Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 756
Filter
1.
Medicine (Baltimore) ; 103(27): e38768, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968496

ABSTRACT

Antiretroviral therapy, also known as antiretroviral therapy (ART), has been at the forefront of the ongoing battle against human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDs). ART is effective, but it has drawbacks such as side effects, medication resistance, and difficulty getting access to treatment, which highlights the urgent need for novel treatment approaches. This review explores the complex field of HIV/AIDS treatment, covering both established alternative treatment modalities and orthodox antiretroviral therapy. Numerous reliable databases were reviewed, including PubMed, Web of Science, Scopus, and Google Scholar. The results of a thorough literature search revealed numerous therapeutic options, including stem cell transplantation, immunotherapy, gene therapy, latency reversal agents, and pharmaceutical vaccinations. While gene therapy has promise for altering cellular resistance to infection and targeting HIV-positive cells, immunotherapy treatments seek to strengthen the immune system's ability to combat HIV. Latency reversal agents offer a promising method of breaking the viral latency and making infected cells vulnerable to immune system destruction or antiretroviral drugs. Furthermore, there is potential for improving immune responses against HIV using medical vaccinations. This review stresses the vital significance of ongoing research and innovation in the hunt for a successful HIV/AIDS treatment through a thorough examination of recent developments and lingering challenges. The assessment notes that even though there has been tremendous progress in treating the illness, there is still more work to be done in addressing current barriers and investigating various treatment options in order to achieve the ultimate objective of putting an end to the HIV/AIDS pandemic.


Subject(s)
HIV Infections , Humans , HIV Infections/drug therapy , Immunotherapy/methods , Acquired Immunodeficiency Syndrome/drug therapy , Genetic Therapy , Virus Latency/drug effects , Anti-Retroviral Agents/therapeutic use , Anti-HIV Agents/therapeutic use , Stem Cell Transplantation
2.
Viruses ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38932169

ABSTRACT

Repression of human cytomegalovirus (HCMV) immediate-early (IE) gene expression is a key regulatory step in the establishment and maintenance of latent reservoirs. Viral IE transcription and protein accumulation can be elevated during latency by treatment with histone deacetylase inhibitors such as valproic acid (VPA), rendering infected cells visible to adaptive immune responses. However, the latency-associated viral protein UL138 inhibits the ability of VPA to enhance IE gene expression during infection of incompletely differentiated myeloid cells that support latency. UL138 also limits the accumulation of IFNß transcripts by inhibiting the cGAS-STING-TBK1 DNA-sensing pathway. Here, we show that, in the absence of UL138, the cGAS-STING-TBK1 pathway promotes both IFNß accumulation and VPA-responsive IE gene expression in incompletely differentiated myeloid cells. Inactivation of this pathway by either genetic or pharmacological inhibition phenocopied UL138 expression and reduced VPA-responsive IE transcript and protein accumulation. This work reveals a link between cytoplasmic pathogen sensing and epigenetic control of viral lytic phase transcription and suggests that manipulation of pattern recognition receptor signaling pathways could aid in the refinement of MIEP regulatory strategies to target latent viral reservoirs.


Subject(s)
Cytomegalovirus , Membrane Proteins , Myeloid Cells , Nucleotidyltransferases , Protein Serine-Threonine Kinases , Signal Transduction , Valproic Acid , Humans , Valproic Acid/pharmacology , Myeloid Cells/virology , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Signal Transduction/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cytomegalovirus/physiology , Cytomegalovirus/drug effects , Cytomegalovirus/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/genetics , Virus Latency/drug effects , Transcription, Genetic/drug effects , Cell Differentiation/drug effects , Gene Expression Regulation, Viral/drug effects , Genes, Immediate-Early , Interferon-beta/metabolism , Interferon-beta/genetics
3.
ACS Infect Dis ; 10(6): 2250-2261, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38771724

ABSTRACT

Toward human immunodeficiency virus type-1 (HIV-1) cure, cells latently infected with HIV-1 must be eliminated from people living with HIV-1. We previously developed a protein kinase C (PKC) activator, diacylglycerol (DAG)-lactone derivative 3, with high HIV-1 latency-reversing activity, based on YSE028 (2) as a lead compound and found that the activity was correlated with binding affinity for PKC and stability against esterase-mediated hydrolysis. Here, we synthesized new DAG-lactone derivatives not only containing a tertiary ester group or an isoxazole surrogate but also several symmetric alkylidene moieties to improve HIV-1 latency reversing activity. Compound 9a, with a dimethyl group at the α-position of the ester group, exerted twice higher HIV-1 latency reversing activity than compound 3, and compound 26, with the isoxazole moiety, was significantly active. In addition, DAG-lactone derivatives with moderate hydrophobicity and potent biostability showed high biological activity.


Subject(s)
Anti-HIV Agents , HIV-1 , Lactones , Virus Latency , Humans , HIV-1/drug effects , HIV-1/physiology , Virus Latency/drug effects , Lactones/pharmacology , Lactones/chemistry , Lactones/chemical synthesis , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Diglycerides/chemistry , Diglycerides/pharmacology , Diglycerides/chemical synthesis , HIV Infections/drug therapy , HIV Infections/virology , Protein Kinase C/metabolism , Protein Kinase C/antagonists & inhibitors
4.
Antiviral Res ; 227: 105906, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735576

ABSTRACT

Epstein-Barr virus (EBV), the first virus found to induce cancer in humans, has been frequently detected in various types of B cell lymphomas. During its latent phase, EBV expresses a limited set of proteins crucial for its persistence. Induction of the lytic phase of EBV has shown promise in the treatment of EBV-associated malignancies. The present study assessed the ability of phomaherbarine A, a novel compound derived from the endophytic fungus Phoma herbarum DBE-M1, to stimulate lytic replication of EBV in B95-8 cells. Phomaherbarine A was found to efficiently initiate the expression of both early and late EBV lytic genes in B95-8 cells, with this initiation being further heightened by the addition of phorbol myristate acetate and sodium butyrate. Moreover, phomaherbarine A demonstrated notable cytotoxicity against the EBV-associated B cell lymphoma cell lines B95-8 and Raji. Mechanistically, phomaherbarine A induces apoptosis in these cells through the activation of caspase-3/7. When combined with ganciclovir, phomaherbarine A does not interfere with the reduction of viral replication by ganciclovir and sustains its apoptosis induction. In conclusion, these findings indicate that phomaherbarine A may be a promising candidate for therapeutic intervention in patients with EBV-associated B cell lymphomas.


Subject(s)
Apoptosis , B-Lymphocytes , Herpesvirus 4, Human , Virus Activation , Humans , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/physiology , Virus Activation/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/virology , Apoptosis/drug effects , Cell Line, Tumor , Virus Replication/drug effects , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/drug therapy , Antiviral Agents/pharmacology , Ascomycota/drug effects , Lymphoma, B-Cell/virology , Lymphoma, B-Cell/drug therapy , Virus Latency/drug effects
5.
Viruses ; 16(4)2024 03 27.
Article in English | MEDLINE | ID: mdl-38675857

ABSTRACT

The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Virus Latency , Animals , Humans , Disease Models, Animal , Disease Reservoirs/virology , HIV Infections/virology , HIV Infections/drug therapy , HIV-1/genetics , HIV-1/drug effects , HIV-1/physiology , Macaca mulatta , Proviruses/genetics , Proviruses/physiology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , Viral Load , Virus Latency/drug effects
6.
Nat Commun ; 14(1): 8397, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110433

ABSTRACT

The development of latency reversing agents that potently reactivate HIV without inducing global T cell activation would benefit the field of HIV reservoir research and could pave the way to a functional cure. Here, we explore the reactivation capacity of a lipid nanoparticle containing Tat mRNA (Tat-LNP) in CD4 T cells from people living with HIV undergoing antiretroviral therapy (ART). When combined with panobinostat, Tat-LNP induces latency reversal in a significantly higher proportion of latently infected cells compared to PMA/ionomycin (≈ 4-fold higher). We demonstrate that Tat-LNP does not alter the transcriptome of CD4 T cells, enabling the characterization of latently infected cells in their near-native state. Upon latency reversal, we identify transcriptomic differences between infected cells carrying an inducible provirus and non-infected cells (e.g. LINC02964, GZMA, CCL5). We confirm the transcriptomic differences at the protein level and provide evidence that the long non-coding RNA LINC02964 plays a role in active HIV infection. Furthermore, p24+ cells exhibit heightened PI3K/Akt signaling, along with downregulation of protein translation, suggesting that HIV-infected cells display distinct signatures facilitating their long-term persistence. Tat-LNP represents a valuable research tool for in vitro reservoir studies as it greatly facilitates the in-depth characterization of HIV reservoir cells' transcriptome and proteome profiles.


Subject(s)
Gene Products, tat , HIV-1 , Nanoparticles , RNA, Viral , Virus Latency , Virus Latency/drug effects , Virus Latency/genetics , Gene Products, tat/genetics , Gene Products, tat/metabolism , RNA, Viral/administration & dosage , RNA, Viral/genetics , RNA, Viral/metabolism , Nanoparticles/administration & dosage , Nanoparticles/chemistry , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/virology , Panobinostat/pharmacology , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , CD4 Antigens/genetics , CD4 Antigens/metabolism , HIV-1/drug effects , HIV-1/genetics , Proviruses/drug effects , Proviruses/genetics , Single-Cell Gene Expression Analysis , HIV Core Protein p24/genetics , HIV Core Protein p24/metabolism , RNA, Long Noncoding/metabolism , Cells, Cultured , Humans , Ionomycin/pharmacology
7.
J Virol ; 97(5): e0027023, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37042759

ABSTRACT

Understanding the facilitator of HIV-1 infection and subsequent latency establishment may aid the discovery of potential therapeutic targets. Here, we report the elevation of plasma transforming growth factor ß (TGF-ß) during acute HIV-1 infection among men who have sex with men (MSM). Using a serum-free in vitro system, we further delineated the role of TGF-ß signaling in mediating HIV-1 infection of activated and resting memory CD4+ T cells. TGF-ß could upregulate both the frequency and expression of the HIV-1 coreceptor CCR5, thereby augmenting CCR5-tropic viral infection of resting and activated memory CD4+ T cells via Smad3 activation. The production of live HIV-1JR-FL upon infection and reactivation was increased in TGF-ß-treated resting memory CD4+ T cells without increasing CD4 expression or inducing T cell activation. The expression of CCR7, a central memory T cell marker that serves as a chemokine receptor to facilitate T cell trafficking into lymphoid organs, was also elevated on TGF-ß-treated resting and activated memory CD4+ T cells. Moreover, the expression of CXCR3, a chemokine receptor recently reported to facilitate CCR5-tropic HIV-1 infection, was increased on resting and activated memory CD4+ T cells upon TGF-ß treatment. These findings were coherent with the observation that ex vivo CCR5 and CXCR3 expression on total resting and resting memory CD4+ T cells in combination antiretroviral therapy (cART)-naive and cART-treated patients were higher than in healthy individuals. Overall, the study demonstrated that TGF-ß upregulation induced by acute HIV-1 infection might promote latency reservoir establishment by increasing infected resting memory CD4+ T cells and lymphoid organ homing of infected central memory CD4+ T cells. Therefore, TGF-ß blockade may serve as a potential supplementary regimen for HIV-1 functional cure by reducing viral latency. IMPORTANCE Incomplete eradication of HIV-1 latency reservoirs remains the major hurdle in achieving a complete HIV/AIDS cure. Dissecting the facilitator of latency reservoir establishment may aid the discovery of druggable targets for HIV-1 cure. This study showed that the T cell immunomodulatory cytokine TGF-ß was upregulated during the acute phase of infection. Using an in vitro serum-free system, we specifically delineated that TGF-ß promoted HIV-1 infection of both resting and activated memory CD4+ T cells via the induction of host CCR5 coreceptor. Moreover, TGF-ß-upregulated CCR7 or CXCR3 might promote HIV-1 latent infection by facilitating lymphoid homing or IP-10-mediated viral entry and DNA integration, respectively. Infected resting and central memory CD4+ T cells are important latency reservoirs. Increased infection of these cells mediated by TGF-ß will promote latency reservoir establishment during early infection. This study, therefore, highlighted the potential use of TGF-ß blockade as a supplementary regimen with cART in acute patients to reduce viral latency.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , Homosexuality, Male , Signal Transduction , Humans , Male , CD4-Positive T-Lymphocytes/virology , HIV Infections/drug therapy , HIV Seropositivity , HIV-1/physiology , Receptors, CCR7/metabolism , Sexual and Gender Minorities , Transforming Growth Factor beta , Virus Latency/drug effects , Virus Replication , Signal Transduction/drug effects
8.
Nature ; 614(7947): 309-317, 2023 02.
Article in English | MEDLINE | ID: mdl-36599977

ABSTRACT

Human immunodeficiency virus 1 (HIV-1) reservoir cells persist lifelong despite antiretroviral treatment1,2 but may be vulnerable to host immune responses that could be exploited in strategies to cure HIV-1. Here we used a single-cell, next-generation sequencing approach for the direct ex vivo phenotypic profiling of individual HIV-1-infected memory CD4+ T cells from peripheral blood and lymph nodes of people living with HIV-1 and receiving antiretroviral treatment for approximately 10 years. We demonstrate that in peripheral blood, cells harbouring genome-intact proviruses and large clones of virally infected cells frequently express ensemble signatures of surface markers conferring increased resistance to immune-mediated killing by cytotoxic T and natural killer cells, paired with elevated levels of expression of immune checkpoint markers likely to limit proviral gene transcription; this phenotypic profile might reduce HIV-1 reservoir cell exposure to and killing by cellular host immune responses. Viral reservoir cells harbouring intact HIV-1 from lymph nodes exhibited a phenotypic signature primarily characterized by upregulation of surface markers promoting cell survival, including CD44, CD28, CD127 and the IL-21 receptor. Together, these results suggest compartmentalized phenotypic signatures of immune selection in HIV-1 reservoir cells, implying that only small subsets of infected cells with optimal adaptation to their anatomical immune microenvironment are able to survive during long-term antiretroviral treatment. The identification of phenotypic markers distinguishing viral reservoir cells may inform future approaches for strategies to cure and eradicate HIV-1.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , Phenotype , Virus Latency , Humans , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , HIV-1/immunology , HIV-1/isolation & purification , Proviruses/drug effects , Proviruses/genetics , Proviruses/isolation & purification , Viral Load , Virus Latency/drug effects , Immunologic Memory , Lymph Nodes/cytology , Lymph Nodes/immunology , Cell Survival , CD28 Antigens , Receptors, Interleukin-21
9.
Nature ; 614(7947): 318-325, 2023 02.
Article in English | MEDLINE | ID: mdl-36599978

ABSTRACT

Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.


Subject(s)
CD4-Positive T-Lymphocytes , Gene Expression Regulation, Viral , HIV Infections , HIV-1 , Virus Latency , Humans , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA, Viral/isolation & purification , Gene Expression Regulation, Viral/drug effects , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , HIV-1/isolation & purification , HIV-1/pathogenicity , Immunologic Memory , Microfluidics , Necroptosis/drug effects , Signal Transduction/drug effects , Transcriptome/drug effects , Virus Latency/drug effects , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use
10.
J Virol ; 97(2): e0163022, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36719238

ABSTRACT

Low level HIV transcription during modern antiretroviral therapy (ART) in persons with HIV is linked to residual inflammation and associated diseases, like cardiovascular disease and cancer. The "block and lock" approach to hold HIV in a state of deep latency may help decrease residual inflammation in a person with HIV on ART and thus improve health. A camptothecin analog topotecan (TPT) was previously implicated as an inhibitor of active HIV replication. Using an in vitro primary T cell model of HIV latency, we demonstrated that (i) TPT reduces HIV transcriptional activity in latently infected cells; (ii) downregulation of HIV RNA by TPT cannot be reversed by latency reversing agents; (iii) several primary and secondary mechanism of action of TPT may be involved in control of HIV replication; (iv) regulation of HIV RNA by TPT is dependent on splicing complexity; (v) increase in proportion of unspliced HIV transcripts was facilitated by intron retention and upregulation of splicing factors, specifically SRSF6, by TPT. Although high TPT dosing (10 µM) was needed to achieve the observed effects, viability of primary CD4+ T cells was not greatly affected. Because toxicity can be observed with TPT in persons with cancer, TPT is unlikely to be used as an anti-HIV agent in clinic, but our study provides proof that camptothetin has "block and lock" activity. Other camptothetin analogs, which are less toxic than TPT, should be designed and tested as HIV "block and lock" agents. IMPORTANCE HIV survives in a state of very low activity, called latency, for long periods in persons with HIV on antiretroviral therapy. This low activity of HIV is linked to residual inflammation and associated diseases, such as heart disease and cancer. New strategies are being explored to further silence the HIV provirus and suppress residual inflammation. This study provides strong evidence that the camptothetin analog, Topotecan, can reduce residual activity of HIV in an experimental model of HIV latency. While Topotecan itself is likely not suitable for use in the clinic due to its toxicity, other camptothetin analogs should be designed and investigated as "block and lock" agents.


Subject(s)
HIV Infections , RNA Splicing , Topotecan , Virus Latency , Humans , HIV Infections/drug therapy , Phosphoproteins , Serine-Arginine Splicing Factors , Topotecan/pharmacology , Virus Latency/drug effects
11.
Phytochemistry ; 203: 113395, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36027969

ABSTRACT

Developing highly effective HIV latency-reversing agent is an inportmant approach for the treatment of AIDS via the "shock and kill" of latent HIV. In this study, two unreported modified daphnane-type diterpenes (chamaedaphnelide A and epi-chamaedaphnelide A) and one unreported tigliane-type diterpene (chamaedaphnelide B), along with four known daphnane-type diterpenes and one known tigliane-type diterpene were obtained from the leaves of Wikstroemia chamaedaphne. Chamaedaphnelide A and epi-chamaedaphnelide A represents the first A ring cleavage daphnane-type backbone. Chamaedaphnelide A, epi-chamaedaphnelide A, chamaedaphnelide B, and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate showed HIV latency-reversing activity, especially chamaedaphnelide B and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate displayed equally potential to positive drugs prostratin with reversing latent HIV on more than 100-fold compared to unstimulated cells. Furthermore, the activation of STAT1 was involved in the HIV latency-reversing activity of these diterpenes, firstly demonstrating that daphnane- and tigliane-type diterpenes can rapidly activate STAT1 activity. Indeed, these results also supported that activating STAT1 activity is a pathway for reversing latent HIV.


Subject(s)
Anti-HIV Agents , Diterpenes , HIV , Virus Latency , Anti-HIV Agents/pharmacology , Diterpenes/pharmacology , HIV/drug effects , HIV/physiology , HIV Infections/drug therapy , Humans , Plant Leaves , STAT1 Transcription Factor/drug effects , STAT1 Transcription Factor/metabolism , Virus Latency/drug effects , Wikstroemia
12.
J Virol ; 96(15): e0037222, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35867565

ABSTRACT

Elimination of human immunodeficiency virus (HIV) reservoirs is a critical endpoint to eradicate HIV. One therapeutic intervention against latent HIV is "shock and kill." This strategy is based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) with the consequent killing of the reactivated cell by either the cytopathic effect of HIV or the immune system. We have previously found that the small molecule 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) acts as an LRA by increasing signal transducer and activator of transcription (STAT) factor activation mediated by interleukin-15 (IL-15) in cells isolated from aviremic participants. The IL-15 superagonist N-803 is currently under clinical investigation to eliminate latent reservoirs. IL-15 and N-803 share similar mechanisms of action by promoting the activation of STATs and have shown some promise in preclinical models directed toward HIV eradication. In this work, we evaluated the ability of HODHBt to enhance IL-15 signaling in natural killer (NK) cells and the biological consequences associated with increased STAT activation in NK cell effector and memory-like functions. We showed that HODHBt increased IL-15-mediated STAT phosphorylation in NK cells, resulting in increases in the secretion of CXCL-10 and interferon gamma (IFN-γ) and the expression of cytotoxic proteins, including granzyme B, granzyme A, perforin, granulysin, FASL, and TRAIL. This increased cytotoxic profile results in increased cytotoxicity against HIV-infected cells and different tumor cell lines. HODHBt also improved the generation of cytokine-induced memory-like NK cells. Overall, our data demonstrate that enhancing the magnitude of IL-15 signaling with HODHBt favors NK cell cytotoxicity and memory-like generation, and thus, targeting this pathway could be further explored for HIV cure interventions. IMPORTANCE Several clinical trials targeting the HIV latent reservoir with LRAs have been completed. In spite of a lack of clinical benefit, they have been crucial to elucidate hurdles that "shock and kill" strategies have to overcome to promote an effective reduction of the latent reservoir to lead to a cure. These hurdles include low reactivation potential mediated by LRAs, the negative influence of some LRAs on the activity of natural killer and effector CD8 T cells, an increased resistance to apoptosis of latently infected cells, and an exhausted immune system due to chronic inflammation. To that end, finding therapeutic strategies that can overcome some of these challenges could improve the outcome of shock and kill strategies aimed at HIV eradication. Here, we show that the LRA HODHBt also improves IL-15-mediated NK cell effector and memory-like functions. As such, pharmacological enhancement of IL-15-mediated STAT activation can open new therapeutic avenues toward an HIV cure.


Subject(s)
HIV-1 , Immunologic Memory , Interleukin-15 , Killer Cells, Natural , STAT Transcription Factors , Triazines , Virus Latency , Humans , Cell Line, Tumor , Chemokine CXCL10 , Cytotoxicity Tests, Immunologic , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , HIV-1/immunology , Immunologic Memory/drug effects , Interferon-gamma , Interleukin-15/immunology , Interleukin-15/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , STAT Transcription Factors/metabolism , Transcriptional Activation/drug effects , Triazines/pharmacology , Virus Activation/drug effects , Virus Latency/drug effects
13.
Nature ; 606(7913): 368-374, 2022 06.
Article in English | MEDLINE | ID: mdl-35418681

ABSTRACT

HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.


Subject(s)
Anti-Retroviral Agents , HIV Antibodies , HIV Infections , HIV-1 , Viral Load , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/virology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/growth & development , Humans , Proviruses/drug effects , Viral Load/drug effects , Viremia/drug therapy , Virus Latency/drug effects
14.
J Virol ; 96(7): e0169921, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35293766

ABSTRACT

The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency. Ten weekly doses of AZD5582 were intravenously administered at 0.1 mg/kg to rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen for over 1 year. During AZD5582 treatment, on-ART viremia above the limit of detection (LOD, 60 copies/mL) was observed in 5/8 infant RMs starting at 3 days post-dose 4 and peaking at 771 copies/mL. Of the 135 measurements during AZD5582 treatment in these 5 RM infants, only 8 were above the LOD (6%), lower than the 46% we have previously reported in adult RMs. Pharmacokinetic analysis of plasma AZD5582 levels revealed a lower Cmax in treated infants compared to adults (294 ng/mL versus 802 ng/mL). RNA-Sequencing of CD4+ T cells comparing pre- and post-AZD5582 dosing showed many genes that were similarly upregulated in infants and adults, but the expression of key ncNF-κB genes, including NFKB2 and RELB, was significantly higher in adult RMs. Our results suggest that dosing modifications for this latency reversal approach may be necessary to maximize virus reactivation in the pediatric setting for successful "shock and kill" strategies. IMPORTANCE While antiretroviral therapy (ART) has improved HIV-1 disease outcome and reduced transmission, interruption of ART results in rapid viral rebound due to the persistent latent reservoir. Interventions to reduce the viral reservoir are of critical importance, especially for children who must adhere to lifelong ART to prevent disease progression. Here, we used our previously established pediatric nonhuman primate model of oral SIV infection to evaluate AZD5582, identified as a potent latency-reversing agent in adult macaques, in the controlled setting of daily ART. We demonstrated the safety of the IAPi AZD5582 and evaluate the pharmacokinetics and pharmacodynamics of repeated dosing. The response to AZD5582 in macaque infants differed from what we previously showed in adult macaques with weaker latency reversal in infants, likely due to altered pharmacokinetics and less inducibility of infant CD4+ T cells. These data supported the contention that HIV-1 cure strategies for children are best evaluated using pediatric model systems.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Alkynes/pharmacokinetics , Alkynes/pharmacology , Alkynes/therapeutic use , Animals , Anti-Retroviral Agents/pharmacokinetics , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , HIV-1/genetics , Humans , Macaca mulatta , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Viral Load , Virus Latency/drug effects , Virus Replication
15.
J Med Chem ; 65(4): 3460-3472, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35113551

ABSTRACT

Three new diterpenes, stellejasmins A (1) and B (2) and 12-O-benzoylphorbol-13-heptanoate (3), were isolated from the roots of Stellera chamaejasme L. The structures of 1-3 were elucidated by extensive NMR and mass spectroscopic analyses. Compounds 1 and 2 are the first derivatives containing a hydroxy group at C-2 in the family of daphnane and tigliane diterpenes. The presence of a chlorine atom in 1 is unique in the plant metabolite. Compound 3 has an odd-number acyl group, which is biosynthetically notable. Human immunodeficiency virus (HIV) LTR-driven transcription activity was tested with 1-3 and 17 known diterpenes isolated from S. chamaejasme L. and Wikstroemia retusa A.Gray. Among these, gnidimacrin (4), stelleralide A (5), and wikstroelide A (20) were highly potent, with EC50 values of 0.14, 0.33, and 0.39 nM, respectively. The structure-activity relationship (SAR) was investigated using 20 natural and eight synthetic diterpenes. This is the first SAR study on natural daphnane and tigliane diterpenes.


Subject(s)
Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Diterpenes/chemical synthesis , Diterpenes/pharmacology , HIV/drug effects , Phorbols/chemistry , Virus Latency/drug effects , Diterpenes/chemistry , Models, Molecular , Molecular Docking Simulation , Phorbols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Structure-Activity Relationship , Thymelaeaceae/chemistry , Wikstroemia/chemistry
16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35110411

ABSTRACT

In persons living with HIV-1 (PLWH) who start antiretroviral therapy (ART), plasma virus decays in a biphasic fashion to below the detection limit. The first phase reflects the short half-life (<1 d) of cells that produce most of the plasma virus. The second phase represents the slower turnover (t1/2 = 14 d) of another infected cell population, whose identity is unclear. Using the intact proviral DNA assay (IPDA) to distinguish intact and defective proviruses, we analyzed viral decay in 17 PLWH initiating ART. Circulating CD4+ T cells with intact proviruses include few of the rapidly decaying first-phase cells. Instead, this population initially decays more slowly (t1/2 = 12.9 d) in a process that largely represents death or exit from the circulation rather than transition to latency. This more protracted decay potentially allows for immune selection. After ∼3 mo, the decay slope changes, and CD4+ T cells with intact proviruses decay with a half-life of 19 mo, which is still shorter than that of the latently infected cells that persist on long-term ART. Two-long-terminal repeat (2LTR) circles decay with fast and slow phases paralleling intact proviruses, a finding that precludes their use as a simple marker of ongoing viral replication. Proviruses with defects at the 5' or 3' end of the genome show equivalent monophasic decay at rates that vary among individuals. Understanding these complex early decay processes is important for correct use of reservoir assays and may provide insights into properties of surviving cells that can constitute the stable latent reservoir.


Subject(s)
Anti-Retroviral Agents/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Proviruses/drug effects , Virion/drug effects , CD4-Positive T-Lymphocytes/drug effects , Cells, Cultured , DNA, Viral/drug effects , Humans , Longitudinal Studies , Viral Load/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
17.
Molecules ; 27(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35164343

ABSTRACT

Since the efficiency in the transcription of the HIV genome contributes to the success of viral replication and infectivity, we investigated the downregulating effects of the spirobisindole alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) from the endemic Philippine medicinal plant, Voacanga globosa, during HIV gene transcription. Alkaloids 1-3 were explored for their inhibitory activity on TNF-α-induced viral replication in two latently HIV-infected cell lines, OM10.1 and J-Lat. The induction of HIV replication from OM10.1 and J-Lat cells elicited by TNF-α was blocked by globospiramine (1) within noncytotoxic concentrations. Furthermore, globospiramine (1) was found to target the NF-ĸB activation cascade in a dose-dependent manner when the transcriptional step at which inhibitory activity is exerted was examined in TNF-α-induced 293 human cells using transient reporter (luciferase) gene expression systems (HIV LTR-luc, ĸB-luc, and mutant ĸB-luc). Interrogation through molecular docking against the NF-ĸB p50/p65 heterodimer and target sites of the subunits comprising the IKK complex revealed high binding affinities of globospiramine (1) against the S281 pocket of the p65 subunit (BE = -9.2 kcal/mol) and the IKKα activation loop (BE = -9.1 kcal/mol). These findings suggest globospiramine (1) as a molecular inspiration to discover new alkaloid-based anti-HIV derivatives.


Subject(s)
Alkaloids/pharmacology , HIV Infections/metabolism , HIV-1/physiology , I-kappa B Kinase/metabolism , NF-kappa B p50 Subunit/metabolism , Transcription Factor RelA/metabolism , Voacanga/chemistry , Alkaloids/chemistry , Cell Line , Dose-Response Relationship, Drug , HIV Infections/drug therapy , HIV-1/drug effects , HL-60 Cells , Humans , I-kappa B Kinase/chemistry , Indole Alkaloids/pharmacology , Models, Biological , Molecular Docking Simulation , NF-kappa B/metabolism , NF-kappa B p50 Subunit/chemistry , Plant Extracts/chemistry , Signal Transduction/drug effects , Spiro Compounds/pharmacology , Transcription Factor RelA/chemistry , Tumor Necrosis Factor-alpha/pharmacology , Virus Latency/drug effects , Virus Replication/drug effects
18.
PLoS Pathog ; 18(1): e1010245, 2022 01.
Article in English | MEDLINE | ID: mdl-35041707

ABSTRACT

Activation of the NF-κB signaling pathway by Protein Kinase C (PKC) agonists is a potent mechanism for human immunodeficiency virus (HIV) latency disruption in vitro. However, significant toxicity risks and the lack of evidence supporting their activity in vivo have limited further evaluation of PKC agonists as HIV latency-reversing agents (LRA) in cure strategies. Here we evaluated whether GSK445A, a stabilized ingenol-B derivative, can induce HIV/simian immunodeficiency virus (SIV) transcription and virus production in vitro and demonstrate pharmacological activity in nonhuman primates (NHP). CD4+ T cells from people living with HIV and from SIV+ rhesus macaques (RM) on antiretroviral therapy (ART) exposed in vitro to 25 nM of GSK445A produced cell-associated viral transcripts as well as viral particles at levels similar to those induced by PMA/Ionomycin, indicating that GSK445A can potently reverse HIV/SIV latency. Importantly, these concentrations of GSK445A did not impair the proliferation or survival of HIV-specific CD8+ T cells, but instead, increased their numbers and enhanced IFN-γ production in response to HIV peptides. In vivo, GSK445A tolerability was established in SIV-naïve RM at 15 µg/kg although tolerability was reduced in SIV-infected RM on ART. Increases in plasma viremia following GSK445A administration were suggestive of increased SIV transcription in vivo. Collectively, these results indicate that GSK445A is a potent HIV/SIV LRA in vitro and has a tolerable safety profile amenable for further evaluation in vivo in NHP models of HIV cure/remission.


Subject(s)
Diterpenes/pharmacology , HIV , Protein Kinase C/drug effects , Simian Immunodeficiency Virus , Virus Activation/drug effects , Virus Latency/drug effects , Animals , Humans , Macaca mulatta , Protein Kinase C/metabolism , RNA, Viral/drug effects , Transcription, Genetic
19.
Cell ; 185(2): 266-282.e15, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35026153

ABSTRACT

HIV-1-infected cells that persist despite antiretroviral therapy (ART) are frequently considered "transcriptionally silent," but active viral gene expression may occur in some cells, challenging the concept of viral latency. Applying an assay for profiling the transcriptional activity and the chromosomal locations of individual proviruses, we describe a global genomic and epigenetic map of transcriptionally active and silent proviral species and evaluate their longitudinal evolution in persons receiving suppressive ART. Using genome-wide epigenetic reference data, we show that proviral transcriptional activity is associated with activating epigenetic chromatin features in linear proximity of integration sites and in their inter- and intrachromosomal contact regions. Transcriptionally active proviruses were actively selected against during prolonged ART; however, this pattern was violated by large clones of virally infected cells that may outcompete negative selection forces through elevated intrinsic proliferative activity. Our results suggest that transcriptionally active proviruses are dynamically evolving under selection pressure by host factors.


Subject(s)
HIV-1/genetics , Proviruses/genetics , Transcription, Genetic , Aged , Base Sequence , Biological Evolution , Chromatin/metabolism , Clone Cells , DNA, Viral/genetics , Epigenesis, Genetic/drug effects , Female , Humans , Ionomycin/pharmacology , Male , Middle Aged , Phylogeny , Proviruses/drug effects , RNA, Viral/genetics , Tetradecanoylphorbol Acetate/pharmacology , Transcription, Genetic/drug effects , Virus Integration/genetics , Virus Latency/drug effects , Virus Latency/genetics
20.
Nat Commun ; 13(1): 121, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013215

ABSTRACT

HIV is difficult to eradicate due to the persistence of a long-lived reservoir of latently infected cells. Previous studies have shown that natural killer cells are important to inhibiting HIV infection, but it is unclear whether the administration of natural killer cells can reduce rebound viremia when anti-retroviral therapy is discontinued. Here we show the administration of allogeneic human peripheral blood natural killer cells delays viral rebound following interruption of anti-retroviral therapy in humanized mice infected with HIV-1. Utilizing genetically barcoded virus technology, we show these natural killer cells efficiently reduced viral clones rebounding from latency. Moreover, a kick and kill strategy comprised of the protein kinase C modulator and latency reversing agent SUW133 and allogeneic human peripheral blood natural killer cells during anti-retroviral therapy eliminated the viral reservoir in a subset of mice. Therefore, combinations utilizing latency reversal agents with targeted cellular killing agents may be an effective approach to eradicating the viral reservoir.


Subject(s)
Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/therapy , HIV-1/drug effects , Killer Cells, Natural/immunology , Protein Kinase Inhibitors/pharmacology , Viremia/therapy , Animals , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow/virology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Coculture Techniques , Female , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Killer Cells, Natural/transplantation , Male , Mice , Mice, Transgenic , Protein Kinase C/genetics , Protein Kinase C/immunology , Spleen/drug effects , Spleen/immunology , Spleen/virology , Viral Load/drug effects , Viremia/genetics , Viremia/immunology , Viremia/virology , Virus Latency/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...