Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 447
Filter
1.
J Proteome Res ; 23(8): 3638-3648, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39038168

ABSTRACT

Heloderma horridum horridum, a venomous reptile native to America, has a venom with potential applications in treating type II diabetes. In this work, H. h. horridum venom was extracted, lyophilized, and characterized using enzymatic assays for hyaluronidase, phospholipase, and protease. Proteomic analysis of the venom was conducted employing bottom-up/shotgun approaches, SDS-PAGE, high-pH reversed-phase chromatography, and fractionation of tryptic peptides using nano-LC-MS/MS. The proteins found in H. h. horridum venom were reviewed according to the classification of the transcriptome previously reported. The proteomic approach identified 101 enzymes, 36 other proteins, 15 protein inhibitors, 11 host defense proteins, and 1 toxin, including novel venom components such as calcium-binding proteins, phospholipase A2 inhibitors, serpins, cathepsin, subtilases, carboxypeptidase-like, aminopeptidases, glycoside hydrolases, thioredoxin transferases, acid ceramidase-like, enolase, multicopper oxidases, phosphoglucose isomerase (PGI), fructose-1,6-bisphosphatase class 1, pentraxin-related, peptidylglycine α-hydroxylating monooxygenase/peptidyl-hydroxyglycine α-amidating lyase, carbonic anhydrase, acetylcholinesterase, dipeptidylpeptidase, and lysozymes. These findings contribute to understanding the venomous nature of H. h. horridum and highlight its potential as a source of bioactive compounds. Data are available via PRoteomeXchange with the identifier PXD052417.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Venoms , Proteomics/methods , Animals , Venoms/chemistry , Transcriptome , Proteome/analysis , Hyaluronoglucosaminidase/metabolism , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/genetics , Hypocreales/chemistry , Hypocreales/genetics , Reptilian Proteins/genetics , Reptilian Proteins/metabolism , Reptilian Proteins/chemistry , Animals, Poisonous , Lizards
2.
J Mol Evol ; 92(4): 505-524, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39026042

ABSTRACT

Gene duplication followed by nucleotide differentiation is one of the simplest mechanisms to develop new functions for genes. However, the evolutionary processes underlying the divergence of multigene families remain controversial. We used multigene families found within the diversity of toxic proteins in centipede venom to test two hypotheses related to venom evolution: the two-speed mode of venom evolution and the rapid accumulation of variation in exposed residues (RAVER) model. The two-speed mode of venom evolution proposes that different types of selection impact ancient and younger venomous lineages with negative selection being the predominant form in ancient lineages and positive selection being the dominant form in younger lineages. The RAVER hypothesis proposes that, instead of different types of selection acting on different ages of venomous lineages, the different types of selection will selectively contribute to amino acid variation based on whether the residue is exposed to the solvent where it can potentially interact directly with toxin targets. This hypothesis parallels the longstanding understanding of protein evolution that suggests that residues found within the structural or active regions of the protein will be under negative or purifying selection, and residues that do not form part of these areas will be more prone to positive selection. To test these two hypotheses, we compared the venom of 26 centipedes from the order Scolopendromorpha from six currently recognized species from across North America using both transcriptomics and proteomics. We first estimated their phylogenetic relationships and uncovered paraphyly among the genus Scolopendra and evidence for cryptic diversity among currently recognized species. Using our phylogeny, we then characterized the diverse venom components from across the identified clades using a combination of transcriptomics and proteomics. We conducted selection-based analyses in the context of predicted three-dimensional properties of the venom proteins and found support for both hypotheses. Consistent with the two-speed hypothesis, we found a prevalence of negative selection across all proteins. Consistent with the RAVER hypothesis, we found evidence of positive selection on solvent-exposed residues, with structural and less-exposed residues showing stronger signal for negative selection. Through the use of phylogenetics, transcriptomics, proteomics, and selection-based analyses, we were able to describe the evolution of venom from an ancient venomous lineage and support principles of protein evolution that directly relate to multigene family evolution.


Subject(s)
Arthropods , Evolution, Molecular , Phylogeny , Selection, Genetic , Animals , Arthropods/genetics , Arthropod Venoms/genetics , Arthropod Venoms/chemistry , Multigene Family , Venoms/genetics , Venoms/chemistry , North America , Gene Duplication , Models, Molecular , Protein Conformation
3.
Toxins (Basel) ; 16(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39057947

ABSTRACT

Molecular imaging has revolutionised the field of biomedical research by providing a non-invasive means to visualise and understand biochemical processes within living organisms. Optical fluorescent imaging in particular allows researchers to gain valuable insights into the dynamic behaviour of a target of interest in real time. Ion channels play a fundamental role in cellular signalling, and they are implicated in diverse pathological conditions, making them an attractive target in the field of molecular imaging. Many venom peptides exhibit exquisite selectivity and potency towards ion channels, rendering them ideal agents for molecular imaging applications. In this review, we illustrate the use of fluorescently-labelled venom peptides for disease diagnostics and intraoperative imaging of brain tumours and peripheral nerves. Finally, we address challenges for the development and clinical translation of venom peptides as nerve-targeted imaging agents.


Subject(s)
Molecular Imaging , Peptides , Humans , Animals , Molecular Imaging/methods , Peptides/chemistry , Venoms/chemistry , Receptors, Peptide/metabolism , Fluorescent Dyes/chemistry
4.
Biomater Adv ; 162: 213903, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38824828

ABSTRACT

AIM: The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND: Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION: Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES: The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.


Subject(s)
Antineoplastic Agents , Nanotechnology , Neoplasms , Humans , Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Nanotechnology/methods , Venoms/administration & dosage , Venoms/therapeutic use , Venoms/pharmacokinetics , Venoms/chemistry , Peptides/administration & dosage , Peptides/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Drug Carriers/chemistry
5.
F1000Res ; 13: 225, 2024.
Article in English | MEDLINE | ID: mdl-38919947

ABSTRACT

Epilepsy affects millions of people worldwide, and there is an urgent need to develop safe and effective therapeutic agents. Animal venoms contain diverse bioactive compounds like proteins, peptides, and small molecules, which may possess medicinal properties against epilepsy. In recent years, research has shown that venoms from various organisms such as spiders, ants, bees, wasps, and conus snails have anticonvulsant and antiepileptic effects by targeting specific receptors and ion channels. This review underscores the significance of purified proteins and toxins from these sources as potential therapeutic agents for epilepsy. In conclusion, this review emphasizes the valuable role of animal venoms as a natural resource for further exploration in epilepsy treatment research.


Subject(s)
Anticonvulsants , Venoms , Animals , Anticonvulsants/pharmacology , Humans , Venoms/therapeutic use , Venoms/pharmacology , Venoms/chemistry , Epilepsy/drug therapy
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38493344

ABSTRACT

Venomous organisms have independently evolved the ability to produce toxins 101 times during their evolutionary history, resulting in over 200 000 venomous species. Collectively, these species produce millions of toxins, making them a valuable resource for bioprospecting and understanding the evolutionary mechanisms underlying genetic diversification. RNA-seq is the preferred method for characterizing toxin repertoires, but the analysis of the resulting data remains challenging. While early approaches relied on similarity-based mapping to known toxin databases, recent studies have highlighted the importance of structural features for toxin detection. The few existing pipelines lack an integration between these complementary approaches, and tend to be difficult to run for non-experienced users. To address these issues, we developed DeTox, a comprehensive and user-friendly tool for toxin research. It combines fast execution, parallelization and customization of parameters. DeTox was tested on published transcriptomes from gastropod mollusks, cnidarians and snakes, retrieving most putative toxins from the original articles and identifying additional peptides as potential toxins to be confirmed through manual annotation and eventually proteomic analysis. By integrating a structure-based search with similarity-based approaches, DeTox allows the comprehensive characterization of toxin repertoire in poorly-known taxa. The effect of the taxonomic bias in existing databases is minimized in DeTox, as mirrored in the detection of unique and divergent toxins that would have been overlooked by similarity-based methods. DeTox streamlines toxin annotation, providing a valuable tool for efficient identification of venom components that will enhance venom research in neglected taxa.


Subject(s)
Toxins, Biological , Venoms , Animals , Venoms/genetics , Venoms/chemistry , Proteomics , Toxins, Biological/genetics , Snakes , Peptides , Transcriptome
7.
Mol Cancer Ther ; 23(2): 139-147, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38015557

ABSTRACT

The regulation of cellular processes by ion channels has become central to the study of cancer mechanisms. Designing molecules that can modify ion channels specific to tumor cells is a promising area of targeted drug delivery and therapy. Despite their potential in drug discovery, venom peptides-a group of natural products-have largely remained understudied and under-characterized. In general, venom peptides display high specificity and selectivity for their target ion channels. Therefore, they may represent an effective strategy for selectively targeting the dysregulation of ion channels in tumor cells. This review examines existing venom peptide therapies for different cancer types and focuses on the application of snail venom peptides in hepatocellular carcinoma (HCC), the most common form of primary liver cancer worldwide. We provide insights into the mode of action of venom peptides that have been shown to target tumors. We also explore the benefit of using new computational methods like de novo protein structure prediction to screen venom peptides and identify potential druggable candidates. Finally, we summarize the role of cell culture, animal, and organoid models in developing effective therapies against HCC and highlight the need for creating models that represent the most disproportionately affected ethnicities in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Venoms/pharmacology , Venoms/therapeutic use , Venoms/chemistry , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Peptides/chemistry , Ion Channels/metabolism
8.
Neuropharmacology ; 238: 109637, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37391028

ABSTRACT

Peptide-based drug development for CNS disorders is challenged by poor blood-brain barrier (BBB) penetrability of peptides. While acylation protractions (lipidation) have been successfully applied to increase circulating half-life of therapeutic peptides, little is known about the CNS accessibility of lipidated peptide drugs. Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method to visualize whole-brain 3D distribution of fluorescently labelled therapeutic peptides at single-cell resolution. Here, we applied LSFM to map CNS distribution of the clinically relevant GLP-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) and lipidated analogues following peripheral administration. Mice received an intravenous dose (100 nmol/kg) of IR800 fluorophore-labelled Ex4 (Ex4), Ex4 acylated with a C16-monoacid (Ex4_C16MA) or C18-diacid (Ex4_C18DA). Other mice were administered C16MA-acylated exendin 9-39 (Ex9-39_C16MA), a selective GLP-1R antagonist, serving as negative control for GLP-1R mediated agonist internalization. Two hours post-dosing, brain distribution of Ex4 and analogues was predominantly restricted to the circumventricular organs, notably area postrema and nucleus of the solitary tract. However, Ex4_C16MA and Ex9-39_C16MA also distributed to the paraventricular hypothalamic nucleus and medial habenula. Notably, Ex4_C18DA was detected in deeper-lying brain structures such as dorsomedial/ventromedial hypothalamic nuclei and the dentate gyrus. Similar CNS distribution maps of Ex4_C16MA and Ex9-39_C16MA suggest that brain access of lipidated Ex4 analogues is independent on GLP-1 receptor internalization. The cerebrovasculature was devoid of specific labelling, hence not supporting a direct role of GLP-1 RAs in BBB function. In conclusion, peptide lipidation increases CNS accessibility of Ex4. Our fully automated LSFM pipeline is suitable for mapping whole-brain distribution of fluorescently labelled drugs.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Venoms , Mice , Animals , Exenatide , Glucagon-Like Peptide-1 Receptor/agonists , Venoms/pharmacology , Venoms/chemistry , Peptides/chemistry , Brain/diagnostic imaging , Brain/metabolism
9.
Biochem Pharmacol ; 213: 115598, 2023 07.
Article in English | MEDLINE | ID: mdl-37201876

ABSTRACT

Limacodidae is a family of lepidopteran insects comprising >1500 species. More than half of these species produce pain-inducing defensive venoms in the larval stage, but little is known about their venom toxins. Recently, we characterised proteinaceous toxins from the Australian limacodid caterpillar Doratifera vulnerans, but it is unknown if the venom of this species is typical of other Limacodidae. Here, we use single animal transcriptomics and venom proteomics to investigate the venom of an iconic limacodid, the North American saddleback caterpillar Acharia stimulea. We identified 65 venom polypeptides, grouped into 31 different families. Neurohormones, knottins, and homologues of the immune signaller Diedel make up the majority of A.stimulea venom, indicating strong similarities to D. vulnerans venom, despite the large geographic separation of these caterpillars. One notable difference is the presence of RF-amide peptide toxins in A. stimulea venom. Synthetic versions of one of these RF-amide toxins potently activated the human neuropeptide FF1 receptor, displayed insecticidal activity when injected into Drosophila melanogaster, and moderately inhibited larval development of the parasitic nematode Haemonchus contortus. This study provides insights into the evolution and activity of venom toxins in Limacodidae, and provides a platform for future structure-function characterisation of A.stimulea peptide toxins.


Subject(s)
Moths , Venoms , Humans , Animals , Venoms/chemistry , Amides , Drosophila melanogaster , Australia , Peptides/toxicity
10.
Toxins (Basel) ; 15(4)2023 04 20.
Article in English | MEDLINE | ID: mdl-37104240

ABSTRACT

Predatory assassin bugs produce venomous saliva that enables them to overwhelm, kill, and pre-digest large prey animals. Venom from the posterior main gland (PMG) of the African assassin bug Psytalla horrida has strong cytotoxic effects, but the responsible compounds are yet unknown. Using cation-exchange chromatography, we fractionated PMG extracts from P. horrida and screened the fractions for toxicity. Two venom fractions strongly affected insect cell viability, bacterial growth, erythrocyte integrity, and intracellular calcium levels in Drosophila melanogaster olfactory sensory neurons. LC-MS/MS analysis revealed that both fractions contained gelsolin, redulysins, S1 family peptidases, and proteins from the uncharacterized venom protein family 2. Synthetic peptides representing the putative lytic domain of redulysins had strong antimicrobial activity against Escherichia coli and/or Bacillus subtilis but only weak toxicity towards insect or mammalian cells, indicating a primary role in preventing the intake of microbial pathogens. In contrast, a recombinant venom protein family 2 protein significantly reduced insect cell viability but exhibited no antibacterial or hemolytic activity, suggesting that it plays a role in prey overwhelming and killing. The results of our study show that P. horrida secretes multiple cytotoxic compounds targeting different organisms to facilitate predation and antimicrobial defense.


Subject(s)
Reduviidae , Animals , Venoms/chemistry , Predatory Behavior , Chromatography, Liquid , Drosophila melanogaster , Tandem Mass Spectrometry , Insecta/chemistry , Mammals
11.
Toxicon ; 225: 107050, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36736630

ABSTRACT

Based on its phylogenetic relationship to monitor lizards (Varanidae), Gila monsters (Heloderma spp.), and the earless monitor Lanthanotus borneesis, the Chinese crocodile lizard, Shinisaurus crocodilurus, has been assigned to the Toxicofera clade, which comprises venomous reptiles. However, no data about composition and biological activities of its oral secretion have been reported. In the present study, a proteomic analysis of the mandibular gland of S. crocodilurus and, for comparison, of the herbivorous Solomon Island skink Corucia zebrata, was performed. Scanning electron microscopy (SEM) of the teeth from S. crocodilurus revealed a sharp ridge on the anterior surface, but no grooves, whereas those of C. zebrata possess a flattened crown with a pointed cusp. Proteomic analysis of their gland extracts provided no evidence of venom-derived peptides or proteins, strongly supporting the non-venomous character of these lizards. Data are available via ProteomeXchange with identifier PXD039424.


Subject(s)
Alligators and Crocodiles , Lizards , Animals , Alligators and Crocodiles/metabolism , Lizards/metabolism , Phylogeny , Proteomics , Venoms/chemistry
12.
Eur J Nucl Med Mol Imaging ; 50(4): 996-1004, 2023 03.
Article in English | MEDLINE | ID: mdl-36446951

ABSTRACT

PURPOSE: Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4. METHODS: We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo. RESULTS: Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39). CONCLUSION: We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.


Subject(s)
Cell-Penetrating Peptides , Insulinoma , Pancreatic Neoplasms , Humans , Exenatide/metabolism , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/metabolism , Tissue Distribution , Insulinoma/metabolism , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Venoms/pharmacology , Venoms/chemistry , Venoms/metabolism
13.
Front Immunol ; 13: 972442, 2022.
Article in English | MEDLINE | ID: mdl-36091066

ABSTRACT

Over the past decades, envenomation by caterpillars of Automeris spp. became an increasing health problem in Latin America. Accidental contact with the stinging spines of these caterpillars cause acute local pain, itching, inflammation and skin rashes that persists for days. Even when the cause is obvious, the exact molecular mechanisms responsible for the observed symptoms are yet to be elucidated. Here, we describe for the first time, an active compound in the venom and the study of the bioactivity of the venom extracted from the spines of the caterpillar Automeris zaruma. Electrophysiological screening of a library of membrane proteins important for pain and itch enabled us to investigate and reveal the mode of action of the venom of A. zaruma. Further mass spectrometric analysis (Q-TOF-MS) made it possible to establish a link between the bioactivity and the components found in the venom. We show that the spine extract of A. zaruma contains histamine that potently activates the four types of the human histamine receptors (H1R, H2R, H3R and H4R) with a selectivity preference towards H3R and H4R. Furthermore, a modulation of the target MRGPRX2 was found. Together, these findings are the first to explain the symptomology of A. zaruma envenomation, enabling us a better understanding of caterpillar envenomation and predict that the hurdle of the scarce efficacy of the currently used antihistaminic drugs can be overcome by including H3R and H4R blockers in the clinical used medication. Such an approach might be used for other caterpillar envenomation in the world and represent a significant improvement for the well-being of the patient.


Subject(s)
Histamine , Manduca , Receptors, Histamine , Venoms , Animals , Histamine/metabolism , Humans , Lepidoptera , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pain/etiology , Pruritus/etiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/genetics , Receptors, Histamine/metabolism , Receptors, Histamine H4/genetics , Receptors, Histamine H4/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Venoms/adverse effects , Venoms/chemistry , Venoms/metabolism
14.
Gigascience ; 112022 05 18.
Article in English | MEDLINE | ID: mdl-35640874

ABSTRACT

Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.


Subject(s)
Proteomics , Venoms , Animals , Research , Snakes/genetics , Transcriptome , Venoms/chemistry , Venoms/genetics
15.
Sci Adv ; 8(12): eabk1410, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35319982

ABSTRACT

Somatostatin (SS) is a peptide hormone with diverse physiological roles. By investigating a deep-water clade of fish-hunting cone snails, we show that predator-prey evolution has generated a diverse set of SS analogs, each optimized to elicit specific systemic physiological effects in prey. The increased metabolic stability, distinct SS receptor activation profiles, and chemical diversity of the venom analogs make them suitable leads for therapeutic application, including pain, cancer, and endocrine disorders. Our findings not only establish the existence of SS-like peptides in animal venoms but also serve as a model for the synergy gained from combining molecular phylogenetics and behavioral observations to optimize the discovery of natural products with biomedical potential.


Subject(s)
Conus Snail , Somatostatin , Venoms , Animals , Conus Snail/chemistry , Phylogeny , Predatory Behavior , Somatostatin/chemistry , Venoms/chemistry
16.
J Insect Physiol ; 135: 104311, 2021.
Article in English | MEDLINE | ID: mdl-34592309

ABSTRACT

In New Zealand's ancient Fuscospora spp. or beech forests, two invasive Vespula social wasps Vespula vulgaris (L.) and Vespula germanica (F.) have become significant problems, adversely affecting native birds and invertebrate biodiversity. The nature of chemical communication in these two species is poorly understood, and this work was undertaken to identify the behaviourally active compounds in the venom of the common wasp, Vespula vulgaris (L.). Venom was removed from the stings of both workers and females and analyzed by coupled gas chromatography/electroantennographic detection (GC/EAD) and gas chromatography/mass spectrometry (GC/MS). Two compounds were present in the venom that consistently elicited EAD responses from the antennae of males and workers. Mass spectrometry analysis and syntheses of candidate structures revealed the structures to be N-(3-methylbutyl)acetamide (MBA) and N-(3-methylbutyl)butanamide (MBB). Gyne venom contains significantly larger amounts of MBA and MBB than worker venom. When these two compounds were tested in the field individually or as binary blends in combination with the known food odour (honeydew volatiles), only N-(3-methylbutyl)butanamide or blends containing this compound showed a strong repellent effect on workers to honeydew volatiles at all doses tested. This is the first report of the occurrence of N-(3-methylbutyl)butanamide in nature and the third amide to be identified in the venom of any social wasp. In addition, this work is the first to report the chemical analysis of the venom of V. vulgaris gyne. The repellency effect observed in this study of the venom compound suggests that our definition and understanding of the function of the alarm pheromone need to be reassessed.


Subject(s)
Amides/chemistry , Venoms/chemistry , Wasps , Animals , Female , Introduced Species , Male , New Zealand , Odorants , Pheromones/chemistry , Wasps/chemistry , Wasps/classification
17.
J Chem Ecol ; 47(10-11): 907-914, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34165686

ABSTRACT

The use of venom in predation exerts a corresponding selection pressure for the evolution of venom resistance. One of the mechanisms related to venom resistance in animals (predators or prey of snakes) is the presence of molecules in the blood that can bind venom toxins, and inhibit their pharmacological effects. One such toxin type are venom phospholipase A2s (PLA2s), which have diverse effects including anticoagulant, myotoxic, and neurotoxic activities. BoaγPLI isolated from the blood of Boa constrictor has been previously shown to inhibit venom PLA2s that induced myotoxic and edematogenic activities. Recently, in addition to its previously described and very potent neurotoxic effect, the venoms of American coral snakes (Micrurus species) have been shown to have anticoagulant activity via PLA2 toxins. As coral snakes eat other snakes as a major part of their diet, neonate Boas could be susceptible to predation by this sympatric species. Thus, this work aimed to ascertain if BoaγPLI provided a protective effect against the anticoagulant toxicity of venom from the model species Micrurus laticollaris in addition to its ability shown previously against other toxin types. Using a STA R Max coagulation analyser robot to measure the effect upon clotting time, and TEG5000 thromboelastographers to measure the effect upon clot strength, we evaluated the ability of BoaγPLI to inhibit M. laticollaris venom. Our results indicate that BoaγPLI is efficient at inhibiting the M. laticollaris anticoagulant effect, reducing the time of coagulation (restoring them closer to non-venom control values) and increasing the clot strength (restoring them closer to non-venom control values). These findings demonstrate that endogenous PLA2 inhibitors in the blood of non-venomous snakes are multi-functional and provide broad resistance against a myriad of venom PLA2-driven toxic effects including coagulotoxicity, myotoxicity, and neurotoxicity. This novel form of resistance could be evidence of selective pressures caused by predation from venomous snakes and stresses the need for field-based research aimed to expand our understanding of the evolutionary dynamics of such chemical arms race.


Subject(s)
Boidae , Coral Snakes , Phospholipases A2/toxicity , Reptilian Proteins/toxicity , Snake Venoms/chemistry , Sympatry , Venoms/chemistry , Animals , Phospholipases A2/chemistry , Predatory Behavior , Reptilian Proteins/chemistry , Snake Venoms/analysis , Snake Venoms/enzymology , Venoms/analysis , Venoms/enzymology
18.
Prog Med Chem ; 60: 1-66, 2021.
Article in English | MEDLINE | ID: mdl-34147202

ABSTRACT

Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.


Subject(s)
Drug Delivery Systems , Drug Discovery , Venoms/chemistry , Animals , Humans , Pharmaceutical Preparations/chemistry , Proteins/chemistry , Proteins/pharmacology
19.
Mol Cell Proteomics ; 20: 100100, 2021.
Article in English | MEDLINE | ID: mdl-34029722

ABSTRACT

Cone snails produce venom that contains diverse groups of peptides (conopeptides/conotoxins) and display a wide mass range, high rate of posttranslational modifications, and many potential pharmacological targets. Here we employ a proteogenomic approach to maximize conopeptide identification from the injected venom of Conus purpurascens. mRNA sequences from C. purpurascens venom ducts were assembled into a search database and complemented with known sequences and de novo approaches. We used a top-down peptidomic approach and tandem mass spectrometry identification to compare injected venom samples of 27 specimens. This intraspecific analysis yielded 543 unique conopeptide identifications, which included 33 base conopeptides and their toxiforms, 21 of which are novel. The results reveal two distinct venom profiles with different synergistic interactions to effectively target neural pathways aimed to immobilize prey. These venom expression patterns will aid target prediction, a significant step toward developing conotoxins into valuable drugs or neural probes.


Subject(s)
Conus Snail , Peptides/genetics , Venoms/genetics , Animals , Female , Peptides/chemistry , Proteogenomics , Transcriptome , Venoms/chemistry
20.
Expert Opin Drug Discov ; 16(10): 1163-1173, 2021 10.
Article in English | MEDLINE | ID: mdl-33914674

ABSTRACT

Introduction: Animal venoms are a complex mixture of bioactive molecules that have evolved over millions of years for prey capture and defense from predators. Venom consists of many different types of molecules, with disulfide-rich peptides being a major component in most venoms. The study of these potent and highly selective molecules has led to the development of venom-derived drugs for diseases such as type 2 diabetes mellitus and chronic pain. As technologies have improved, more bioactive peptides have been discovered from venomous animals. Many of these molecules may have applications as tools for understanding normal and disease physiology, therapeutics, cosmetics or in agriculture.Areas covered: This article reviews venom-derived drugs approved by the FDA and venom-derived peptides currently in development. It discusses the challenges faced by venom-derived peptide drugs during drug development and the future for venom-derived peptides.Expert opinion: New techniques such as toxin driven discovery are expanding the pipeline of venom-derived peptides. There are many venom-derived peptides currently in preclinical and clinical trials that would have remained undiscovered using traditional approaches. A renewed focus on venoms, with advances in technology, will broaden the diversity of venom-derived peptide therapeutics and expand our knowledge of their molecular targets.


Subject(s)
Diabetes Mellitus, Type 2 , Venoms , Animals , Diabetes Mellitus, Type 2/drug therapy , Drug Development , Drug Discovery/methods , Peptides/chemistry , Peptides/pharmacology , Venoms/chemistry , Venoms/pharmacology , Venoms/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL