to 10 times was elucidated against P. aeruginosa with MIC values of 59.3 and 129.9 µM for NLC/chi and EuNPs/chi respectively, in comparison with 625 µM of the free complex. Hybrid NPs were able to interfere with the quorum sensing of the reporter Chromobacterium violaceum. Cytotoxicity on mouse fibroblast L929 cells was evaluated in the range of 29.7-519 µM by MTT assay showing that, NLC/chi particles supported cell growth in the range of at 29.7-60 µM while Eu/chi do not exert cytotoxicity between 29.7 and 120 µM. These results suggest that nanoparticles are suitable systems for drug delivery applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Coordination Complexes/chemistry , Metal Nanoparticles/chemistry , Nalidixic Acid/chemistry , Quorum Sensing/drug effects , Vanadium/chemistry , Animals , Cell Line , Cell Survival , Drug Carriers/chemistry , Drug Resistance, Neoplasm , Mice , Particle Size
13.
J Inorg Biochem ; 203: 110862, 2020 02.
Article in English | MEDLINE | ID: mdl-31683130

ABSTRACT

Photodynamic therapy (PDT) is an alternative treatment widely used against cancer. PDT requires molecular systems, known as photosensitizers (PS), which not only exhibit strong absorption at a particular wavelength range, but also need to be selectively accumulated inside cancer cells. PS are activated by specific wavelengths that cause tumor cell death by mechanisms related with oxidative stress. In this paper, three oxidovanadium(V) complexes linked to a Schiff base, which exhibit anticancer activity by displaying desirable accumulation inside malignant cells, are studied using Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) methodologies to characterize their structural and photophysical properties as possible PS. The maximum absorption of these complexes in aqueous solution was predicted to be approximately 460 nm presenting a ligand-to-metal charge transfer. Additionally, we describe the photodynamic type reaction that these complexes can undergo when considered as PS candidates. Our results suggest that the system, containing triethylammonium as substituent, is the most suitable complex to act both as PS and as a possible therapeutic candidate in PDT.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Photosensitizing Agents/chemistry , Schiff Bases/chemistry , Density Functional Theory , Models, Chemical , Vanadium/chemistry
14.
Biol Trace Elem Res ; 188(1): 68-98, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30350272

ABSTRACT

Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.


Subject(s)
Diabetes Mellitus/metabolism , Hypoglycemic Agents/therapeutic use , Vanadium Compounds/therapeutic use , Vanadium/chemistry , Vanadium/pharmacology , Animals , Diabetes Mellitus/drug therapy , Humans , Hypoglycemic Agents/chemistry , Vanadium/blood , Vanadium Compounds/chemistry
15.
J Biol Inorg Chem ; 23(8): 1265-1281, 2018 12.
Article in English | MEDLINE | ID: mdl-30194536

ABSTRACT

Searching for prospective vanadium-based agents against Trypanosoma cruzi, the parasite causing Chagas disease, four new [VVO(8HQ-H)(L-2H)] compounds, where 8HQ is 8-hydroxyquinoline and L are tridentate salicylaldehyde semicarbazone derivatives L1-L4, were synthesized and characterized in the solid state and in solution. The compounds were evaluated on T. cruzi epimastigotes (CL Brener) as well as on VERO cells, as mammalian cell model. Compounds showed activity against T. cruzi (IC50 6.2-10.5 µM) of the same order than Nifurtimox and 8HQ, and a four- to sevenfold activity increase with respect to the free semicarbazones. For comparison, [VVO2(L-H)] series was prepared and the new [VVO2(L3-H)] was fully characterized. They showed negligible activity and low selectivity towards the parasite. The inclusion of 8HQ as ligand in [VVO(8HQ-H)(L-2H)] compounds led to good activities and increased selectivity towards the parasite with respect to 8HQ. 51V NMR experiments, performed to get insight into the nature of the active species, suggested partial decomposition of the compounds in solution to [VVO2(L-H)] and 8HQ. Depending on the dose, the compounds act as trypanocide or trypanostatic. A high uptake of vanadium in the parasites (58.51-88.9% depending on dose) and a preferential accumulation in the soluble protein fraction of the parasite was determined. Treated parasites do not seem to show a late apoptotic/necrotic phenotype suggesting a different cell death mechanism. In vivo toxicity study on zebrafish model showed no toxicity up to a 25 µM concentration of [VVO(8HQ-H)(L1-2H)]. These compounds could be considered prospective anti-T. cruzi agents that deserve further research.


Subject(s)
Coordination Complexes/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Vanadium/chemistry , Animals , Apoptosis/drug effects , Chlorocebus aethiops , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Parasitic Sensitivity Tests , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/toxicity , Vero Cells , Zebrafish
16.
J Biol Inorg Chem ; 22(6): 929-939, 2017 08.
Article in English | MEDLINE | ID: mdl-28597089

ABSTRACT

In our previous work, we demonstrated the promising in vitro effect of VOSalophen, a vanadium complex with a stilbene derivative, against Leishmania amazonensis. Its antileishmanial activity has been associated with oxidative stress in L. amazonensis promastigotes and L. amazonensis-infected macrophages. In the present study, the mechanism involved in the death of parasites after treatment with VOSalophen, as well as in vivo effect in the murine model cutaneous leishmaniasis, has been investigated. Promastigotes of L. amazonensis treated with VOSalophen presented apoptotic cells features, such as cell volume decrease, phosphatidylserine externalization, and DNA fragmentation. An increase in autophagic vacuoles formation in treated promastigotes was also observed, showing that autophagy also may be involved in the death of these parasites. In intracellular amastigotes, DNA fragmentation was observed after treatment with VOSalophen, but this effect was not observed in host cells, highlighting the selective effect of this vanadium complex. In addition, VOSalophen showed activity in the murine model of cutaneous leishmaniasis, without hepatic and renal damages. The outcome described here points out that VOSalophen had promising antileishmanial properties and these data also contribute to the understanding of the mechanisms involved in the death of protozoa induced by metal complexes.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/pathology , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Stilbenes/chemistry , Vanadium/chemistry , Animals , DNA Fragmentation/drug effects , Disease Models, Animal , Female , Leishmaniasis, Cutaneous/genetics , Mice , Mice, Inbred BALB C , Organometallic Compounds/therapeutic use
17.
Curr Med Chem ; 24(2): 112-148, 2017.
Article in English | MEDLINE | ID: mdl-27554807

ABSTRACT

Cancer is a group of diseases involving abnormal cell growth. The cells grow uncontrollably with the potential to invade and spread to other parts of the body. This disease is one of the principal death causes in the world, thus becoming a significant topic of scientific research. On the other hand, transition metals play a fundamental role in different living systems. In particular, Metallodrugs represent new and powerful tools for diverse therapeutic applications. To date, various metallodrugs display interesting biological activities for chemotherapy. In this field, cisplatin was the first inorganic compound with high relevance in cancer treatment. This compound was a leader agent in clinical use. Toxicity and resistance problems trigger the development of other platinum drugs with better clinical perspective and also raise the scientific interest for the putative antitumor properties of V, Ru and Cu compounds. Several scientific articles show that complexes of these metals are the new metal-based drugs used in the treatment of several cancers, such us, lung, colon, breast, bladder, etc. In this review we recapitulate current information and new advances on antitumor in vitro effects of several organic and inorganic compounds derived from copper, ruthenium and vanadium. These metal derived compounds targeting DNA or cell proteins involved in cell signaling pathways related to cancer. The mechanisms of cell death of these metallodrugs have also been comprehensibly reviewed. The knowledge of these mechanisms of death and the relationship between chemical structure and biological activity may be useful for the design of new metal-based drugs with promising pharmacologic applications as anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/chemistry , Ruthenium/chemistry , Vanadium/chemistry , Animals , Apoptosis/drug effects , Drug Carriers , Fatty Acids, Monounsaturated/chemistry , Humans , Nanoparticles/chemistry , Photochemotherapy , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Quaternary Ammonium Compounds/chemistry
18.
J Biol Inorg Chem ; 21(8): 1009-1020, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27696106

ABSTRACT

Osteosarcoma (OS) is the most common primary tumor of bone, occurring predominantly in the second decade of life. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for patients with localized disease. Vanadium is an ultra-trace element that after being absorbed accumulates in bone. Besides, vanadium compounds have been studied during recent years to be considered as representative of a new class of non-platinum antitumor agents. Moreover, flavonoids are a wide family of polyphenolic compounds that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, the in vitro and in vivo effects of an oxidovanadium(IV) complex with the flavonoid chrysin on the new 3D human osteosarcoma and xenograft osteosarcoma mice models. The pharmacological results show that VOchrys inhibited the cell viability affecting the shape and volume of the spheroids and VOchrys suppressed MG-63 tumor growth in the nude mice without inducing toxicity and side effects. As a whole, the results presented herein demonstrate that the antitumor action of the complex was very promissory on human osteosarcoma models, whereby suggesting that VOchrys is a potentially good candidate for future use in alternative antitumor treatments.


Subject(s)
Bone Neoplasms/drug therapy , Coordination Complexes/pharmacology , Flavonoids/pharmacology , Osteosarcoma/drug therapy , Spheroids, Cellular/drug effects , Vanadium/pharmacology , Animals , Bone Neoplasms/pathology , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemistry , Female , Flavonoids/chemistry , Humans , Male , Mice, Nude , Microscopy, Phase-Contrast , Molecular Structure , Osteosarcoma/pathology , Spheroids, Cellular/pathology , Time Factors , Treatment Outcome , Vanadium/chemistry , Xenograft Model Antitumor Assays
19.
Bioorg Med Chem ; 24(22): 6004-6011, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27707626

ABSTRACT

The anticancer and antimetastatic behavior of the flavonoid luteolin and its oxidovanadium(IV) complex [VO(lut)(H2O)2]Na·3H2O (VOlut) has been investigated. Considering that the complex displayed strong anticancer activity on MDAMB231 human breast cancer cell line we herein determined through in vitro assays that the complex would probably reduce breast cancer cell metastasis in a higher extent than the natural antioxidant. In the CT26 colon cancer cell line a stronger anticancer effect has also been determined for the complex (IC50 0.9µM) and in addition it did not exert toxic effects on normal colon epithelial cells at concentrations up to 10µM. Working with a murine model of highly aggressive, orthotopic colon cancer model (CT26 cancer cell lines) it has been determined that the complex might prevent metastatic dissemination of the colon cancer cells to the liver. The flavonoid luteolin also exerted anticancer effects (at a low degree, IC50 5.9µM) on CT26 cell line and produced a 24% reduction of colon cancer liver metastasis.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Disease Models, Animal , Luteolin/pharmacology , Vanadium/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Luteolin/chemistry , Mice , Mice, Inbred BALB C , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured , Vanadium/chemistry
20.
Bioorg Med Chem ; 24(18): 4108-4119, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27374881

ABSTRACT

The natural antioxidant flavonoid diosmin, found in citric fruits, showed low antioxidant properties among other flavonoids due to its structural characteristics and low cytotoxicity against lung (A549) and breast (T47D, SKBR3 and MDAMB231) cancer cell lines. The anticancer behavior has been improved by the metal complex generated with the flavonoid and the oxidovanadium(IV) ion. This new complex, [VO(dios)(OH)3]Na5·6H2O (VOdios), has been synthesized and characterized both in solid and solution states. The interaction of the metal ion through the sugar moiety of diosmin precluded the improvement of the antioxidant effects. However, the cell-killing effects tested in human lung A549 and breast T47D, SKBR3 and MDAMB231 cancer cell lines, were enhanced by complexation. The anti-proliferative effects on the human lung cancer cell line were accompanied by cellular ROS generation and an increase in cytoplasm condensation. The breast cancer cell lines did not produce caspase3/7 activation, mitochondrial potential reduction and ROS generation. Therefore, a non-apoptotic form of cell death in a caspase- and oxidative stress-independent manner has been proposed. The protein binding ability has been monitored by the quenching of tryptophan emission in the presence of the compounds using bovine serum albumin (BSA) as a model protein. Both compounds could be distributed and transported in vivo and the complex displayed stronger binding affinity and higher contributions to the hydrogen bond and van der Waals forces.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Diosmin/analogs & derivatives , Diosmin/pharmacology , Vanadium/chemistry , Vanadium/pharmacology , Animals , Caspases/metabolism , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Serum Albumin, Bovine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL