Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.710
Filter
1.
Compr Rev Food Sci Food Saf ; 23(4): e13407, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030802

ABSTRACT

This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.


Subject(s)
Fruit , Salmonella , Serogroup , Vegetables , Vegetables/microbiology , Fruit/microbiology , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/genetics , Prevalence , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Food Contamination/analysis , Food Microbiology
2.
Viruses ; 16(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066317

ABSTRACT

Bacteriophages (phages) have gained considerable attention as effective antimicrobial agents that infect and kill pathogenic bacteria. Based on this feature, phages have been increasingly used to achieve food safety. They are stored in a medium or buffer to ensure stability; however, they cannot be directly applied to food under these conditions due to reasons such as regulatory considerations and concerns about marketability. This study developed a stabilizing solution that allowed the maintenance of phage activity for extended periods at room temperature while being directly applicable to food. The stability of phages stored in distilled water was relatively low. However, adding a stabilizer composed of sugars and salts improved the survival rates of phages significantly, resulting in stability for up to 48 weeks at room temperature. When Escherichia coli O157:H7-contaminated vegetables were washed with tap water containing phages, the phages reduced the pathogenic E. coli count by over 90% compared with washing with tap water alone. Additionally, when pathogenic E. coli-contaminated vegetables were placed in a phage-coated container and exposed to water, the coating of the container dissolved, releasing phages and lysing the pathogenic E. coli. This led to a significant 90% reduction in pathogenic E. coli contamination compared to that after water rinsing. These results suggest an effective and economical method for maintaining phage activity and establishing the potential for commercialization through application in the food industry.


Subject(s)
Bacteriophages , Escherichia coli O157 , Food Microbiology , Temperature , Vegetables , Bacteriophages/physiology , Vegetables/microbiology , Vegetables/virology , Escherichia coli O157/virology , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology , Food Safety
3.
Front Cell Infect Microbiol ; 14: 1399732, 2024.
Article in English | MEDLINE | ID: mdl-39006743

ABSTRACT

Tigecycline serves as a last-resort antimicrobial agent against severe infections caused by multidrug-resistant bacteria. Tet(X) and its numerous variants encoding flavin-dependent monooxygenase can confer resistance to tigecycline, with tet(X4) being the most prevalent variant. This study aims to investigate the prevalence and characterize tigecycline resistance gene tet(X) in E. coli isolates from various origins in Yangzhou, China, to provide insights into tet(X) dissemination in this region. In 2022, we tested the presence of tet(X) in 618 E. coli isolates collected from diverse sources, including patients, pig-related samples, chicken-related samples, and vegetables in Yangzhou, China. The antimicrobial susceptibility of tet(X)-positive E. coli isolates was conducted using the agar dilution method or the broth microdilution method. Whole genome sequencing was performed on tet(X)-positive strains using Illumina and Oxford Nanopore platforms. Four isolates from pig or pork samples carried tet(X4) and exhibited resistance to multiple antimicrobial agents, including tigecycline. They were classified as ST542, ST10, ST761, and ST48, respectively. The tet(X4) gene was located on IncFIA8-IncHI1/ST17 (n=2), IncFIA18-IncFIB(K)-IncX1 (n=1), and IncX1 (n=1) plasmids, respectively. These tet(X4)-carrying plasmids exhibited high similarity to other tet(X4)-bearing plasmids with the same incompatible types found in diverse sources in China. They shared related genetic environments of tet(X4) associated with ISCR2, as observed in the first identified tet(X4)-bearing plasmid p47EC. In conclusion, although a low prevalence (0.65%) of tet(X) in E. coli strains was observed in this study, the horizontal transfer of tet(X4) among E. coli isolates mediated by pandemic plasmids and the mobile element ISCR2 raises great concerns. Thus, heightened surveillance and immediate action are imperative to curb this clinically significant resistance gene and preserve the efficacy of tigecycline.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Tigecycline , Tigecycline/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , China , Anti-Bacterial Agents/pharmacology , Swine , Animals , Escherichia coli Infections/microbiology , Humans , Plasmids/genetics , Chickens/microbiology , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Vegetables/microbiology , Escherichia coli Proteins/genetics
4.
Food Microbiol ; 122: 104554, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839220

ABSTRACT

Challenge tests are commonly employed to evaluate the growth behavior of L. monocytogenes in food matrices; they are known for being expensive and time-consuming. An alternative could be the use of predictive models to forecast microbial behavior under different conditions. In this study, the growth behavior of L. monocytogenes in different fresh produce was evaluated using a predictive model based on the Gamma concept considering pH, water activity (aw), and temperature as input factors. An extensive literature search resulted in a total of 105 research articles selected to collect growth/no growth behavior data of L. monocytogenes. Up to 808 L. monocytogenes behavior values and physicochemical characteristics were extracted for different fruits and vegetables. The predictive performance of the model as a tool for identifying the produce commodities supporting the growth of L. monocytogenes was proved by comparing with the experimental data collected from the literature. The model provided satisfactory predictions on the behavior of L. monocytogenes in vegetables (>80% agreement with experimental observations). For leafy greens, a 90% agreement was achieved. In contrast, the performance of the Gamma model was less satisfactory for fruits, as it tends to overestimate the potential of acid commodities to inhibit the growth of L. monocytogenes.


Subject(s)
Food Microbiology , Fruit , Listeria monocytogenes , Vegetables , Listeria monocytogenes/growth & development , Vegetables/microbiology , Vegetables/growth & development , Fruit/microbiology , Hydrogen-Ion Concentration , Temperature , Models, Biological , Water/metabolism , Colony Count, Microbial , Food Contamination/analysis
5.
Curr Microbiol ; 81(7): 206, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831051

ABSTRACT

The presence of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae in fresh fruits and vegetables is a growing public health concern. The primary objective of this study was to investigate the relationship between biofilm formation and extended-spectrum ß-lactamase (ESBL) production in K. pneumoniae strains obtained from fresh fruits and vegetables. Out of 120 samples analysed, 94 samples (78%) were found to be positive for K. pneumoniae. Among the K. pneumoniae strains isolated, 74.5% were from vegetables, whereas the remaining (25.5%) were from fresh fruits. K. pneumoniae isolates were resistant to at least three different classes of antibiotics, with ceftazidime (90%) and cefotaxime (70%) showing the highest resistance rates. While the high occurrence of ESBL-producing and biofilm-forming K. pneumoniae strains were detected in vegetables (73.5% and 73.7%, respectively), considerable amounts of the same were also found in fresh fruits (26.5% and 26.3%, respectively). The results further showed a statistically significant (P < 0.001) association between biofilm formation and ESBL production in K. pneumoniae strains isolated from fresh fruits and vegetables. Furthermore, the majority (81%) of the ESBL-producing strains harbored the blaCTX-M gene, while a smaller proportion of strains carried the blaTEM gene (30%), blaSHV gene (11%) or blaOXA (8%). This study highlights the potential public health threat posed by K. pneumoniae in fresh fruits and vegetables and emphasizes the need for strict surveillance and control measures.


Subject(s)
Anti-Bacterial Agents , Biofilms , Fruit , Klebsiella pneumoniae , Microbial Sensitivity Tests , Vegetables , beta-Lactamases , Biofilms/growth & development , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Vegetables/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Fruit/microbiology , Anti-Bacterial Agents/pharmacology
6.
Int J Food Microbiol ; 420: 110765, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38838541

ABSTRACT

Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.


Subject(s)
Vegetables , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Vegetables/microbiology , Food Safety , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli/enzymology , Food Microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Whole Genome Sequencing , Humans
7.
J Agric Food Chem ; 72(28): 15401-15415, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38875493

ABSTRACT

In the context of global population growth expected in the future, enhancing the agri-food yield is crucial. Plant diseases significantly impact crop production and food security. Modern microfluidics offers a compact and convenient approach for detecting these defects. Although this field is still in its infancy and few comprehensive reviews have explored this topic, practical research has great potential. This paper reviews the principles, materials, and applications of microfluidic technology for detecting plant diseases caused by various pathogens. Its performance in realizing the separation, enrichment, and detection of different pathogens is discussed in depth to shed light on its prospects. With its versatile design, microfluidics has been developed for rapid, sensitive, and low-cost monitoring of plant diseases. Incorporating modules for separation, preconcentration, amplification, and detection enables the early detection of trace amounts of pathogens, enhancing crop security. Coupling with imaging systems, smart and digital devices are increasingly being reported as advanced solutions.


Subject(s)
Bacteria , Edible Grain , Fruit , Fungi , Plant Diseases , Vegetables , Viruses , Plant Diseases/microbiology , Plant Diseases/virology , Fruit/microbiology , Fruit/chemistry , Fungi/isolation & purification , Vegetables/microbiology , Vegetables/chemistry , Bacteria/isolation & purification , Bacteria/classification , Edible Grain/microbiology , Edible Grain/chemistry , Viruses/isolation & purification , Microfluidics/methods , Microfluidics/instrumentation
8.
Waste Manag ; 186: 77-85, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38865907

ABSTRACT

A key question in anaerobic microbial ecology is how microbial communities develop over different stages of waste decomposition and whether these changes are specific to waste types. We destructively sampled over time 26 replicate bioreactors cultivated on fruit/vegetable waste (FVW) and meat waste (MW) based on pre-defined waste components and composition. To characterize community shifts, we examined 16S rRNA genes from both the leachate and solid fractions of the waste. Waste decomposition occurred faster in FVW than MW, as accumulation of ammonia in MW reactors led to inhibition of methanogenesis. We identified population succession during different stages of waste decomposition and linked specific populations to different waste types. Community analyses revealed underrepresentation of methanogens in the leachate fractions, emphasizing the importance of consistent and representative sampling when characterizing microbial communities in solid waste.


Subject(s)
Bioreactors , RNA, Ribosomal, 16S , Bioreactors/microbiology , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Refuse Disposal/methods , Solid Waste/analysis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Vegetables/microbiology , Methane/metabolism , Fruit/microbiology , Garbage , Food Loss and Waste
9.
Int J Food Microbiol ; 421: 110804, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38905809

ABSTRACT

Pre-cut fresh fruits and vegetables are highly appealing to consumers for their convenience, however, as they are highly susceptible to microbial contamination in processing, the potential risks of foodborne illnesses to public health are not negligible. This study aimed to assess the prevalence, antibiotic susceptibility and molecular characteristics of major foodborne pathogens (Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella) isolated from fresh-cut fruits and vegetables in Beijing, China. 86 stains were isolated from 326 samples, with S. aureus being the highest prevalence (15.38 %), followed by E. coli (9.23 %) and L. monocytogenes (1.85 %), while no Salmonella was detected. The prevalence by type of food indicated that fruit trays and mixed vegetables were more susceptible to contamination by pathogens. 98 % of S. aureus were resistant to at least of one antibiotic, and showed a high resistance rate to benzylpenicillin (90 %) and oxacillin (48 %). Among 25 E. coli isolates, 57.67 % of which exhibited multi-drug resistance, with common resist to trimethoprim/sulfamethoxazole (66.67 %) and ampicillin (63.33 %). A total of 9 sequence types (STs) and 8 spa types were identified in 35 S. aureus isolates, with ST398-t34 being the predominant type (42.86 %). Additionally, analysis of 25 E. coli isolates demonstrated significant heterogeneity, characterized by 22 serotypes and 18 STs. Genomic analysis revealed that 5 and 44 distinct antibiotic resistance genes (ARGs) in S. aureus and E. coli, respectively. Seven quinolone resistance-determining regions (QRDRs) mutations were identified in E. coli isolates, of which GyrA (S83L) was the most frequently detected. All the S. aureus and E. coli isolates harbored virulence genes. ARGs in S. aureus and E. coli showed a significant positive correlation with plasmids. Furthermore, one L. monocytogenes isolate, which was ST101 and serogroupIIc from watermelon sample, harbored virulence genes (inlA and inlB) and LIPI-1 pathogenic islands (prfA, plcA, hly and actA), which posed potential risks for consumer's health. This study focused on the potential microbial risk of fresh-cut fruits and vegetables associated with foodborne diseases, improving the scientific understanding towards risk assessment related to ready-to-eat foods.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Food Microbiology , Fruit , Microbial Sensitivity Tests , Staphylococcus aureus , Vegetables , Vegetables/microbiology , Fruit/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/drug effects , Beijing/epidemiology , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/drug effects , Prevalence , Food Contamination/analysis , China/epidemiology , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/classification , Listeria monocytogenes/drug effects , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology
10.
Int J Food Microbiol ; 420: 110768, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38843647

ABSTRACT

The continuous detection of multi-drug-resistant enterococci in food source environments has aroused widespread concern. In this study, 198 samples from chicken products, animal feces, raw milk, and vegetables were collected in Japan and Egypt to investigate the prevalence of enterococci and virulence characterization. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed for species identification and taxonomic analysis of the isolates. The results showed that the rates of most virulence genes (efaA, gelE, asa1, ace, and hyl) in the Japanese isolates were slightly higher than those in the Egyptian isolates. The rate of efaA was the highest (94.9 %) among seven virulence genes detected, but the cylA gene was not detected in all isolates, which was in accordance with γ-type hemolysis phenotype. In Enterococcus faecalis, the rate of kanamycin-resistant strains was the highest (84.75 %) among the antibiotics tested. Moreover, 78 % of E. faecalis strains exhibited multi-drug resistance. Four moderately vancomycin-resistant strains were found in Egyptian isolates, but none were found in Japanese isolates. MALDI-TOF MS analysis correctly identified 98.5 % (68/69) of the Enterococcus isolates. In the principal component analysis dendrogram, strains isolated from the same region with the same virulence characteristics and similar biofilm-forming abilities were characterized by clustered distribution in different clusters. This finding highlights the potential of MALDI-TOF MS for classifying E. faecalis strains from food sources.


Subject(s)
Anti-Bacterial Agents , Biofilms , Enterococcus , Food Microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Virulence Factors , Biofilms/growth & development , Enterococcus/genetics , Enterococcus/pathogenicity , Enterococcus/drug effects , Enterococcus/isolation & purification , Virulence Factors/genetics , Animals , Egypt , Anti-Bacterial Agents/pharmacology , Vegetables/microbiology , Japan , Chickens , Milk/microbiology , Feces/microbiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Food Contamination/analysis
11.
Compr Rev Food Sci Food Saf ; 23(4): e13397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924311

ABSTRACT

Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.


Subject(s)
Fruit , Vegetables , Fruit/microbiology , Vegetables/microbiology , Fungi , Microbiota , Antifungal Agents/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Mycotoxins
12.
Food Res Int ; 190: 114582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945602

ABSTRACT

Infants have digestive environments that are more favorable for microbial proliferation and subsequent endogenous nitrite production than those of adults, but direct evidence of this has been lacking. In this study, we propose a novel epidemiology of infant methemoglobinemia by demonstrating the risk posed by nitrite-producers in the gastrointestinal tract. Nitrite-producers from vegetables (n = 323) were exposed to stress factors of the gastrointestinal environment (gastric pH, intestinal bile salts, anaerobic atmosphere) reflecting 4 different postnatal age periods (Neonate, ≤1 month; Infant A, 1-3 months; Infant B, 3-6 months; Infant C, 6-12 months). "High-risk" strains with a nitrate-to-nitrite conversion rate of ≥1.3 %, the minimum rate corresponding to nitrite overproduction, under the Neonate stress condition were analyzed for intestinal adhesion. Among all the phyla, Pseudomonadota achieved the highest survival (P < 0.05; survival rate of 51.3-71.8 %). Possible cross-protection against bile resistance due to acid shock was observed for all the phyla. All the high-risk strains exhibited moderate autoaggregation (14.0-36.4 %), whereas only a few exhibited satisfactory surface hydrophobicity (>40 %). The Pantoea agglomerans strain strongly adhered to Caco-2 cells (7.4 ± 1.1 %). This study showed the ability of the Pantoea, Enterobacter, and Klebsiella strains to survive under gastrointestinal stress for ≤12 months, to excessively produce nitrite under neonatal stress conditions, and to settle in the human intestine. To our knowledge, this is the first study to reveal the role of the natural flora of vegetables in the epidemiology of infant methemoglobinemia through a multilateral approach.


Subject(s)
Methemoglobinemia , Nitrites , Vegetables , Humans , Vegetables/microbiology , Infant , Methemoglobinemia/metabolism , Nitrites/metabolism , Infant, Newborn , Bacterial Adhesion , Bile Acids and Salts/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Hydrogen-Ion Concentration , Gastrointestinal Microbiome
13.
J Food Sci ; 89(8): 5047-5064, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922911

ABSTRACT

In vegetable fermentation, pellicle is a common quality deterioration phenomenon. This study investigates the characteristics of glucose, organic acids, amino acids, and biogenic amines during the pellicle occurrence and disappearance of paocai. The results revealed a slight increase in pH of the fermentation system after pellicle occurred, and glucose was the main carbohydrate that microbial activity primary relied on. The microorganisms responsible for pellicle formation consumed organic acids in brine, but the lactic acid in paocai gradually increased and exceeded 25 mg/g. The appearance of pellicle caused a decrease in total free amino acids from 200.390 mg/100 g to 172.079 when pellicle occurred, whereas its impact on biogenic amines was not apparent. Through Kyoto Encyclopedia of Genes and Genomes pathway enrichment of metagenomics sequencing data, screening, and sorting of the key enzymes involved in organic acid metabolism, it was observed that the composition and species of the key microorganisms capable of metabolizing organic acids were more abundant before the appearance of pellicle. When pellicle occurred, lactic acid may be metabolized by Lactobacillus plantarum; in contrast, Lactobacillus and Pichia were associated with citric acid metabolism, and Lactobacillus, Pichia, Saccharomycodes, and Kazachstania were linked to malic acid metabolism. Moreover, Prevotella, Kazachstania, Lactobacillus, Vibrio, and Siphonobacter were implicated in succinic acid metabolism. Additionally, the production of tartaric acid and oxalic acid in paocai and brine resulted from abiotic effects. This knowledge offers a theoretical basis for precise control of paocai fermentation process. PRACTICAL APPLICATION: Our study revealed the specific situation of the metabolites produced by the microorganisms during the pollution and recovery process of pellicle in paocai fermentation, especially the effect of pellicle on the key process of organic acid metabolism. These research results provided theoretical basis for precise control of paocai fermentation.


Subject(s)
Amino Acids , Fermentation , Lactic Acid , Amino Acids/metabolism , Lactic Acid/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Citric Acid/metabolism , Hydrogen-Ion Concentration , Biogenic Amines/metabolism , Biogenic Amines/analysis , Glucose/metabolism , Malates/metabolism , Food Microbiology , Fermented Foods/microbiology , Vegetables/microbiology , Salts
14.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791548

ABSTRACT

Post-fermentation wastes are rich sources of various biologically active compounds with antimicrobial activity, whose potential is not being fully exploited. One of the possible applications of post-fermentation waste may be its use as a natural preservative that effectively combats pathogens found in formulations. The study aims included the following: (1) compare the antimicrobial and antioxidant activity of fermented vegetable extracts (FVEs), (2) examine the inhibition of cosmetic-borne pathogens by FVEs, and (3) estimate the preservative effectiveness of FVEs in o/w emulsions. It was found that fermented white cabbage, cucumber, celery, and the mixture of fermented white cabbage, cucumber, and celery (1:1:1) showed antibacterial and antifungal activity against all the tested reference microbial strains. The addition of fermented cucumber, celery, and the mixture of fermented white cabbage, cucumber, and celery (1:1:1) to the o/w emulsion fulfilled criterion A of the preservative effectiveness test for S. aureus, E. coli, and A. brasiliensis, but did not fulfill the criterion for P. aeruginosa and C. albicans. The tested FVEs have comparable activity to inhibit pathogens in o/w emulsion as sodium benzoate. The results of our study prove that FVEs can be valuable raw materials supporting the preservative system, which, in turn, can significantly reduce the concentration of preservatives used in o/w emulsion.


Subject(s)
Emulsions , Fermentation , Vegetables , Vegetables/chemistry , Vegetables/microbiology , Food Preservatives/pharmacology , Food Preservatives/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
15.
Environ Int ; 188: 108753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761431

ABSTRACT

Fermentation broth from fruit and vegetable waste (FFVW) has demonstrated remarkable ability as a soil amendment and in reducing antibiotic resistance genes (ARGs) pollution. However, the potential of FFVW to mitigate other microbial contamination such as human bacterial pathogens (HBPs) and virulence factor genes (VFGs), which are closely associated with human health, remains unknown. In this study, metagenomic analysis revealed that FFVW reduced the HBPs with high-risk of ARGs and VFGs including Klebsiella pneumoniae (reduced by 40.4 %), Mycobacterium tuberculosis (reduced by 21.4 %) and Streptococcus pneumoniae (reduced by 38.7 %). Correspondingly, VFG abundance in soil decreased from 3.40 copies/cell to 2.99 copies/cell. Further analysis illustrated that these was mainly attributed to the inhibition of quorum sensing (QS). FFVW reduced the abundance of QS signals, QS synthesis genes such as rpaI and luxS, as well as receptor genes such as rpfC and fusK, resulting in a decreased in risk of ARGs and VFGs. The pure culture experiment revealed that the expression of genes related to QS, VFGs, ARGs and mobile genetic elements (MGEs) were downregulated in Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and K. pneumoniae treated by FFVW, consistent with the result of metagenomic analysis. This study suggested an environmentally friendly approach for controlling soil VFGs/ARGs-carrying HBPs, which is crucial for both soil and human health under the framework of "One Health".


Subject(s)
Fruit , Quorum Sensing , Soil Microbiology , Vegetables , Quorum Sensing/drug effects , Vegetables/microbiology , Fruit/microbiology , Humans , Fermentation , Bacteria/genetics , Virulence Factors/genetics , Soil/chemistry
16.
Zoonoses Public Health ; 71(5): 560-567, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38769642

ABSTRACT

AIMS: Salmonella infections are significant causes of foodborne outbreaks in the European Union. This study investigates a sudden increase in gastroenteritis patients in the hospital district of Central Finland in June 2021. The primary aim was to study the outbreak's magnitude and source of the outbreak. METHODS AND RESULTS: Epidemiological, microbiological, environmental and traceback investigations were conducted. Over 700 persons fell ill during the outbreak caused by Salmonella Typhimurium associated with a daycare lunch. Similar S. Typhimurium was found in the patients and a vegetable mix containing iceberg lettuce, cucumber and peas served during lunch. The traceback investigation revealed that the batch information of vegetables from the wholesaler was not complete. The wholesaler had received quality complaints about the iceberg lettuce from the central kitchen. The manufacturer did not test the suspected batch for Salmonella since the production plant had given a certificate declaring it Salmonella negative. CONCLUSIONS: The most suspect ingredient was one batch of iceberg lettuce due to quality complaints. The lettuce had not been served in two daycare centres without cases. We recommend that in order to enable thorough microbiological investigation, institutional kitchens store the food samples separately as part of the internal quality control and that food items should always be tested when Salmonella contamination in an outbreak is suspected.


Subject(s)
Salmonella typhimurium , Vegetables , Finland/epidemiology , Foodborne Diseases/epidemiology , Gastroenteritis/epidemiology , Lactuca/microbiology , Cucumis sativus/microbiology , European Union , Humans , Child Day Care Centers , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Food Analysis , Vegetables/microbiology
17.
Sci Prog ; 107(2): 368504231223029, 2024.
Article in English | MEDLINE | ID: mdl-38773741

ABSTRACT

Contaminated fresh produce remains a prominent catalyst for food-borne illnesses, prompting the need for swift and precise pathogen detection to mitigate health risks. This paper introduces an innovative strategy for identifying food-borne pathogens in fresh produce samples from local markets and grocery stores, utilizing optical sensing and machine learning. The core of our approach is a photonics-based sensor system, which instantaneously generates optical signals to detect pathogen presence. Machine learning algorithms process the copious sensor data to predict contamination probabilities in real time. Our study reveals compelling results, affirming the efficacy of our method in identifying prevalent food-borne pathogens, including Escherichia coli (E. coli) and Salmonella enteric, across diverse fresh produce samples. The outcomes underline our approach's precision, achieving detection accuracies of up to 95%, surpassing traditional, time-consuming, and less accurate methods. Our method's key advantages encompass real-time capabilities, heightened accuracy, and cost-effectiveness, facilitating its adoption by both food industry stakeholders and regulatory bodies for quality assurance and safety oversight. Implementation holds the potential to elevate food safety and reduce wastage. Our research signifies a substantial stride toward the development of a dependable, real-time food safety monitoring system for fresh produce. Future research endeavors will be dedicated to optimizing system performance, crafting portable field sensors, and broadening pathogen detection capabilities. This novel approach promises substantial enhancements in food safety and public health.


Subject(s)
Escherichia coli , Food Microbiology , Machine Learning , Food Microbiology/methods , Escherichia coli/isolation & purification , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Food Safety/methods , Humans , Vegetables/microbiology , Food Contamination/analysis , Salmonella/isolation & purification
18.
Compr Rev Food Sci Food Saf ; 23(3): e13362, 2024 05.
Article in English | MEDLINE | ID: mdl-38720585

ABSTRACT

Fermentation is a traditional method utilized for vegetable preservation, with microorganisms playing a crucial role in the process. Nowadays, traditional spontaneous fermentation methods are widely employed, which excessively depend on the microorganisms attached to the surface of raw materials, resulting in great difficulties in ideal control over the fermentation process. To achieve standardized production and improve product quality, it is essential to promote inoculated fermentation. In this way, starter cultures can dominate the fermentation processes successfully. Unfortunately, inoculated fermentation has not been thoroughly studied and applied. Therefore, this paper provides a systematic review of the potential upgrading strategy of vegetable fermentation technology. First, we disclose the microbial community structures and succession rules in some typical spontaneously fermented vegetables to comprehend the microbial fermentation processes well. Then, internal and external factors affecting microorganisms are explored to provide references for the selection of fermented materials and conditions. Besides, we widely summarize the potential starter candidates with various characteristics isolated from spontaneously fermented products. Subsequently, we exhibited the inoculated fermentation strategies with those isolations. To optimize the product quality, not only lactic acid bacteria that lead the fermentation, but also yeasts that contribute to aroma formation should be combined for inoculation. The inoculation order of the starter cultures also affects the microbial fermentation. It is equally important to choose a proper processing method to guarantee the activity and convenience of starter cultures. Only in this way can we achieve the transition from traditional spontaneous fermentation to modern inoculated fermentation.


Subject(s)
Fermentation , Vegetables , Bacteria , Fermented Foods/microbiology , Food Microbiology/methods , Microbiota , Vegetables/microbiology , Yeasts
19.
Microbiol Spectr ; 12(6): e0031224, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38747598

ABSTRACT

The management of food fermentation is still largely based on empirical knowledge, as the dynamics of microbial communities and the underlying metabolic networks that produce safe and nutritious products remain beyond our understanding. Although these closed ecosystems contain relatively few taxa, they have not yet been thoroughly characterized with respect to how their microbial communities interact and dynamically evolve. However, with the increased availability of metataxonomic data sets on different fermented vegetables, it is now possible to gain a comprehensive understanding of the microbial relationships that structure plant fermentation. In this study, we applied a network-based approach to the integration of public metataxonomic 16S data sets targeting different fermented vegetables throughout time. Specifically, we aimed to explore, compare, and combine public 16S data sets to identify shared associations between amplicon sequence variants (ASVs) obtained from independent studies. The workflow includes steps for searching and selecting public time-series data sets and constructing association networks of ASVs based on co-abundance metrics. Networks for individual data sets are then integrated into a core network, highlighting significant associations. Microbial communities are identified based on the comparison and clustering of ASV networks using the "stochastic block model" method. When we applied this method to 10 public data sets (including a total of 931 samples) targeting five varieties of vegetables with different sampling times, we found that it was able to shed light on the dynamics of vegetable fermentation by characterizing the processes of community succession among different bacterial assemblages. IMPORTANCE: Within the growing body of research on the bacterial communities involved in the fermentation of vegetables, there is particular interest in discovering the species or consortia that drive different fermentation steps. This integrative analysis demonstrates that the reuse and integration of public microbiome data sets can provide new insights into a little-known biotope. Our most important finding is the recurrent but transient appearance, at the beginning of vegetable fermentation, of amplicon sequence variants (ASVs) belonging to Enterobacterales and their associations with ASVs belonging to Lactobacillales. These findings could be applied to the design of new fermented products.


Subject(s)
Bacteria , Fermentation , Food Microbiology , Microbiota , RNA, Ribosomal, 16S , Vegetables , Vegetables/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Fermented Foods/microbiology , Phylogeny
20.
Sci Total Environ ; 931: 172712, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38677439

ABSTRACT

The phyllosphere microbiome of vegetable products constitutes an important reservoir for multidrug resistant bacteria and Antibiotic Resistance Genes (ARG). Vegetable products including fermented products such as Paocai therefore may serve as a shuttle for extrinsic microorganisms with ARGs into the gut of consumers. Here we study the effect of fermentation on Paocai ARG dissemination by metagenomic analysis. Microbial abundance and diversity of the Paocai microbiome were diminished during fermentation, which correlated with the reduction of abundance in ARGs. Specifically, as fermentation progressed, Enterobacterales overtook Pseudomonadales as the predominant ARG carriers, and Lactobacillales and Enterobacteriales became the determinants of Paocai resistome variation. Moreover, the dual effect of microbes and metal resistance genes (MRGs) was the major contributor driving Paocai resistome dynamics. We recovered several metagenome-assembled genomes (MAGs) carrying acquired ARGs in the phyllosphere microbiome. ARGs of potential clinical and epidemiological relevance such as tet M and emrB-qacA, were mainly hosted by non-dominant bacterial genera. Overall, our study provides evidence that changes in microbial community composition by fermentation aid in constraining ARG dispersal from raw ingredients to the human microbiome but does not eliminate them.


Subject(s)
Fermentation , Microbiota , Microbiota/drug effects , Bacteria/genetics , Genes, Bacterial , Metagenome , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Vegetables/microbiology , Humans , Diet
SELECTION OF CITATIONS
SEARCH DETAIL