Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.898
Filter
1.
J Immunol Methods ; 530: 113697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823576

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most severe swine diseases causing great economic losses for the international swine industry. Non-structural protein 4 (NSP4) is critical to the life cycle of PRRSV and contains dominant B cell epitopes. This study prepared a monoclonal antibody against Nsp4, and 2D11, which contained the sequence 138KQGGGIVTRPSGQFCN153, was confirmed as the epitope. A 2D11-based double antibody sandwich enzyme-linked immunosorbent assay (dasELISA) was next developed with a cut value of 0.1987. A total of 1354 pig serum samples were detected by dasELISA and compared to a commercial ELISA kit (N-coated iELISA), resulting in a positive coincidence rate of 98.8% and negative coincidence rate of 96.9%. A total of 119 sera were positive by dasELISA while negative by iELISA. Higher positive rates by dasELISA were found in pig farms where PRRSV antibody levels varied widely. These results indicated that the dasELISA was a useful tool to detect PRRSV antibody in clinical samples.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Enzyme-Linked Immunosorbent Assay/methods , Swine , Antibodies, Monoclonal/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine Reproductive and Respiratory Syndrome/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Nonstructural Proteins/immunology , Immunodominant Epitopes/immunology , Epitopes, B-Lymphocyte/immunology
3.
Viruses ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38932114

ABSTRACT

When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses.


Subject(s)
Machine Learning , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Viral Nonstructural Proteins , Virus Replication , Humans , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Infections/immunology , Amino Acid Substitution , Mutation , Cell Line
4.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38722305

ABSTRACT

Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue/prevention & control , Dengue/immunology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Clinical Laboratory Techniques/methods , Antibodies, Viral/blood , RNA, Viral/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
5.
Am J Trop Med Hyg ; 111(1): 102-106, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38806045

ABSTRACT

The profiles of vaccine-induced dengue antibodies may differ from those produced following natural infection and could potentially interfere with the interpretation of diagnostic tests. We assessed anti-dengue IgG and IgM antibodies, and nonstructural protein 1 antigen profiles in the serum of adults who received a single dose of the tetravalent dengue vaccine TAK-003 as either an initially developed high-dose formulation or the standard approved formulation in a phase 2 study in Singapore (#NCT02425098). Immunoglobulin G and IgM profiles during the first 30 days postvaccination varied by baseline serostatus (microneutralization assay). Nonstructural protein 1 antigen was not detected in the serum of any participants. Vaccine-induced IgG and IgM antibodies can affect serological confirmation of subsequent dengue infection in vaccinees. These results highlight the limitations of using serological tests for dengue diagnosis, particularly in a postvaccination setting, and emphasize the need for more sensitive antigen- and molecular-based testing for accurate dengue diagnosis.


Subject(s)
Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Immunoglobulin G , Immunoglobulin M , Viral Nonstructural Proteins , Humans , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Immunoglobulin M/blood , Immunoglobulin G/blood , Dengue/prevention & control , Dengue/immunology , Dengue/diagnosis , Viral Nonstructural Proteins/immunology , Antibodies, Viral/blood , Adult , Dengue Virus/immunology , Male , Female , Singapore , Young Adult , Middle Aged , Adolescent
6.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1536-1547, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783814

ABSTRACT

The aim of this study was to prepare a mouse monoclonal antibody against the nonstructural protein 1 (NS1) of respiratory syncytial virus (RSV) to analyze its expression and distribution during transfection and infection. Additionally, we aimed to evaluate the antibody's application in immunoprecipitation assay. Firstly, the NS1 gene fragment was cloned into a prokaryotic plasmid and expressed in Escherichia coli. The resulting NS1 protein was then purified by affinity chromatography, and used to immunize the BALB/c mice. Subsequently, hybridoma cells capable of stably secreting the NS1 monoclonal antibody were selected using indirect enzyme linked immunosorbent assay (ELISA). This monoclonal antibody was employed in both indirect immunofluorescence assay (IFA) and Western blotting to analyze the expression and distribution of RSV NS1 in overexpressed and infected cells. Finally, the reliability of this monoclonal antibody was evaluated through the immunoprecipitation assay. The results showed that the RSV NS1 protein was successfully expressed and purified. Following immunization of mice with this protein, we obtained a highly specific RSV NS1 monoclonal antibody, which belonged to the IgG1 subtype with an antibody titer of 1:15 360 000. Using this monoclonal antibody, the RSV NS1 protein was identified in both transfected and infected cells. The IFA results revealed predominant distribution of NS1 in the cytoplasm and nucleus. Moreover, we confirmed that this monoclonal antibody could effectively bind specifically to NS1 protein in cell lysates, making it suitable as a capture antibody in immunoprecipitation assay. In conclusion, our study successfully achieved production of the RSV NS1 protein through a prokaryotic expression system and prepared a specific monoclonal antibody against NS1. This antibody demonstrates the ability to specifically identify the NS1 protein and can be used in the immunoprecipitation assay, thereby laying a foundation for the functional studies of the NS1 protein.


Subject(s)
Antibodies, Monoclonal , Viral Nonstructural Proteins , Animals , Female , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/genetics , Antibodies, Viral/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Hybridomas/immunology , Mice, Inbred BALB C , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
7.
J Immunol Methods ; 530: 113695, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797275

ABSTRACT

Japanese Encephalitis (JE) is a mosquito borne re-emerging viral zoonotic disease. Sero-conversion in swine occurs 2-3 weeks before human infection, thus swine act as a suitable sentinel for predicting JE outbreaks in humans. The present study was undertaken with the objective of developing immunochromatographic strip (ICS) assay to detect recent infection of Japanese Encephalitis virus (JEV) in swine population. The two formats of ICS assay were standardized. In the first format, gold nanoparticles (GNP) were conjugated with goat anti-pig IgM (50 µg/ml) followed by spotting of recombinant NS1 protein (1 mg/ml) of JEV on NCM as test line and protein G (1 mg/ml) as control line. In the format-II, GNP were conjugated with rNS1 protein (50 µg/ml) followed by spotting of Goat anti-pig IgM (1 mg/ml) as test line and IgG against rNS1 (1 mg/ml) as control line. To decrease the non- specific binding, blocking of serum and nitrocellulose membrane (NCM) was done using 5% SMP in PBS-T and 1% BSA, respectively. Best reaction conditions for the assay were observed when 10 µl of GNP conjugate and 50 µl of 1:10 SMP blocked sera was reacted on BSA blocked NCM followed by reaction time of 15 mins. Samples showing both test and control line were considered positive whereas samples showing only control line were considered negative. A total of 318 field swine sera samples were screened using indirect IgM ELISA and developed ICS assay. Relative diagnostic sensitivity and specificity of format-I was 81.25% and 93.0% whereas of format-II was 87.50% and 62.93%, respectively. Out of 318 samples tested, 32 were positive through IgM ELISA with sero-positivity of 10.06% while sero-positivity with format-I of ICS was 8.1%. Owing to optimal sensitivity and higher specificity of format-I, it was validated in three different labs and the kappa agreement ranged from 0.80 to 1, which signifies excellent repeatability of the developed assay to test field swine sera samples for detecting recent JEV infection.


Subject(s)
Antibodies, Viral , Encephalitis Virus, Japanese , Encephalitis, Japanese , Immunoglobulin M , Metal Nanoparticles , Swine Diseases , Animals , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/diagnosis , Encephalitis, Japanese/immunology , Encephalitis, Japanese/virology , Encephalitis Virus, Japanese/immunology , Swine , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Metal Nanoparticles/chemistry , Swine Diseases/diagnosis , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/blood , Viral Nonstructural Proteins/immunology , Sensitivity and Specificity , Chromatography, Affinity/methods , Gold/chemistry , Reagent Strips , Reproducibility of Results , Immunoglobulin G/blood , Immunoglobulin G/immunology , Humans
8.
Antiviral Res ; 227: 105915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777094

ABSTRACT

The genus of flavivirus includes many mosquito-borne human pathogens, such as Zika (ZIKV) and the four serotypes of dengue (DENV1-4) viruses, that affect billions of people as evidenced by epidemics and endemicity in many countries and regions in the world. Among the 10 viral proteins encoded by the viral genome, the nonstructural protein 1 (NS1) is the only secreted protein and has been used as a diagnostic biomarker. NS1 has also been an attractive target for its biotherapeutic potential as a vaccine antigen. This review focuses on the recent advances in the structural landscape of the secreted NS1 (sNS1) and its complex with monoclonal antibodies (mAbs). NS1 forms an obligatory dimer, and upon secretion, it has been reported to be hexametric (trimeric dimers) that could dissociate and bind to the epithelial cell membrane. However, high-resolution structural information has been missing about the high-order oligomeric states of sNS1. Several cryoEM studies have since shown that DENV and ZIKV recombinant sNS1 (rsNS1) are in dynamic equilibrium of dimer-tetramer-hexamer states, with tetramer being the predominant form. It was recently revealed that infection-derived sNS1 (isNS1) forms a complex of the NS1 dimer partially embedded in a High-Density Lipoprotein (HDL) particle. Structures of NS1 in complexes with mAbs have also been reported which shed light on their protective roles during infection. The biological significance of the diversity of NS1 oligomeric states remains to be further studied, to inform future research on flaviviral pathogenesis and the development of therapeutics and vaccines. Given the polymorphism of flavivirus NS1 across sample types with variations in antigenicity, we propose a nomenclature to accurately define NS1 based on the localization and origin.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Flavivirus , Viral Nonstructural Proteins , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Viral/immunology , Flavivirus/immunology , Flavivirus/chemistry , Flavivirus/genetics , Animals , Zika Virus/immunology , Zika Virus/genetics , Zika Virus/chemistry , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Virus/chemistry , Protein Multimerization , Protein Conformation
9.
Int J Biol Macromol ; 269(Pt 2): 132169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723801

ABSTRACT

In our study, we developed a point of care electrochemical biosensing platform based on the functionalized cysteine-positioned gold electrode to diagnose yellow fever disease from human plasma samples. The developed platform underwent characterization through diverse methods encompassing cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and density-functional theory. The capacitive interaction between yellow fever virus non-structural antigen and antibody gave a cathodic signal at approximately -260 mV, and increased in proportion to the amount of non-structural antibody. The created electrochemical biosensor has an ability to detect 96 ag/mL of the yellow fever non-structural antibody with an extensive analytical range varied from 0.1 fg/mL to 1 µg/mL. The interference effects of various substances that could be found in human plasma, and the performance of the method were examined from the point of recovery and relative standard deviation for human plasma samples; hereby, the results confirmed the unprecedented selectivity and accuracy of the proposed method.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Viral Nonstructural Proteins , Yellow Fever , Humans , Biosensing Techniques/methods , Yellow Fever/diagnosis , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/virology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/blood , Electrochemical Techniques/methods , Point-of-Care Systems , Yellow fever virus/immunology , Density Functional Theory , Electrodes , Antibodies, Viral/blood , Antibodies, Viral/immunology , Gold/chemistry
10.
PLoS One ; 19(5): e0303839, 2024.
Article in English | MEDLINE | ID: mdl-38758765

ABSTRACT

The interaction between SARS-CoV-2 non-structural protein Nsp9 and the nanobody 2NSP90 was investigated by NMR spectroscopy using the paramagnetic perturbation methodology PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation). The Nsp9 monomer is an essential component of the replication and transcription complex (RTC) that reproduces the viral gRNA for subsequent propagation. Therefore preventing Nsp9 recruitment in RTC would represent an efficient antiviral strategy that could be applied to different coronaviruses, given the Nsp9 relative invariance. The NMR results were consistent with a previous characterization suggesting a 4:4 Nsp9-to-nanobody stoichiometry with the occurrence of two epitope pairs on each of the Nsp9 units that establish the inter-dimer contacts of Nsp9 tetramer. The oligomerization state of Nsp9 was also analyzed by molecular dynamics simulations and both dimers and tetramers resulted plausible. A different distribution of the mapped epitopes on the tetramer surface with respect to the former 4:4 complex could also be possible, as well as different stoichiometries of the Nsp9-nanobody assemblies such as the 2:2 stoichiometry suggested by the recent crystal structure of the Nsp9 complex with 2NSP23 (PDB ID: 8dqu), a nanobody exhibiting essentially the same affinity as 2NSP90. The experimental NMR evidence, however, ruled out the occurrence in liquid state of the relevant Nsp9 conformational change observed in the same crystal structure.


Subject(s)
Epitopes , Molecular Dynamics Simulation , SARS-CoV-2 , Single-Domain Antibodies , Viral Nonstructural Proteins , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , SARS-CoV-2/immunology , Epitopes/immunology , Epitopes/chemistry , Humans , Magnetic Resonance Spectroscopy , Protein Binding , Protein Multimerization , COVID-19/immunology , COVID-19/virology , RNA-Binding Proteins
11.
J Med Virol ; 96(6): e29689, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38818789

ABSTRACT

Individuals infected with dengue virus (DENV) often show no symptoms, which raises the risk of DENV transfusion transmission (TT-DENV) in areas where the virus is prevalent. This study aimed to determine the evidence of DENV infection in blood donors from different geographic regions of Thailand. A cross-sectional study was conducted on blood donor samples collected from the Thai Red Cross National Blood Center and four regional blood centers between March and September 2020. Screening for DENV nonstructural protein 1 (NS1), anti-DENV immunoglobulin G (IgG), and IgM antibodies was performed on residual blood from 1053 donors using enzyme-linked immunosorbent assay kits. Positive NS1 and IgM samples indicating acute infection were verified using four different techniques, including quantitative real-time (q) RT-PCR, nested PCR, virus isolation in C6/36 cells, and mosquito amplification. DENV IgG seropositivity was identified in 89% (938/1053) of blood donors. Additionally, 0.4% (4/1053) and 2.1% (22/1053) of Thai blood donors tested positive for NS1 and IgM, respectively. The presence of asymptomatic dengue virus infection in healthy blood donors suggests a potential risk of transmission through blood transfusion, posing a concern for blood safety.


Subject(s)
Antibodies, Viral , Blood Donors , Dengue Virus , Dengue , Immunoglobulin G , Immunoglobulin M , Humans , Thailand/epidemiology , Dengue/transmission , Dengue/epidemiology , Blood Donors/statistics & numerical data , Cross-Sectional Studies , Dengue Virus/immunology , Dengue Virus/isolation & purification , Dengue Virus/genetics , Antibodies, Viral/blood , Female , Male , Adult , Immunoglobulin M/blood , Immunoglobulin G/blood , Young Adult , Middle Aged , Adolescent , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Blood Donation
12.
Virology ; 595: 110083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696887

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Subject(s)
Down-Regulation , Histocompatibility Antigens Class I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , beta 2-Microglobulin , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Cell Line , CD8-Positive T-Lymphocytes/immunology , Mutation
13.
J Virol ; 98(5): e0009324, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38591899

ABSTRACT

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Subject(s)
Feline Panleukopenia Virus , Viral Nonstructural Proteins , Virus Replication , Animals , Cats , Cell Line , Feline Panleukopenia Virus/genetics , Feline Panleukopenia Virus/immunology , Immunity, Innate , Mutation , Parvoviridae Infections/virology , Parvoviridae Infections/immunology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology
14.
PLoS Pathog ; 20(4): e1012167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662771

ABSTRACT

Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1ß in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1ß. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.


Subject(s)
Dengue Virus , Dengue , Inflammasomes , Macrophages , Viral Nonstructural Proteins , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , Animals , Inflammasomes/metabolism , Inflammasomes/immunology , Dengue/immunology , Dengue/virology , Dengue/metabolism , Mice , Dengue Virus/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Mice, Inbred C57BL , Mice, Knockout , Caspase 1/metabolism
15.
Front Immunol ; 15: 1294898, 2024.
Article in English | MEDLINE | ID: mdl-38660301

ABSTRACT

Human adenovirus type 7 (HAdV-7) is a significant viral pathogen that causes respiratory infections in children. Currently, there are no specific antiviral drugs or vaccines for children targeting HAdV-7, and the mechanisms of its pathogenesis remain unclear. The NLRP3 inflammasome-driven inflammatory cascade plays a crucial role in the host's antiviral immunity. Our previous study demonstrated that HAdV-7 infection activates the NLRP3 inflammasome. Building upon this finding, our current study has identified the L4 100 kDa protein encoded by HAdV-7 as the primary viral component responsible for NLRP3 inflammasome activation. By utilizing techniques such as co-immunoprecipitation, we have confirmed that the 100 kDa protein interacts with the NLRP3 protein and facilitates the assembly of the NLRP3 inflammasome by binding specifically to the NACHT and LRR domains of NLRP3. These insights offer a deeper understanding of HAdV-7 pathogenesis and contribute to the development of novel antiviral therapies.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Viral Nonstructural Proteins , Humans , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/immunology , Adenoviruses, Human/physiology , HEK293 Cells , Inflammasomes/metabolism , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Protein Binding , Viral Proteins/metabolism , Viral Proteins/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
16.
Prev Vet Med ; 227: 106197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613943

ABSTRACT

The use of virus-neutralizing (VN) and nonstructural protein (NSP) antibody tests in a serosurveillance program for foot-and-mouth disease (FMD) can identify pig herds that are adequately vaccinated, with a high percentage of pigs with VN positive antibody titers; these tests can also help identify pigs with NSP-positivity that have previously been or are currently infected even in vaccinated herds. To identify infected herds and manage infection, the combination of VN and NSP antibody tests was used in Taiwan's serosurveillance program implemented simultaneously with the compulsory FMD vaccination program. The result was the eradication of FMD: Taiwan was recognized by the World Organization for Animal Health as an FMD-free country without vaccination in 2020. Evaluation of the compulsory vaccination program incorporated in the FMD control program in Taiwan revealed that the vaccine quality was satisfactory and the vaccination program was effective during the period of compulsory vaccination (2010-2017). Sound immunological coverage was achieved, with 89.1% of pigs having VN antibody titers exceeding 1:16 in 2016. This level of immunological coverage would be expected to substantially reduce or prevent FMD transmission, which was borne out by the results of the NSP tests. We identified farms having positive NSP reactors (very low annual prevalence) before the cessation of FMD vaccination in July 2018; however, detailed serological and clinical investigations of pigs of all ages in suspect herds demonstrated that no farms were harboring infected animals after the second half of 2013. Thus, the results revealed no evidence of FMD circulation in the field, and Taiwan regained FMD-free status.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Swine Diseases , Viral Nonstructural Proteins , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Taiwan/epidemiology , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Swine Diseases/virology , Viral Nonstructural Proteins/immunology , Seroepidemiologic Studies , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Foot-and-Mouth Disease Virus/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccination/veterinary
17.
Vaccine ; 42(15): 3514-3521, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38670845

ABSTRACT

Group A rotavirus (RVA) is the primary etiological agent of acute gastroenteritis (AGE) in children under 5 years of age. Despite the global implementation of vaccines, rotavirus infections continue to cause over 120,000 deaths annually, with a majority occurring in developing nations. Among infants, the P[8] rotavirus strain is the most prevalent and can be categorized into four distinct lineages. In this investigation, we expressed five VP4(aa26-476) proteins from different P[8] lineages of human rotavirus in E. coli and assessed their immunogenicity in rabbits. Among the different P[8] strains, the Wa-VP4 protein, derived from the MT025868.1 strain of the P[8]-1 lineage, exhibited successful purification in a highly homogeneous form and significantly elicited higher levels of neutralizing antibodies (nAbs) against both homologous and heterologous rotaviruses compared to other VP4 proteins derived from different P[8] lineages in rabbits. Furthermore, we assessed the immunogenicity of the Wa-VP4 protein in mice, pigs, and cynomolgus monkeys, observing that it induced robust production of nAbs in all animals. Interestingly, there was no significant difference between in nAb titers against homologous and heterologous rotaviruses in pigs and mankeys. Collectively, these findings suggest that the Wa-VP4* protein may serve as a potential candidate for a rotavirus vaccine.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins , Macaca fascicularis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Swine , Rabbits , Mice , Rotavirus/immunology , Rotavirus/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Female , Mice, Inbred BALB C , Humans , Immunogenicity, Vaccine , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
18.
Diagn Microbiol Infect Dis ; 109(2): 116227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503028

ABSTRACT

The objective of this systematic review is to analyze the diagnostic accuracy of rapid dengue diagnostic tests. The search was conducted in the following databases: LILACS, Medline (Pubmed), CRD, The Cochrane Library, Trip Medical Database and Google Scholar. ELISA and PCR assays were adopted as reference methods. Thirty-four articles were included in this systematic review. Receiver operating characteristic (ROC) and Forest Plot were performed to evaluate sensitivity and specificity for each parameter analyzed (NS1, IgM and IgG). The results revealed that the combined analysis of the IgM antibody with the NS1 antigen resulted in greater sensitivity than the isolated analysis of IgM. The three analytes together showed the best performance, with a combined sensitivity of 90 % (95 % CI: 89-92 %) using ELISA as a comparator. Thus, the present review provides relevant knowledge for decision-making between the available rapid diagnostic tests.


Subject(s)
Antibodies, Viral , Dengue , Immunoglobulin M , Sensitivity and Specificity , Humans , Antibodies, Viral/blood , Chromatography, Affinity/methods , Dengue/diagnosis , Dengue Virus/immunology , Diagnostic Tests, Routine/methods , Diagnostic Tests, Routine/standards , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , ROC Curve , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/blood
19.
Virol Sin ; 39(2): 264-276, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272236

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major economically devastating pathogen that has evolved various strategies to evade innate immunity. Downregulation of antiviral interferon largely promotes PRRSV immunoevasion by utilizing cytoplasmic melanoma differentiation-associated gene 5 (MDA5), a receptor that senses viral RNA. In this study, the downregulated transcription and expression levels of porcine MDA5 in PRRSV infection were observed, and the detailed mechanisms were explored. We found that the interaction between P62 and MDA5 is enhanced due to two factors: the phosphorylation modification of the autophagic receptor P62 by the upregulated kinase CK2α and the K63 ubiquitination of porcine MDA5 catalyzed by the E3 ubiquitinase TRIM21 in PRRSV-infected cells. As a result of these modifications, the classic P62-mediated autophagy is triggered. Additionally, porcine MDA5 interacts with the chaperonin containing TCP1 subunit 2 (CCT2), which is enhanced by PRRSV nsp3. This interaction promotes the aggregate formation and autophagic clearance of MDA5-CCT2-nsp3 independently of ubiquitination. In summary, enhanced MDA5 degradation occurs in PRRSV infection via two autophagic pathways: the binding of MDA5 with the autophagy receptor P62 and the aggrephagy receptor CCT2, leading to intense innate immune suppression. The research reveals a novel mechanism of immune evasion in PRRSV infection and provides fundamental insights for the development of new vaccines or therapeutic strategies.


Subject(s)
Autophagy , Immunity, Innate , Interferon-Induced Helicase, IFIH1 , Porcine respiratory and reproductive syndrome virus , Animals , Cell Line , Host-Pathogen Interactions/immunology , Immune Evasion , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Phosphorylation , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine respiratory and reproductive syndrome virus/immunology , Swine , Ubiquitination , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Humans
20.
Trends Microbiol ; 32(7): 678-696, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38135616

ABSTRACT

In recent decades, the presence of flaviviruses of concern for human health in Europe has drastically increased,exacerbated by the effects of climate change - which has allowed the vectors of these viruses to expand into new territories. Co-circulation of West Nile virus (WNV), Usutu virus (USUV), and tick-borne encephalitis virus (TBEV) represents a threat to the European continent, and this is further complicated by the difficulty of obtaining an early and discriminating diagnosis of infection. Moreover, the possibility of introducing non-endemic pathogens, such as Japanese encephalitis virus (JEV), further complicates accurate diagnosis. Current flavivirus diagnosis is based mainly on RT-PCR and detection of virus-specific antibodies. Yet, both techniques suffer from limitations, and the development of new assays that can provide an early, rapid, low-cost, and discriminating diagnosis of viral infection is warranted. In the pursuit of ideal diagnostic assays, flavivirus non-structural protein 1 (NS1) serves as an excellent target for developing diagnostic assays based on both the antigen itself and the antibodies produced against it. This review describes the potential of such NS1-based diagnostic methods, focusing on the application of flaviviruses that co-circulate in Europe.


Subject(s)
Biomarkers , Flavivirus Infections , Flavivirus , Viral Nonstructural Proteins , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics , Flavivirus/isolation & purification , Flavivirus/genetics , Flavivirus/immunology , Flavivirus Infections/diagnosis , Flavivirus Infections/virology , Humans , Animals , Biomarkers/analysis , Antibodies, Viral/immunology , Europe , Arthropods/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...