Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.325
1.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 375-379, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38733195

Hepatitis B virus (HBV) DNA integration occurs during the reverse transcription process of HBV replication, which develops in the early stages of HBV infection and accompanies the entire disease course. The integration of HBV DNA is detrimental to the attainment of clinical cure goals and also raises the risk of developing liver cancer. Theoretically, nucleos(t)ide analogs can reduce the synthesis of new double-stranded linear DNA, but there is no clearance function for hepatocytes that have already integrated HBV. Therefore, patients with serum HBV DNA-negative conversions still have the risk of developing liver cancer. As an immunomodulatory drug, interferon can not only inhibit viral replication but also inhibit or even eliminate existing clonally amplified hepatocytes carrying integrated HBV DNA fragments. However, there are currently few studies on the effects of nucleos(t)ide analogues and interferon therapy on HBV DNA integration. Thus, large-scale clinical studies are urgently needed for further clarification.


Antiviral Agents , DNA, Viral , Hepatitis B virus , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Virus Integration , Hepatitis B/drug therapy , Hepatitis B/virology , Virus Replication/drug effects , Interferons/therapeutic use
2.
BMC Bioinformatics ; 25(1): 177, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704528

BACKGROUND: Hepatitis B virus (HBV) integrates into human chromosomes and can lead to genomic instability and hepatocarcinogenesis. Current tools for HBV integration site detection lack accuracy and stability. RESULTS: This study proposes a deep learning-based method, named ViroISDC, for detecting integration sites. ViroISDC generates corresponding grammar rules and encodes the characteristics of the language data to predict integration sites accurately. Compared with Lumpy, Pindel, Seeksv, and SurVirus, ViroISDC exhibits better overall performance and is less sensitive to sequencing depth and integration sequence length, displaying good reliability, stability, and generality. Further downstream analysis of integrated sites detected by ViroISDC reveals the integration patterns and features of HBV. It is observed that HBV integration exhibits specific chromosomal preferences and tends to integrate into cancerous tissue. Moreover, HBV integration frequency was higher in males than females, and high-frequency integration sites were more likely to be present on hepatocarcinogenesis- and anti-cancer-related genes, validating the reliability of the ViroISDC. CONCLUSIONS: ViroISDC pipeline exhibits superior precision, stability, and reliability across various datasets when compared to similar software. It is invaluable in exploring HBV infection in the human body, holding significant implications for the diagnosis, treatment, and prognosis assessment of HCC.


Hepatitis B virus , Virus Integration , Hepatitis B virus/genetics , Humans , Virus Integration/genetics , Software , Deep Learning , Male , Female , Hepatitis B/genetics , Hepatitis B/virology , Liver Neoplasms/genetics , Liver Neoplasms/virology , Computational Biology/methods
3.
J Med Virol ; 96(6): e29606, 2024 Jun.
Article En | MEDLINE | ID: mdl-38818708

Hepatitis B virus (HBV) integration exists throughout the clinical course of chronic hepatitis B (CHB). This study investigated the effects of long-term antiviral therapy on the level and profiles of transcriptionally active HBV integration. Serial liver biopsies and paired blood samples were obtained from 16, 16, and 22 patients with CHB at baseline, 78, and 260 weeks of entecavir monotherapy or combined with pegylated interferon alfa, respectively. Serum HBV biomarkers were longitudinally assessed. RNA-seq and HIVID2 program was used to identify HBV-host chimeric RNAs transcribed from integrated DNA. The counts of HBV integration reads were positively related to both serum HBV DNA levels (r = 0.695, p = 0.004) and HBeAg titers (r = 0.724, p = 0.021) at baseline, but the positive correlation exited only to the serum HBsAg levels after 260 weeks of antiviral therapy (r = 0.662, p = 0.001). After 78 weeks of antiviral therapy, the levels of HBV integration expression decreased by 12.25 folds from baseline. The viral junction points were enriched at the S and HBx genes after the long-term antiviral therapy. HBs-FN1 became one of the main transcripts, with the mean proportion of HBs-FN1 in all integrated expression increased from 2.79% at baseline to 10.54% at Week 260 of antiviral treatment. Antiviral therapy may reduce but not eliminate the HBV integration events and integration expression. Certain integration events, such as HBs-FN1 can persist in long-term antiviral treatment.


Antiviral Agents , DNA, Viral , Hepatitis B virus , Hepatitis B, Chronic , Liver , Virus Integration , Humans , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Antiviral Agents/therapeutic use , Male , Hepatitis B virus/genetics , Hepatitis B virus/drug effects , Adult , Female , Liver/virology , Middle Aged , DNA, Viral/blood , DNA, Viral/genetics , Guanine/analogs & derivatives , Guanine/therapeutic use , Interferon-alpha/therapeutic use , Hepatitis B e Antigens/blood , Hepatitis B Surface Antigens/blood , Longitudinal Studies
4.
Methods Mol Biol ; 2807: 141-151, 2024.
Article En | MEDLINE | ID: mdl-38743226

To integrate with host chromatin and establish a productive infection, HIV-1 must translocate the viral Ribonucleoprotein (RNP) complex through the nuclear pore complex (NPC). Current assay to measure HIV-1 nuclear import relies on a transient byproduct of HIV-1 integration failure called 2-LTR circles. However, 2-LTR circles require complete or near-complete reverse transcription and association with the non-homologous end joining (NHEJ) machinery in the nucleus, which can complicate interpretation of 2-LTR circle formation as a measure of nuclear import kinetics. Here, we describe an approach to measure nuclear import of infectious HIV-1 particles. This involves chemically induced dimerization of Nup62, a central FG containing nucleoporin. Using this technique, nuclear import of infectious particles can be monitored in both primary and cell culture models. In response to host factor depletion or restriction factors, changes in HIV-1 nuclear import can be effectively measured using the nuclear import kinetics (NIK) assay.


Active Transport, Cell Nucleus , HIV-1 , Nuclear Pore Complex Proteins , Nuclear Pore , HIV-1/metabolism , HIV-1/physiology , Humans , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Kinetics , Cell Nucleus/metabolism , HIV Infections/virology , HIV Infections/metabolism , Virus Integration
5.
J Med Virol ; 96(5): e29674, 2024 May.
Article En | MEDLINE | ID: mdl-38757834

Human Papillomaviruses (HPV) are a diverse family of non-enveloped dsDNA viruses that infect the skin and mucosal epithelia. Persistent HPV infections can lead to cancer frequently involving integration of the virus into the host genome, leading to sustained oncogene expression and loss of capsid and genome maintenance proteins. Microhomology-mediated double-strand break repair, a DNA double-stranded breaks repair pathway present in many organisms, was initially thought to be a backup but it's now seen as vital, especially in homologous recombination-deficient contexts. Increasing evidence has identified microhomology (MH) near HPV integration junctions, suggesting MH-mediated repair pathways drive integration. In this comprehensive review, we present a detailed summary of both the mechanisms underlying MH-mediated repair and the evidence for its involvement in HPV integration in cancer. Lastly, we highlight the involvement of these processes in the integration of other DNA viruses and the broader implications on virus lifecycles and host innate immune response.


Carcinogenesis , Papillomaviridae , Papillomavirus Infections , Humans , Papillomaviridae/pathogenicity , Papillomaviridae/genetics , Papillomaviridae/physiology , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Virus Integration , DNA Repair , DNA Breaks, Double-Stranded , DNA, Viral/genetics
6.
Viruses ; 16(5)2024 04 25.
Article En | MEDLINE | ID: mdl-38793552

The HIV-1 capsid (CA) protein forms the outer shell of the viral core that is released into the cytoplasm upon infection. CA binds various cellular proteins, including CPSF6, that direct HIV-1 integration into speckle-associated domains in host chromatin. Upon HIV-1 infection, CPSF6 forms puncta in the nucleus. Here, we characterised these CPSF6 puncta further in HeLa cells, T-cells and macrophages and confirmed that integration and reverse transcription are not required for puncta formation. Indeed, we found that puncta formed very rapidly after infection, correlating with the time that CA entered the nucleus. In aphidicolin-treated HeLa cells and macrophages, puncta were detected for the length of the experiment, suggesting that puncta are only lost upon cell division. CA still co-localised with CPSF6 puncta at the latest time points, considerably after the peak of reverse transcription and integration. Intriguingly, the number of puncta induced in macrophages did not correlate with the MOI or the total number of nuclear speckles present in each cell, suggesting that CA/CPSF6 is only directed to a few nuclear speckles. Furthermore, we found that CPSF6 already co-localised with nuclear speckles in uninfected T-cells, suggesting that HIV-1 promotes a natural behaviour of CPSF6.


HIV-1 , Macrophages , T-Lymphocytes , mRNA Cleavage and Polyadenylation Factors , HIV-1/physiology , Humans , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , T-Lymphocytes/virology , T-Lymphocytes/metabolism , HeLa Cells , Macrophages/virology , Macrophages/metabolism , Virus Integration , Cell Nucleus/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , HIV Infections/virology , HIV Infections/metabolism , Capsid/metabolism
7.
J Viral Hepat ; 31 Suppl 1: 26-34, 2024 04.
Article En | MEDLINE | ID: mdl-38606944

Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.


Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Genetic Vectors , Plasmids , Genetic Therapy , Dependovirus/genetics , Dependovirus/metabolism , Virus Integration
8.
J Med Virol ; 96(4): e29614, 2024 Apr.
Article En | MEDLINE | ID: mdl-38647071

The clearance or transcriptional silencing of integrated HBV DNA is crucial for achieving a functional cure in patients with chronic hepatitis B and reducing the risk of hepatocellular carcinoma development. The PLC/PRF/5 cell line is commonly used as an in vitro model for studying HBV integration. In this study, we employed a range of multi-omics techniques to gain a panoramic understanding of the characteristics of HBV integration in PLC/PRF/5 cells and to reveal the transcriptional regulatory mechanisms of integrated HBV DNA. Transcriptome long-read sequencing (ONT) was conducted to analyze and characterize the transcriptional activity of different HBV DNA integration sites in PLC/PRF/5 cells. Additionally, we collected data related to epigenetic regulation, including whole-genome bisulfite sequencing (WGBS), histone chromatin immunoprecipitation sequencing (ChIP-seq), and assays for transposase-accessible chromatin using sequencing (ATAC-seq), to explore the potential mechanisms involved in the transcriptional regulation of integrated HBV DNA. Long-read RNA sequencing analysis revealed significant transcriptional differences at various integration sites in the PLC/PRF/5 cell line, with higher HBV DNA transcription levels at integration sites on chr11, chr13, and the chr13/chr5 fusion chromosome t (13:5). Combining long-read DNA and RNA sequencing results, we found that transcription of integrated HBV DNA generally starts downstream of the SP1, SP2, or XP promoters. ATAC-seq data confirmed that chromatin accessibility has limited influence on the transcription of integrated HBV DNA in the PLC/PRF/5 cell line. Analysis of WGBS data showed that the methylation intensity of integrated HBV DNA was highly negatively correlated with its transcription level (r = -0.8929, p = 0.0123). After AzaD treatment, the transcription level of integrated HBV DNA significantly increased, especially for the integration chr17, which had the highest level of methylation. Through ChIP-seq data, we observed the association between histone modification of H3K4me3 and H3K9me3 with the transcription of integrated HBV DNA. Our findings suggest that the SP1, SP2 and XP in integrated HBV DNA, methylation level of surrounding host chromosome, and histone modifications affect the transcription of integrated HBV DNA in PLC/PRF/5 cells. This provides important clues for future studies on the expression and regulatory mechanisms of integrated HBV.


Epigenesis, Genetic , Hepatitis B virus , Virus Integration , Humans , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Virus Integration/genetics , DNA, Viral/genetics , Transcription, Genetic , Cell Line , DNA Methylation , Cell Line, Tumor , Histones/genetics , Histones/metabolism , Multiomics
9.
Biochemistry (Mosc) ; 89(3): 462-473, 2024 Mar.
Article En | MEDLINE | ID: mdl-38648766

Structural organization of HIV-1 integrase is based on a tetramer formed by two protein dimers. Within this tetramer, the catalytic domain of one subunit of the first dimer interacts with the N-terminal domain of the second dimer subunit. It is the tetrameric structure that allows both ends of the viral DNA to be correctly positioned relative to the cellular DNA and to realize catalytic functions of integrase, namely 3'-processing and strand transfer. However, during the HIV-1 replicative cycle, integrase is responsible not only for the integration stage, it is also involved in reverse transcription and is necessary at the stage of capsid formation of the newly formed virions. It has been suggested that HIV-1 integrase is a structurally dynamic protein and its biological functions depend on its structure. Accordingly, studying interactions between the domains of integrase that provide its tetrameric structure is important for understanding its multiple functions. In this work, we investigated the role of three amino acids of the catalytic domain, I182, R187, and K188, located in the contact region of two integrase dimers in the tetramer structure, in reverse transcription and integration. It has been shown that the R187 residue is extremely important for formation of the correct integrase structure, which is necessary at all stages of its functional activity. The I182 residue is necessary for successful integration and is not important for reverse transcription, while the K188 residue, on the contrary, is involved in formation of the integrase structure, which is important for the effective reverse transcription.


Catalytic Domain , HIV Integrase , HIV-1 , Reverse Transcription , Virus Integration , HIV Integrase/metabolism , HIV Integrase/chemistry , HIV Integrase/genetics , HIV-1/enzymology , Humans
10.
mBio ; 15(5): e0072924, 2024 May 08.
Article En | MEDLINE | ID: mdl-38624210

The integration of HPV DNA into human chromosomes plays a pivotal role in the onset of papillomavirus-related cancers. HPV DNA integration often occurs by linearizing the viral DNA in the E1/E2 region, resulting in the loss of a critical viral early polyadenylation signal (PAS), which is essential for the polyadenylation of the E6E7 bicistronic transcripts and for the expression of the viral E6 and E7 oncogenes. Here, we provide compelling evidence that, despite the presence of numerous integrated viral DNA copies, virus-host fusion transcripts originate from only a single integrated HPV DNA in HPV16 and HPV18 cervical cancers and cervical cancer-derived cell lines. The host genomic elements neighboring the integrated HPV DNA are critical for the efficient expression of the viral oncogenes that leads to clonal cell expansion. The fusion RNAs that are produced use a host RNA polyadenylation signal downstream of the integration site, and almost all involve splicing to host sequences. In cell culture, siRNAs specifically targeting the host portion of the virus-host fusion transcripts effectively silenced viral E6 and E7 expression. This, in turn, inhibited cell growth and promoted cell senescence in HPV16+ CaSki and HPV18+ HeLa cells. Showing that HPV E6 and E7 expression from a single integration site is instrumental in clonal cell expansion sheds new light on the mechanisms of HPV-induced carcinogenesis and could be used for the development of precision medicine tailored to combat HPV-related malignancies. IMPORTANCE: Persistent oncogenic HPV infections lead to viral DNA integration into the human genome and the development of cervical, anogenital, and oropharyngeal cancers. The expression of the viral E6 and E7 oncogenes plays a key role in cell transformation and tumorigenesis. However, how E6 and E7 could be expressed from the integrated viral DNA which often lacks a viral polyadenylation signal in the cancer cells remains unknown. By analyzing the integrated HPV DNA sites and expressed HPV RNAs in cervical cancer tissues and cell lines, we show that HPV oncogenes are expressed from only one of multiple chromosomal HPV DNA integrated copies. A host polyadenylation signal downstream of the integrated viral DNA is used for polyadenylation and stabilization of the virus-host chimeric RNAs, making the oncogenic transcripts targetable by siRNAs. This observation provides further understanding of the tumorigenic mechanism of HPV integration and suggests possible therapeutic strategies for the development of precision medicine for HPV cancers.


DNA, Viral , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Virus Integration , Humans , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Virus Integration/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , DNA, Viral/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Cell Line, Tumor , Oncogenes/genetics , Polyadenylation
11.
Viruses ; 16(4)2024 04 13.
Article En | MEDLINE | ID: mdl-38675945

The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.


Congresses as Topic , Retroviridae , Virus Integration , Humans , Virus Integration/drug effects , Retroviridae/physiology , Retroviridae/drug effects , Retroviridae/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , HIV-1/genetics , History, 21st Century , History, 20th Century
12.
J Vet Med Sci ; 86(6): 653-655, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38631888

The present study analyzed B-cell clonality and bovine leukemia virus (BLV) provirus integration sites in cattle with enzootic bovine leukosis (EBL) having BLV proviral copy numbers less or greater than the number of bovine nucleated cells. EBL cattle with BLV copy numbers less than the number of bovine nucleated cells showed monoclonal and biclonal proliferation of B-cells with one BLV provirus integration site. On the other hand, EBL cattle with BLV copy numbers greater than the number of bovine nucleated cells showed monoclonal proliferation of B-cells with two BLV provirus integration sites. These results suggest that superinfection of BLV can occur in EBL cattle.


B-Lymphocytes , DNA, Viral , Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Proviruses , Animals , Leukemia Virus, Bovine/genetics , Enzootic Bovine Leukosis/virology , Cattle , Proviruses/genetics , DNA, Viral/genetics , B-Lymphocytes/virology , Virus Integration , Cell Proliferation
13.
Poult Sci ; 103(6): 103722, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626691

The highly contagious, immunosuppressive, and cancer-causing Marek's disease virus (MDV) infects chickens. The financial costs of Marek's disease (MD) are significant for the chicken industry. In this study, a total of 180 samples from chicken farms suspected to be MDV-infected were collected. The chickens were sampled during the period between the months of October 2016 and February 2018 at Dakahlia and Damietta Governorates, Egypt. A total of 36 pooled samples were created. The prepared samples were inoculated into embryonated chicken eggs (ECEs). Indirect fluorescent antibody technique (IFAT) and ICP4 gene-based polymerase chain reaction (PCR) were used for MDV identification. For the genetic characterization of the identified virus, The ICP4 gene sequence was identified and compared with the sequences available from various regions of the world. Furthermore, the genomes of all detected MDVs were screened for the long terminal repeat (LTR) region of reticuloendotheliosis (REV) in their genomes. The results showed that 31 out of 36 pooled samples (86.1%) inoculated into ECEs displayed the characteristic pock lesions. By using IFAT and PCR to identify MDV in ECEs, positive results were found in 27 samples (75%). The Egyptian virus is thought to be genetically closely related to MDVs circulating in Ethiopia, China, and India. REV-LTR was amplified from 6 out of 27 field isolates genomes (22.2 %) while MDV vaccine strains were free from REV-LTR insertion. The integrated REV-LTRs depicted a close genetic relationship with those integrated in fowl poxvirus (FWPV) circulating in Egypt as well as those integrated in FWPVs and MDVs from China, USA, South Africa, and Australia. To the best of our knowledge, this investigation represents the first identification and characterization of REV-LTR insertions in Egyptian MDV field isolates. Given the findings above, additional research in the future seems crucial to determine how the REV-LTR insertions affect MDV pathogenesis, virulence, and insufficient vaccination protection.


Chickens , Herpesvirus 2, Gallid , Marek Disease , Poultry Diseases , Animals , Marek Disease/virology , Marek Disease/epidemiology , Chickens/virology , Egypt/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/isolation & purification , Terminal Repeat Sequences , Reticuloendotheliosis virus/genetics , Reticuloendotheliosis virus/isolation & purification , Virus Integration , Genome, Viral
14.
J Mol Biol ; 436(10): 168557, 2024 May 15.
Article En | MEDLINE | ID: mdl-38582148

Retroviral DNA integration is mediated by nucleoprotein complexes (intasomes) in which a pair of viral DNA ends are bridged by a multimer of integrase (IN). Most of the high-resolution structures of HIV-1 intasomes are based on an HIV-1 IN with an Sso7d protein domain fused to the N-terminus. Sso7d-IN aggregates much less than wild-type IN and has been critical for structural studies of HIV-1 intasomes. Unexpectedly, these structures revealed that the common core architecture that mediates catalysis could be assembled in various ways, giving rise to both tetrameric and dodecameric intasomes, together with other less well-characterized species. This differs from related retroviruses that assemble unique multimeric intasomes, although the number of protomers in the intasome varies between viruses. The question of whether the additional Sso7d domain contributes to the heterogeneity of HIV-1 intasomes is therefore raised. We have addressed this by biochemical and structural studies of intasomes assembled with wild-type HIV-1 IN. Negative stain and cryo-EM reveal a similar range of multimeric intasome species as with Sso7d-IN with the same common core architecture. Stacks of intasomes resulting from domain swapping are also seen with both wild-type and Sso7d-IN intasomes. The propensity to assemble multimeric intasome species is, therefore, an intrinsic property of HIV-1 IN and is not conferred by the presence of the Sso7d domain. The recently solved intasome structures of different retroviral species, which have been reported to be tetrameric, octameric, dodecameric, and hexadecameric, highlight how a common intasome core architecture can be assembled in different ways for catalysis.


HIV Integrase , HIV-1 , Virus Integration , Humans , DNA, Viral/chemistry , HIV Integrase/chemistry , HIV-1/enzymology , Models, Molecular , Nucleoproteins/chemistry , Protein Multimerization
15.
Curr Opin HIV AIDS ; 19(3): 110-115, 2024 05 01.
Article En | MEDLINE | ID: mdl-38457193

PURPOSE OF REVIEW: Elite controllers (ECs) and Posttreatment controllers (PTCs) represent a small subset of individuals who are capable of maintaining drug-free control of HIV plasma viral loads despite the persistence of a replication-competent viral reservoir. This review aims to curate recent experimental studies evaluating viral reservoirs that distinguish EC/PTC and may contribute to their ability to maintain undetectable viral loads in the absence of antiretroviral therapy. RECENT FINDINGS: Recent studies on ECs have demonstrated that integration sites of intact proviruses in EC/PTC are markedly biased towards heterochromatin regions; in contrast, intact proviruses in accessible and permissive chromatin were profoundly underrepresented. Of note, no such biases were noted when CD4 + T cells from EC were infected directly ex vivo, suggesting that the viral reservoir profile in EC is not related to altered integration site preferences during acute infection, but instead represents the result of immune-mediated selection mechanisms that can eliminate proviruses in transcriptionally-active euchromatin regions while promoting preferential persistence of intact proviruses in nonpermissive genome regions. Proviral transcription in such "blocked and locked" regions may be restricted through epigenetic mechanisms, protecting them from immune-recognition but presumably limiting their ability to drive viral rebound. While the exact immune mechanisms driving this selection process remain undefined, recent single-cell analytic approaches support the hypothesis that HIV reservoir cells are subject to immune selection pressure by host factors. SUMMARY: A "blocked and locked" viral reservoir profile may constitute a structural virological correlate of a functional cure of HIV-1 infection. Further research into the immunological mechanism promoting HIV-1 reservoir selection and evolution in EC/PTC is warranted and could inform foreseeable cure strategies.


HIV Infections , HIV-1 , Humans , HIV-1/genetics , Proviruses/genetics , Virus Replication , CD4-Positive T-Lymphocytes , Virus Integration , Viral Load , Virus Latency
16.
Blood ; 143(23): 2373-2385, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38452208

ABSTRACT: Gene therapy using adeno-associated virus (AAV) vectors is a promising approach for the treatment of monogenic disorders. Long-term multiyear transgene expression has been demonstrated in animal models and clinical studies. Nevertheless, uncertainties remain concerning the nature of AAV vector persistence and whether there is a potential for genotoxicity. Here, we describe the mechanisms of AAV vector persistence in the liver of a severe hemophilia A dog model (male = 4, hemizygous; and female = 4, homozygous), more than a decade after portal vein delivery. The predominant vector form was nonintegrated episomal structures with levels correlating with long-term transgene expression. Random integration was seen in all samples (median frequency, 9.3e-4 sites per cell), with small numbers of nonrandom common integration sites associated with open chromatin. No full-length integrated vectors were found, supporting predominant episomal vector-mediated long-term transgene expression. Despite integration, this was not associated with oncogene upregulation or histopathological evidence of tumorigenesis. These findings support the long-term safety of this therapeutic modality.


Dependovirus , Factor VIII , Genetic Therapy , Genetic Vectors , Hemophilia A , Liver , Animals , Dogs , Dependovirus/genetics , Hemophilia A/genetics , Hemophilia A/therapy , Genetic Vectors/genetics , Liver/metabolism , Liver/pathology , Male , Genetic Therapy/methods , Female , Factor VIII/genetics , Gene Transfer Techniques , Virus Integration , Transgenes , Disease Models, Animal
17.
Zhonghua Gan Zang Bing Za Zhi ; 32(2): 164-167, 2024 Feb 20.
Article Zh | MEDLINE | ID: mdl-38514268

Chronic hepatitis B virus (HBV) infection will greatly contribute to raising the occurrence probability of cirrhosis and hepatocellular carcinoma in patients. Although existing antiviral treatment regimens have a certain effect on delaying disease progression and improving prognosis, it is still not effective in attaining functional cures. Hepatitis B virus DNA integration may be one of the reasons for this phenomenon. Therefore, this paper reviews the possible mechanisms of HBV DNA integration in maintaining chronic inflammation of the liver, evading existing antiviral treatment methods, and inducing hepatocellular carcinoma so as to further deepen the understanding of the role of HBV DNA integration in the occurrence and development of chronic hepatitis B, providing ideas and references for formulating better treatment strategies.


Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B, Chronic/drug therapy , Carcinoma, Hepatocellular/genetics , Hepatitis B virus/genetics , Liver Neoplasms/genetics , DNA, Viral , Antiviral Agents/therapeutic use , Hepatitis B/drug therapy , Virus Integration
18.
BMC Genomics ; 25(1): 198, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378450

BACKGROUND: Cervical cancer (CC) causes more than 311,000 deaths annually worldwide. The integration of human papillomavirus (HPV) is a crucial genetic event that contributes to cervical carcinogenesis. Despite HPV DNA integration is known to disrupt the genomic architecture of both the host and viral genomes in CC, the complexity of this process remains largely unexplored. RESULTS: In this study, we conducted whole-genome sequencing (WGS) at 55-65X coverage utilizing the PacBio long-read sequencing platform in SiHa and HeLa cells, followed by comprehensive analyses of the sequence data to elucidate the complexity of HPV integration. Firstly, our results demonstrated that PacBio long-read sequencing effectively identifies HPV integration breakpoints with comparable accuracy to targeted-capture Next-generation sequencing (NGS) methods. Secondly, we constructed detailed models of complex integrated genome structures that included both the HPV genome and nearby regions of the human genome by utilizing PacBio long-read WGS. Thirdly, our sequencing results revealed the occurrence of a wide variety of genome-wide structural variations (SVs) in SiHa and HeLa cells. Additionally, our analysis further revealed a potential correlation between changes in gene expression levels and SVs on chromosome 13 in the genome of SiHa cells. CONCLUSIONS: Using PacBio long-read sequencing, we have successfully constructed complex models illustrating HPV integrated genome structures in SiHa and HeLa cells. This accomplishment serves as a compelling demonstration of the valuable capabilities of long-read sequencing in detecting and characterizing HPV genomic integration structures within human cells. Furthermore, these findings offer critical insights into the complex process of HPV16 and HPV18 integration and their potential contribution to the development of cervical cancer.


Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , HeLa Cells , Papillomavirus Infections/genetics , DNA , Genomics , Virus Integration/genetics
19.
Gut ; 73(7): 1169-1182, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38395437

OBJECTIVE: Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), mostly characterised by HBV integrations, is prevalent worldwide. Previous HBV studies mainly focused on a few hotspot integrations. However, the oncogenic role of the other HBV integrations remains unclear. This study aimed to elucidate HBV integration-induced tumourigenesis further. DESIGN: Here, we illuminated the genomic structures encompassing HBV integrations in 124 HCCs across ages using whole genome sequencing and Nanopore long reads. We classified a repertoire of integration patterns featured by complex genomic rearrangement. We also conducted a clustered regularly interspaced short palindromic repeat (CRISPR)-based gain-of-function genetic screen in mouse hepatocytes. We individually activated each candidate gene in the mouse model to uncover HBV integration-mediated oncogenic aberration that elicits tumourigenesis in mice. RESULTS: These HBV-mediated rearrangements are significantly enriched in a bridge-fusion-bridge pattern and interchromosomal translocations, and frequently led to a wide range of aberrations including driver copy number variations in chr 4q, 5p (TERT), 6q, 8p, 16q, 9p (CDKN2A/B), 17p (TP53) and 13q (RB1), and particularly, ultra-early amplifications in chr8q. Integrated HBV frequently contains complex structures correlated with the translocation distance. Paired breakpoints within each integration event usually exhibit different microhomology, likely mediated by different DNA repair mechanisms. HBV-mediated rearrangements significantly correlated with young age, higher HBV DNA level and TP53 mutations but were less prevalent in the patients subjected to prior antiviral therapies. Finally, we recapitulated the TONSL and TMEM65 amplification in chr8q led by HBV integration using CRISPR/Cas9 editing and demonstrated their tumourigenic potentials. CONCLUSION: HBV integrations extensively reshape genomic structures and promote hepatocarcinogenesis (graphical abstract), which may occur early in a patient's life.


Carcinoma, Hepatocellular , Hepatitis B virus , Liver Neoplasms , Virus Integration , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/virology , Liver Neoplasms/pathology , Hepatitis B virus/genetics , Humans , Virus Integration/genetics , Animals , Mice , Male , Middle Aged , Female , Adult , Whole Genome Sequencing , DNA Copy Number Variations , Aged
20.
EMBO Rep ; 25(2): 725-744, 2024 Feb.
Article En | MEDLINE | ID: mdl-38177923

Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.


Herpesvirus 6, Human , Immediate-Early Proteins , Roseolovirus Infections , Humans , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/metabolism , Roseolovirus Infections/genetics , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Virus Integration , Genomic Instability , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
...