Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 627
1.
Microbiome ; 12(1): 102, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840247

BACKGROUND: Mammalian intestine harbors a mass of phages that play important roles in maintaining gut microbial ecosystem and host health. Pig has become a common model for biomedical research and provides a large amount of meat for human consumption. However, the knowledge of gut phages in pigs is still limited. RESULTS: Here, we investigated the gut phageome in 112 pigs from seven pig breeds using PhaBOX strategy based on the metagenomic data. A total of 174,897 non-redundant gut phage genomes were assembled from 112 metagenomes. A total of 33,487 gut phage genomes were classified and these phages mainly belonged to phage families such as Ackermannviridae, Straboviridae, Peduoviridae, Zierdtviridae, Drexlerviridae, and Herelleviridae. The gut phages in seven pig breeds exhibited distinct communities and the gut phage communities changed with the age of pig. These gut phages were predicted to infect a broad range of 212 genera of prokaryotes, such as Candidatus Hamiltonella, Mycoplasma, Colwellia, and Lactobacillus. The data indicated that broad KEGG and CAZy functions were also enriched in gut phages of pigs. The gut phages also carried the antimicrobial resistance genes (ARGs) and the most abundant antimicrobial resistance genotype was diaminopyrimidine resistance. CONCLUSIONS: Our research delineates a landscape for gut phages in seven pig breeds and reveals that gut phages serve as a key reservoir of ARGs in pigs. Video Abstract.


Bacteriophages , Gastrointestinal Microbiome , Animals , Swine , Bacteriophages/genetics , Gastrointestinal Microbiome/genetics , Metagenomics , Genome, Viral , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Metagenome , Virome/genetics , Drug Resistance, Bacterial/genetics
2.
Nat Commun ; 15(1): 4704, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830845

Metabolic syndrome encompasses amongst other conditions like obesity and type-2 diabetes and is associated with gut microbiome (GM) dysbiosis. Fecal microbiota transplantation (FMT) has been explored to treat metabolic syndrome by restoring the GM; however, concerns on accidentally transferring pathogenic microbes remain. As a safer alternative, fecal virome transplantation (FVT, sterile-filtrated feces) has the advantage over FMT in that mainly bacteriophages are transferred. FVT from lean male donors have shown promise in alleviating the metabolic effects of high-fat diet in a preclinical mouse study. However, FVT still carries the risk of eukaryotic viral infections. To address this, recently developed methods are applied for removing or inactivating eukaryotic viruses in the viral component of FVT. Modified FVTs are compared with unmodified FVT and saline in a diet-induced obesity model on male C57BL/6 N mice. Contrasted with obese control, mice administered a modified FVT (nearly depleted for eukaryotic viruses) exhibits enhanced blood glucose clearance but not weight loss. The unmodified FVT improves liver pathology and reduces the proportions of immune cells in the adipose tissue with a non-uniform response. GM analysis suggests that bacteriophage-mediated GM modulation influences outcomes. Optimizing these approaches could lead to the development of safe bacteriophage-based therapies targeting metabolic syndrome through GM restoration.


Diet, High-Fat , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Metabolic Syndrome , Mice, Inbred C57BL , Mice, Obese , Obesity , Virome , Animals , Male , Metabolic Syndrome/therapy , Obesity/therapy , Mice , Diet, High-Fat/adverse effects , Dysbiosis/therapy , Feces/virology , Feces/microbiology , Bacteriophages/physiology , Blood Glucose/metabolism , Disease Models, Animal , Liver/pathology , Liver/metabolism , Adipose Tissue
3.
Gigascience ; 132024 Jan 02.
Article En | MEDLINE | ID: mdl-38832467

BACKGROUND: Modern sequencing technologies offer extraordinary opportunities for virus discovery and virome analysis. Annotation of viral sequences from metagenomic data requires a complex series of steps to ensure accurate annotation of individual reads and assembled contigs. In addition, varying study designs will require project-specific statistical analyses. FINDINGS: Here we introduce Hecatomb, a bioinformatic platform coordinating commonly used tasks required for virome analysis. Hecatomb means "a great sacrifice." In this setting, Hecatomb is "sacrificing" false-positive viral annotations using extensive quality control and tiered-database searches. Hecatomb processes metagenomic data obtained from both short- and long-read sequencing technologies, providing annotations to individual sequences and assembled contigs. Results are provided in commonly used data formats useful for downstream analysis. Here we demonstrate the functionality of Hecatomb through the reanalysis of a primate enteric and a novel coral reef virome. CONCLUSION: Hecatomb provides an integrated platform to manage many commonly used steps for virome characterization, including rigorous quality control, host removal, and both read- and contig-based analysis. Each step is managed using the Snakemake workflow manager with dependency management using Conda. Hecatomb outputs several tables properly formatted for immediate use within popular data analysis and visualization tools, enabling effective data interpretation for a variety of study designs. Hecatomb is hosted on GitHub (github.com/shandley/hecatomb) and is available for installation from Bioconda and PyPI.


Metagenomics , Software , Metagenomics/methods , Virome/genetics , Viruses/genetics , Viruses/classification , Animals , Computational Biology/methods , Genome, Viral , Metagenome
4.
J Transl Med ; 22(1): 564, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38872164

BACKGROUND/PURPOSE(S): The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS: We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS: Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION: Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.


Arthritis, Gouty , Gastrointestinal Microbiome , Osteoarthritis , Virome , Humans , Arthritis, Gouty/virology , Arthritis, Gouty/microbiology , Male , Osteoarthritis/virology , Osteoarthritis/microbiology , Female , Middle Aged , Case-Control Studies , Aged , Metagenomics , Feces/virology , Feces/microbiology
5.
NPJ Biofilms Microbiomes ; 10(1): 48, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38898104

As the central members of the microbiome networks, viruses regulate the composition of microbial communities and drive the nutrient cycles of ecosystems by lysing host cells. Therefore, uncovering the dynamic patterns and the underlying ecological mechanisms mediating the tiniest viral communities across space and through time in natural ecosystems is of crucial importance for better understanding the complex microbial world. Here, the temporal dynamics of intertidal viral communities were investigated via a time-series sampling effort. A total of 1911 viral operational taxonomic units were recovered from 36 bimonthly collected shotgun metagenomes. Functionally important auxiliary metabolic genes involved in carbohydrate, sulfur, and phosphorus metabolism were detected, some of which (e.g., cysH gene) were stably present within viral genomes over time. Over the sampling period, strong and comparable temporal turnovers were observed for intertidal viromes and their host microbes. Winter was determined as the pivotal point for the shifts in viral diversity patterns. Notably, the viral micro-diversity covaried with the macro-diversity, following similar temporal patterns. The relative abundances of viral taxa also covaried with their host prokaryotes. Meanwhile, the virus-host relationships at the whole community level were relatively stable. Further statistical analyses demonstrated that the dynamic patterns of viral communities were highly deterministic, for which temperature was the major driver. This study provided valuable mechanistic insights into the temporal turnover of viral communities in complex ecosystems such as intertidal wetlands.


Biodiversity , Metagenome , Viruses , Wetlands , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Seasons , Microbiota , Genome, Viral , Metagenomics/methods , Virome/genetics , Phylogeny
6.
Viruses ; 16(5)2024 04 25.
Article En | MEDLINE | ID: mdl-38793556

Yunnan province in China shares its borders with three neighboring countries: Myanmar, Vietnam, and Laos. The region is characterized by a diverse climate and is known to be a suitable habitat for various arthropods, including midges which are notorious for transmitting diseases which pose significant health burdens affecting both human and animal health. A total of 431,100 midges were collected from 15 different locations in the border region of Yunnan province from 2015 to 2020. These midges were divided into 37 groups according to the collection year and sampling site. These 37 groups of midges were then homogenized to extract nucleic acid. Metatranscriptomics were used to analyze their viromes. Based on the obtained cytochrome C oxidase I gene (COI) sequences, three genera were identified, including one species of Forcipomyia, one species of Dasyhelea, and twenty-five species of Culicoides. We identified a total of 3199 viruses in five orders and 12 families, including 1305 single-stranded positive-stranded RNA viruses (+ssRNA) in two orders and seven families, 175 single-stranded negative-stranded RNA viruses (-ssRNA) in two orders and one family, and 1719 double-stranded RNA viruses in five families. Six arboviruses of economic importance were identified, namely Banna virus (BAV), Japanese encephalitis virus (JEV), Akabane virus (AKV), Bluetongue virus (BTV), Tibetan circovirus (TIBOV), and Epizootic hemorrhagic disease virus (EHDV), all of which are capable, to varying extents, of causing disease in humans and/or animals. The survey sites in this study basically covered the current distribution area of midges in Yunnan province, which helps to predict the geographic expansion of midge species. The complexity and diversity of the viral spectrum carried by midges identified in the study calls for more in-depth research, which can be utilized to monitor arthropod vectors and to predict the emergence and spread of zoonoses and animal epidemics, which is of great significance for the control of vector-borne diseases.


Ceratopogonidae , Phylogeny , Animals , China , Ceratopogonidae/virology , Ceratopogonidae/genetics , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Transcriptome , Insect Vectors/virology , Virome/genetics , Humans
7.
Viruses ; 16(5)2024 05 02.
Article En | MEDLINE | ID: mdl-38793605

Routinely used metagenomic next-generation sequencing (mNGS) techniques often fail to detect low-level viremia (<104 copies/mL) and appear biased towards viruses with linear genomes. These limitations hinder the capacity to comprehensively characterize viral infections, such as those attributed to the Anelloviridae family. These near ubiquitous non-pathogenic components of the human virome have circular single-stranded DNA genomes that vary in size from 2.0 to 3.9 kb and exhibit high genetic diversity. Hence, species identification using short reads can be challenging. Here, we introduce a rolling circle amplification (RCA)-based metagenomic sequencing protocol tailored for circular single-stranded DNA genomes, utilizing the long-read Oxford Nanopore platform. The approach was assessed by sequencing anelloviruses in plasma drawn from people who inject drugs (PWID) in two geographically distinct cohorts. We detail the methodological adjustments implemented to overcome difficulties inherent in sequencing circular genomes and describe a computational pipeline focused on anellovirus detection. We assessed our protocol across various sample dilutions and successfully differentiated anellovirus sequences in conditions simulating mixed infections. This method provides a robust framework for the comprehensive characterization of circular viruses within the human virome using the Oxford Nanopore.


Anelloviridae , Genome, Viral , High-Throughput Nucleotide Sequencing , Metagenomics , Nanopore Sequencing , Anelloviridae/genetics , Anelloviridae/isolation & purification , Anelloviridae/classification , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Nanopore Sequencing/methods , Nanopores , DNA, Viral/genetics , Virome/genetics , Sequence Analysis, DNA/methods
8.
Sci Total Environ ; 932: 172829, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38692332

Permafrost serves as a natural cold reservoir for viral communities. However, little is known about the viromes in deep permafrost soil, as most studies of permafrost were restricted to shallow areas. Here, permafrost soil samples of up to 100 m in depth were collected from two sites in the Tuotuo River permafrost area on the Tibetan Plateau. We investigated the viral composition in these permafrost soil samples and analyzed the relationship of viral composition and diversity along with depths. Our study revealed that greater permafrost thickness corresponds to higher diversity within the viral community. Bacteriophages were found to be the dominant viral communities, with "kill the winner" dynamics observed within the Siphoviridae and Myoviridae. The abundance and diversity of viral communities may follow a potential pattern along soil layers and depths, influenced by pH, trace elements, and permafrost thickness. Notably, strong correlations were discovered between the content of inorganic elements, including B, Mg, Cr, Bi, Ti, Na, Ni, and Cu, and the viral composition. Moreover, we discovered highly conserved sequences of giant viruses at depth of 10, 20, and 50 m in permafrost, which play a crucial role in evolutionary processes. These findings provide valuable insights into the viral community patterns from shallow to 100-m-depth in high-elevation permafrost, offering crucial data support for the formulation of strategies for permafrost thaw caused by climate change and anthropogenic activities.


Permafrost , Tibet , Soil Microbiology , Virome , Altitude , Environmental Monitoring , Soil/chemistry , Viruses
9.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38709876

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Bacteria , Kelp , Microbiota , Seawater , Kelp/microbiology , Seawater/microbiology , Seawater/virology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Metagenomics , Seaweed/microbiology , Seaweed/virology , Geologic Sediments/microbiology , Geologic Sediments/virology , Prokaryotic Cells/virology , Prokaryotic Cells/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Virome
10.
Virus Res ; 345: 199389, 2024 Jul.
Article En | MEDLINE | ID: mdl-38714217

Saffron (Crocus sativus L.), a historically significant crop valued for its nutraceutical properties, has been poorly explored from a phytosanitary perspective. This study conducted a thorough examination of viruses affecting saffron samples from Spanish cultivars, using high-throughput sequencing alongside a systematic survey of transcriptomic datasets from Crocus sativus at the Sequence Read Archive. Our analysis unveiled a broad diversity and abundance, identifying 17 viruses across the 52 analyzed libraries, some of which were highly prevalent. This includes known saffron-infecting viruses and previously unreported ones. In addition, we discovered 7 novel viruses from the Alphaflexiviridae, Betaflexiviridae, Potyviridae, Solemoviridae, and Geminiviridae families, with some present in libraries from various locations. These findings indicate that the saffron-associated virome is more complex than previously reported, emphasizing the potential of phytosanitary analysis to enhance saffron productivity.


Crocus , Plant Diseases , Crocus/genetics , Plant Diseases/virology , Plant Viruses/genetics , Plant Viruses/classification , Plant Viruses/isolation & purification , High-Throughput Nucleotide Sequencing , Virome/genetics , Gene Expression Profiling , Transcriptome , Phylogeny , Genome, Viral , Potyviridae/genetics , Potyviridae/isolation & purification , Flexiviridae/genetics , Flexiviridae/classification , Flexiviridae/isolation & purification
11.
J Virol ; 98(6): e0011824, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38785422

The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.


Fish Diseases , Fishes , Viruses , Animals , Fishes/virology , Fish Diseases/virology , Viruses/genetics , Viruses/classification , Virome , Evolution, Molecular , Virus Diseases/virology , Virus Diseases/transmission , Metagenomics , Genetic Variation , Aquaculture , Phylogeny
12.
J Clin Microbiol ; 62(6): e0034524, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38757981

Viral enrichment by probe hybridization has been reported to significantly increase the sensitivity of viral metagenomics. This study compares the analytical performance of two targeted metagenomic virus capture probe-based methods: (i) SeqCap EZ HyperCap by Roche (ViroCap) and (ii) Twist Comprehensive Viral Research Panel workflow, for diagnostic use. Sensitivity, specificity, and limit of detection were analyzed using 25 synthetic viral sequences spiked in increasing proportions of human background DNA, eight clinical samples, and American Type Culture Collection (ATCC) Virome Virus Mix. Sensitivity and specificity were 95% and higher for both methods using the synthetic and reference controls as gold standard. Combining thresholds for viral sequence read counts and genome coverage [respectively 500 reads per million (RPM) and 10% coverage] resulted in optimal prediction of true positive results. Limits of detection were approximately 50-500 copies/mL for both methods as determined by ddPCR. Increasing proportions of spike-in cell-free human background sequences up to 99.999% (50 ng/mL) did not negatively affect viral detection, suggesting effective capture of viral sequences. These data show analytical performances in ranges applicable to clinical samples, for both probe hybridization metagenomic approaches. This study supports further steps toward more widespread use of viral metagenomics for pathogen detection, in clinical and surveillance settings using low biomass samples. IMPORTANCE: Viral metagenomics has been gradually applied for broad-spectrum pathogen detection of infectious diseases, surveillance of emerging diseases, and pathogen discovery. Viral enrichment by probe hybridization methods has been reported to significantly increase the sensitivity of viral metagenomics. During the past years, a specific hybridization panel distributed by Roche has been adopted in a broad range of different clinical and zoonotic settings. Recently, Twist Bioscience has released a new hybridization panel targeting human and animal viruses. This is the first report comparing the performance of viral metagenomic hybridization panels.


Metagenomics , Sensitivity and Specificity , Viruses , Humans , Metagenomics/methods , Metagenomics/standards , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Virus Diseases/diagnosis , Virus Diseases/virology , Reference Standards , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Limit of Detection , Nucleic Acid Hybridization/methods , Virome
13.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38747389

Spillovers of viruses from animals to humans occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis, the Asian longhorned tick, poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China encompassing diverse ecological conditions. Generalized additive modeling revealed that climate factors exerted a stronger influence on the virome of H. longicornis than other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and antiviral immunity. To understand how climate changes drive the tick virome, we performed a mechanistic investigation using causality inference with emphasis on the significance of this process for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to increased diversity of the tick virome, particularly the evenness of vertebrate-associated viruses. These findings may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections have indicated that the diversity of the H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019 to 2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.


Introduced Species , Virome , Animals , China , Ixodidae/virology , Female , Climate Change , Male , Climate
14.
Biomed Pharmacother ; 175: 116608, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703502

Recent advances in metagenomic testing opened a new window into the mammalian blood virome. Comprised of well-known viruses like human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, the virome also includes many other eukaryotic viruses and phages whose medical significance, lifecycle, epidemiology, and impact on human health are less well known and thus regarded as commensals. This review synthesizes available information for the so-called commensal virome members that circulate in the blood of humans considering their restriction to and interaction with the human host, their natural history, and their impact on human health and physiology.


Virome , Humans , Virome/genetics , Animals , Viruses/genetics , Viruses/isolation & purification , Metagenomics/methods , Virus Diseases/virology , Virus Diseases/blood
15.
mSystems ; 9(6): e0001224, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38742876

In arthropod-associated microbial communities, insect-specific viruses (ISVs) are prevalent yet understudied due to limited infectivity outside their natural hosts. However, ISVs might play a crucial role in regulating mosquito populations and influencing arthropod-borne virus transmission. Some studies have indicated a core virome in mosquitoes consisting of mostly ISVs. Employing single mosquito metagenomics, we comprehensively profiled the virome of native and invasive mosquito species in Belgium. This approach allowed for accurate host species determination, prevalence assessment of viruses and Wolbachia, and the identification of novel viruses. Contrary to our expectations, no abundant core virome was observed in Culex mosquitoes from Belgium. In that regard, we caution against rigidly defining mosquito core viromes and encourage nuanced interpretations of other studies. Nonetheless, our study identified 45 viruses of which 28 were novel, enriching our understanding of the mosquito virome and ISVs. We showed that the mosquito virome in this study is species-specific and less dependent on the location where mosquitoes from the same species reside. In addition, because Wolbachia has previously been observed to influence arbovirus transmission, we report the prevalence of Wolbachia in Belgian mosquitoes and the detection of several Wolbachia mobile genetic elements. The observed prevalence ranged from 83% to 92% in members from the Culex pipiens complex.IMPORTANCECulex pipiens mosquitoes are important vectors for arboviruses like West Nile virus and Usutu virus. Virome studies on individual Culex pipiens, and on individual mosquitoes in general, have been lacking. To mitigate this, we sequenced the virome of 190 individual Culex and 8 individual Aedes japonicus mosquitoes. We report the lack of a core virome in these mosquitoes from Belgium and caution the interpretation of other studies in this light. The discovery of new viruses in this study will aid our comprehension of insect-specific viruses and the mosquito virome in general in relation to mosquito physiology and mosquito population dynamics.


Culex , Virome , Wolbachia , Animals , Culex/virology , Culex/microbiology , Virome/genetics , Wolbachia/genetics , Wolbachia/isolation & purification , Belgium , Species Specificity , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Metagenomics , Insect Viruses/genetics , Insect Viruses/isolation & purification , Climate
16.
Sci Rep ; 14(1): 10540, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719945

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Bacteriophages , Bivalvia , Gills , Metagenomics , Animals , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Gills/microbiology , Gills/virology , Gills/metabolism , Bivalvia/microbiology , Bivalvia/virology , Bivalvia/genetics , Gene Expression Profiling , Transcriptome , Virome/genetics , Bacteria/genetics , Bacteria/classification , Symbiosis/genetics , Metagenome
17.
Microbiome ; 12(1): 82, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725064

BACKGROUND: The rumen microbiome enables ruminants to digest otherwise indigestible feedstuffs, thereby facilitating the production of high-quality protein, albeit with suboptimal efficiency and producing methane. Despite extensive research delineating associations between the rumen microbiome and ruminant production traits, the functional roles of the pervasive and diverse rumen virome remain to be determined. RESULTS: Leveraging a recent comprehensive rumen virome database, this study analyzes virus-microbe linkages, at both species and strain levels, across 551 rumen metagenomes, elucidating patterns of microbial and viral diversity, co-occurrence, and virus-microbe interactions. Additionally, this study assesses the potential role of rumen viruses in microbial diversification by analyzing prophages found in rumen metagenome-assembled genomes. Employing CRISPR-Cas spacer-based matching and virus-microbe co-occurrence network analysis, this study suggests that the viruses in the rumen may regulate microbes at strain and community levels through both antagonistic and mutualistic interactions. Moreover, this study establishes that the rumen virome demonstrates responsiveness to dietary shifts and associations with key animal production traits, including feed efficiency, lactation performance, weight gain, and methane emissions. CONCLUSIONS: These findings provide a substantive framework for further investigations to unravel the functional roles of the virome in the rumen in shaping the microbiome and influencing overall animal production performance. Video Abstract.


Metagenome , Rumen , Viruses , Rumen/microbiology , Rumen/virology , Animals , Viruses/classification , Viruses/genetics , Gastrointestinal Microbiome , Virome , Ruminants/microbiology , Ruminants/virology , Methane/metabolism , Animal Feed , Bacteria/classification , Bacteria/genetics
18.
Viruses ; 16(4)2024 03 29.
Article En | MEDLINE | ID: mdl-38675877

The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.


Bacteria , Metagenomics , Sewage , Viruses , Wastewater , Wastewater/virology , Wastewater/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Sewage/virology , Sewage/microbiology , Humans , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Virome/genetics , Water Purification , Animals
19.
Viruses ; 16(4)2024 04 09.
Article En | MEDLINE | ID: mdl-38675918

Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses.


Genome, Viral , High-Throughput Nucleotide Sequencing , Rhabdoviridae , Rhabdoviridae/genetics , Rhabdoviridae/isolation & purification , Rhabdoviridae/classification , Animals , Cell Line , Phylogeny , Virus Replication , RNA, Viral/genetics , Virome/genetics , Rhabdoviridae Infections/virology , Rhabdoviridae Infections/veterinary
20.
Viruses ; 16(4)2024 04 11.
Article En | MEDLINE | ID: mdl-38675931

Viruses, as the most prolific entities on Earth, constitute significant ecological groups within freshwater lakes, exerting pivotal ecological roles. In this study, we selected Chaohu Lake, a representative eutrophic freshwater lake in China, as our research site to explore the community distribution, driving mechanisms, and potential ecological functions of diverse viral communities, the intricate virus-host interaction systems, and the overarching influence of viruses on global biogeochemical cycling.


Lakes , Viruses , Lakes/virology , China , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Ecosystem , Virome , Phylogeny
...