Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
J Environ Sci (China) ; 148: 69-78, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095200

ABSTRACT

There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine. The effectiveness of dust mitigation strategies such as oil sprinkling, to decrease risk of airborne virus transmission are unknown. Metagenomics and qPCR for common fecal viruses were used to hunt for a ubiquitous virus to serve as a proxy when evaluating the efficiency of mitigation strategies against airborne viral infectious agents. Air particles were collected from swine buildings using high-volume air samplers. Extracted DNA and RNA were used to perform specific RT-qPCR and qPCR and analyzed by high-throughput sequencing. Porcine astroviruses group 2 were common (from 102 to 105 genomic copies per cubic meter of air or gc/m3, 93% positivity) while no norovirus genogroup II was recovered from air samples. Porcine torque teno sus virus were detected by qPCR in low concentrations (from 101 to 102 gc/m3, 47% positivity). Among the identified viral families by metagenomics analysis, Herelleviridae, Microviridae, Myoviridae, Podoviridae, and Siphoviridae were dominant. The phage vB_AviM_AVP of Aerococcus was present in all air samples and a newly designed qPCR revealed between 101 and 105 gc/m3 among the samples taken for the present study (97% positivity) and banked samples from 5- and 15-year old studies (89% positivity). According to the present study, both the porcine astrovirus group 2 and the phage vB_AviM_AVP of Aerococcus could be proxy for airborne viruses of swine buildings.


Subject(s)
Air Microbiology , Environmental Monitoring , Metagenomics , Animals , Swine , Environmental Monitoring/methods , Aerosols/analysis , Viruses/isolation & purification , Air Pollution, Indoor/analysis , Housing, Animal
2.
Virol J ; 21(1): 189, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155366

ABSTRACT

BACKGROUND: The rapid transmission and high pathogenicity of respiratory viruses significantly impact the health of both children and adults. Extracting and detecting their nucleic acid is crucial for disease prevention and treatment strategies. However, current extraction methods are laborious and time-consuming and show significant variations in nucleic acid content and purity among different kits, affecting detection sensitivity and efficiency. Our aim is to develop a novel method that reduces extraction time, simplifies operational steps, and ensures high-quality acquisition of respiratory viral nucleic acid. METHODS: We extracted respiratory syncytial virus (RSV) nucleic acid using reagents with different components and analyzed cycle threshold (Ct) values via quantitative real-time polymerase chain reaction (qRT-PCR) to optimize and validate the novel lysis and washing solution. The performance of this method was compared against magnetic bead, spin column, and precipitation methods for extracting nucleic acid from various respiratory viruses. The clinical utility of this method was confirmed by comparing it to the standard magnetic bead method for extracting clinical specimens of influenza A virus (IAV). RESULTS: The solution, composed of equal parts glycerin and ethanol (50% each), offers an innovative washing approach that achieved comparable efficacy to conventional methods in a single abbreviated cycle. When combined with our A Plus lysis solution, our novel five-minute nucleic acid extraction (FME) method for respiratory viruses yielded superior RNA concentrations and purity compared to traditional methods. FME, when used with a universal automatic nucleic acid extractor, demonstrated similar efficiency as various conventional methods in analyzing diverse concentrations of respiratory viruses. In detecting respiratory specimens from 525 patients suspected of IAV infection, the FME method showed an equivalent detection rate to the standard magnetic bead method, with a total coincidence rate of 95.43% and a kappa statistic of 0.901 (P < 0.001). CONCLUSIONS: The FME developed in this study enables the rapid and efficient extraction of nucleic acid from respiratory samples, laying a crucial foundation for the implementation of expedited molecular diagnosis.


Subject(s)
RNA, Viral , Real-Time Polymerase Chain Reaction , Humans , RNA, Viral/isolation & purification , RNA, Viral/genetics , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , Influenza A virus/isolation & purification , Influenza A virus/genetics , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Specimen Handling/methods , Time Factors , Viruses/isolation & purification , Viruses/genetics , Influenza, Human/diagnosis , Influenza, Human/virology , Molecular Diagnostic Techniques/methods
3.
Nat Microbiol ; 9(8): 1918-1928, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095499

ABSTRACT

The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.


Subject(s)
Food Chain , Microbiota , Soil Microbiology , Soil , Viruses , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Soil/chemistry , Animals , Plants/virology , Plants/microbiology , Ecosystem , Bacteria/virology , Bacteria/metabolism , Bacteria/genetics
4.
Nat Commun ; 15(1): 6788, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117653

ABSTRACT

Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.


Subject(s)
Bacteria , Groundwater , Metagenomics , Virome , Viruses , Groundwater/microbiology , Groundwater/virology , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Virome/genetics , Bacteria/genetics , Bacteria/virology , Bacteria/metabolism , Bacteria/classification , China , Archaea/virology , Archaea/genetics , Archaea/metabolism , Phylogeny , Water Microbiology , Metagenome , Genome, Viral/genetics
5.
Nat Commun ; 15(1): 6789, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117673

ABSTRACT

Oil reservoirs, being one of the significant subsurface repositories of energy and carbon, host diverse microbial communities affecting energy production and carbon emissions. Viruses play crucial roles in the ecology of microbiomes, however, their distribution and ecological significance in oil reservoirs remain undetermined. Here, we assemble a catalogue encompassing viral and prokaryotic genomes sourced from oil reservoirs. The catalogue comprises 7229 prokaryotic genomes and 3,886 viral Operational Taxonomic Units (vOTUs) from 182 oil reservoir metagenomes. The results show that viruses are widely distributed in oil reservoirs, and 85% vOTUs in oil reservoir are detected in less than 10% of the samples, highlighting the heterogeneous nature of viral communities within oil reservoirs. Through combined microcosm enrichment experiments and bioinformatics analysis, we validate the ecological roles of viruses in regulating the community structure of sulfate reducing microorganisms, primarily through a virulent lifestyle. Taken together, this study uncovers a rich diversity of viruses and their ecological functions within oil reservoirs, offering a comprehensive understanding of the role of viral communities in the biogeochemical cycles of the deep biosphere.


Subject(s)
Biodiversity , Metagenome , Oil and Gas Fields , Viruses , Oil and Gas Fields/virology , Oil and Gas Fields/microbiology , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome/genetics , Microbiota/genetics , Genome, Viral/genetics , Phylogeny , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Metagenomics
6.
Influenza Other Respir Viruses ; 18(8): e13362, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118486

ABSTRACT

BACKGROUND: Pneumonia is typically caused by a variety of pathogenic microorganisms. Traditional research often focuses on the infection of a few microorganisms, whereas metagenomic studies focus on the impact of the bacteriome and mycobiome on respiratory diseases. Reports on the virome characteristics of pediatric pneumonia remain relatively scarce. METHODS: We employed de novo assembly and combined homology- and feature-based methods to characterize the respiratory virome in whole-genome DNA sequencing samples from oropharynx (OP) swabs, nasopharynx (NP) swabs, and bronchoalveolar lavage fluids (BALF) of children with pneumonia. RESULTS: Significant differences were observed in the alpha and beta diversity indexes, as well as in the composition of the oropharyngeal virome, between pneumonia cases and controls. We identified 1137 viral operational taxonomic units (vOTUs) with significant differences, indicating a preference of pneumonia-reduced vOTUs for infecting Prevotella, Neisseria, and Veillonella, whereas pneumonia-enriched vOTUs included polyomavirus, human adenovirus, and phages targeting Staphylococcus, Streptococcus, Granulicatella, and Actinomyces. Comparative analysis revealed higher relative abundances and prevalence rates of pneumonia-enriched OP vOTUs in NP and BALF samples compared to pneumonia-reduced vOTUs. Additionally, virome analysis identified six pediatric patients with severe human adenovirus or polyomavirus infections, five of whom might have been undetected by targeted polymerase chain reaction (PCR)-based testing. CONCLUSIONS: This study offers insights into pediatric pneumonia respiratory viromes, highlighting frequent transmission of potentially pathogenic viruses and demonstrating virome analysis as a valuable adjunct for pathogen detection.


Subject(s)
Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Nasopharynx , Virome , Viruses , Humans , Child, Preschool , Nasopharynx/virology , Nasopharynx/microbiology , Bronchoalveolar Lavage Fluid/virology , Bronchoalveolar Lavage Fluid/microbiology , Male , Female , Infant , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Child , Oropharynx/virology , Oropharynx/microbiology , Pneumonia/microbiology , Pneumonia/virology , Pneumonia/diagnosis , Metagenomics/methods
7.
Molecules ; 29(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124939

ABSTRACT

The detection of pathogens in medical wastewater is crucial due to the high content of pathogenic microorganisms that pose significant risks to public health and the environment. Medical wastewater, which includes waste from infectious disease and tuberculosis facilities, as well as comprehensive medical institutions, contains a variety of pathogens such as bacteria, viruses, fungi, and parasites. Traditional detection methods like nucleic acid detection and immunological assays, while effective, are often time-consuming, expensive, and not suitable for rapid detection in underdeveloped areas. Electrochemical biosensors offer a promising alternative with advantages including simplicity, rapid response, portability, and low cost. This paper reviews the sources of pathogens in medical wastewater, highlighting specific bacteria (e.g., E. coli, Salmonella, Staphylococcus aureus), viruses (e.g., enterovirus, respiratory viruses, hepatitis virus), parasites, and fungi. It also discusses various electrochemical biosensing techniques such as voltammetry, conductometry, impedance, photoelectrochemical, and electrochemiluminescent biosensors. These technologies facilitate the rapid, sensitive, and specific detection of pathogens, thereby supporting public health and environmental safety. Future research may should pay more attention on enhancing sensor sensitivity and specificity, developing portable and cost-effective devices, and innovating detection methods for diverse pathogens to improve public health protection and environmental monitoring.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Wastewater , Biosensing Techniques/methods , Electrochemical Techniques/methods , Wastewater/virology , Wastewater/microbiology , Wastewater/analysis , Viruses/isolation & purification , Bacteria/isolation & purification , Humans , Environmental Monitoring/methods , Fungi/isolation & purification
8.
Environ Microbiol ; 26(8): e16665, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39101434

ABSTRACT

Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth-related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hosts in silico and found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses of Candidatus Methanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon-degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long-term observations enhance our understanding of soil viruses in the context of climate-relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.


Subject(s)
Metagenome , Permafrost , Soil Microbiology , Viruses , Permafrost/microbiology , Permafrost/virology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Ecosystem , Carbon Cycle , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
9.
J Med Virol ; 96(7): e29781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961767

ABSTRACT

Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a serious and common extra-articular disease manifestation. Patients with RA-ILD experience reduced bacterial diversity and gut bacteriome alterations. However, the gut mycobiome and virome in these patients have been largely neglected. In this study, we performed whole-metagenome shotgun sequencing on fecal samples from 30 patients with RA-ILD, and 30 with RA-non-ILD, and 40 matched healthy controls. The gut bacteriome and mycobiome were explored using a reference-based approach, while the gut virome was profiled based on a nonredundant viral operational taxonomic unit (vOTU) catalog. The results revealed significant alterations in the gut microbiomes of both RA-ILD and RA-non-ILD groups compared with healthy controls. These alterations encompassed changes in the relative abundances of 351 bacterial species, 65 fungal species, and 4,367 vOTUs. Bacteria such as Bifidobacterium longum, Dorea formicigenerans, and Collinsella aerofaciens were enriched in both patient groups. Ruminococcus gnavus (RA-ILD), Gemmiger formicilis, and Ruminococcus bromii (RA-non-ILD) were uniquely enriched. Conversely, Faecalibacterium prausnitzii, Bacteroides spp., and Roseburia inulinivorans showed depletion in both patient groups. Mycobiome analysis revealed depletion of certain fungi, including Saccharomyces cerevisiae and Candida albicans, in patients with RA compared with healthy subjects. Notably, gut virome alterations were characterized by an increase in Siphoviridae and a decrease in Myoviridae, Microviridae, and Autographiviridae in both patient groups. Hence, multikingdom gut microbial signatures showed promise as diagnostic indicators for both RA-ILD and RA-non-ILD. Overall, this study provides comprehensive insights into the fecal virome, bacteriome, and mycobiome landscapes of RA-ILD and RA-non-ILD gut microbiota, thereby offering potential biomarkers for further mechanistic and clinical research.


Subject(s)
Arthritis, Rheumatoid , Bacteria , Feces , Gastrointestinal Microbiome , Lung Diseases, Interstitial , Humans , Lung Diseases, Interstitial/microbiology , Lung Diseases, Interstitial/virology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/microbiology , Feces/microbiology , Feces/virology , Female , Male , Middle Aged , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Aged , Virome , Mycobiome , Adult , Viruses/classification , Viruses/isolation & purification , Viruses/genetics , Fungi/isolation & purification , Fungi/classification
10.
Huan Jing Ke Xue ; 45(7): 3941-3952, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022942

ABSTRACT

Dangerous biological agents (DBAs) refer to microorganisms, toxins, and other biological substances that have the potential to cause significant harm to humans, animals, plants, and the environment. They are the primary target of the prevention and response in China's Biosafety Law, and it is of great importance to clarify the characteristics of DBAs in the Beijing suburban rivers for the insurance of the water safety in Beijing. The typical Beijing suburban rivers (Mangniu River, Chaohe River, and Baihe River) were selected, and the occurrence and distribution of DBAs concerning the molecular biology composition as the nucleic acid (antibiotic resistance genes, ARGs), nucleic acid and proteins (viruses), and intact cellular structures (pathogens) were determined based on the metagenomics. The results showed that there was a high abundance of multidrug-resistant ARGs in the water and substrates of the urban river; on average, they made up 74.11% ±6.82% of the total, and the abundance of aminoglycoside and MLS (macrolide-lincosamide-streptomycin)-resistant ARGs was the highest, but the predominant subtypes of ARGs were of low risk and had limited transmission potential. The viruses in the tributary mainly belonged to the phages, most of which were Kyanoviridae and Peduoviridae, with averages of 16.98% ±8.44% and 16.19% ±10.79%, respectively. Eukaryotic viral populations consisted mainly of members from the Mimiviridae and Phycodnaviridae families, with averages of 10.37% ±12.68% and 8.34% ±6.97%, respectively, whereas there were few viruses related to human and animal diseases. The pathogenic bacteria mainly contained Neisseria meningitidis, Brucella suis, Salmonella enterica, and Burkholderia pseudomalle, with averages of 19.17% ±3.63%, 12.76% ±2.88%, 11.22% ±1.95%, and 8.26% ±1.84%, respectively. The composition and abundance of pathogenic bacteria varied significantly among different tributaries and locations, possibly owing to water quality, pollution sources, environmental factors, and human activities. These findings can provide data support for the water safety management and biological risk control of Beijing suburban rivers.


Subject(s)
Rivers , Beijing , Environmental Monitoring , Water Microbiology , Viruses/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , China , Drug Resistance, Microbial/genetics , Metagenomics
11.
J Med Virol ; 96(7): e29802, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023095

ABSTRACT

Irritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder, is recognized for its association with alterations in the gut microbiome and metabolome. This study delves into the largely unexplored domain of the gut virome in IBS patients. We conducted a comprehensive analysis of the fecal metagenomic data set from 277 IBS patients and 84 healthy controls to characterize the gut viral community. Our findings revealed a distinct gut virome in IBS patients compared to healthy individuals, marked by significant variances in between-sample diversity and altered abundances of 127 viral operational taxonomic units (vOTUs). Specifically, 111 vOTUs, predominantly belonging to crAss-like, Siphoviridae, Myoviridae, and Quimbyviridae families, were more abundant in IBS patients, whereas the healthy control group exhibited enrichment of 16 vOTUs from multiple families. We also investigated the interplay between the gut virome and bacteriome, identifying a correlation between IBS-enriched bacteria like Klebsiella pneumoniae, Fusobacterium varium, and Ruminococcus gnavus, and the IBS-associated vOTUs. Furthermore, we assessed the potential of gut viral signatures in predicting IBS, achieving a notable area under the receiver operator characteristic curve (AUC) of 0.834. These findings highlight significant shifts in the viral diversity, taxonomic distribution, and functional composition of the gut virome in IBS patients, suggesting the potential role of the gut virome in IBS pathogenesis and opening new avenues for diagnostic and therapeutic strategies targeting the gut virome in IBS management.


Subject(s)
Feces , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Metagenomics , Virome , Humans , Irritable Bowel Syndrome/virology , Irritable Bowel Syndrome/microbiology , Gastrointestinal Microbiome/genetics , Feces/virology , Feces/microbiology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Adult , Male , Female , Middle Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Metagenome
12.
Microbiome ; 12(1): 130, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026313

ABSTRACT

BACKGROUND: The gut virome has been implicated in inflammatory bowel disease (IBD), yet a full understanding of the gut virome in IBD patients, especially across diverse geographic populations, is lacking. RESULTS: In this study, we conducted a comprehensive gut virome-wide association study in a Chinese cohort of 71 IBD patients (15 with Crohn's disease and 56 with ulcerative colitis) and 77 healthy controls via viral-like particle (VLP) and bulk virome sequencing of their feces. By utilizing an integrated gut virus catalog tailored to the IBD virome, we revealed fundamental alterations in the gut virome in IBD patients. These characterized 139 differentially abundant viral signatures, including elevated phages predicted to infect Escherichia, Klebsiella, Enterococcus_B, Streptococcus, and Veillonella species, as well as IBD-depleted phages targeting Prevotella, Ruminococcus_E, Bifidobacterium, and Blautia species. Remarkably, these viral signatures demonstrated high consistency across diverse populations such as those in Europe and the USA, emphasizing their significance and broad relevance in the disease context. Furthermore, fecal virome transplantation experiments verified that the colonization of these IBD-characterized viruses can modulate experimental colitis in mouse models. CONCLUSIONS: Building upon these insights into the IBD gut virome, we identified potential biomarkers for prognosis and therapy in IBD patients, laying the foundation for further exploration of viromes in related conditions. Video Abstract.


Subject(s)
Feces , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Virome , Humans , Gastrointestinal Microbiome/genetics , Animals , Feces/virology , Feces/microbiology , Mice , Inflammatory Bowel Diseases/virology , Inflammatory Bowel Diseases/microbiology , Female , Male , Adult , Middle Aged , Crohn Disease/virology , Crohn Disease/microbiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Colitis, Ulcerative/virology , Colitis, Ulcerative/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , China , Fecal Microbiota Transplantation , Case-Control Studies , Viruses/classification , Viruses/isolation & purification , Viruses/genetics
13.
BMC Microbiol ; 24(1): 264, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026166

ABSTRACT

BACKGROUND: More than 90% of colorectal cancer (CRC) arises from advanced adenomas (AA) and gut microbes are closely associated with the initiation and progression of both AA and CRC. OBJECTIVE: To analyze the characteristic microbes in AA. METHODS: Fecal samples were collected from 92 AA and 184 negative control (NC). Illumina HiSeq X sequencing platform was used for high-throughput sequencing of microbial populations. The sequencing results were annotated and compared with NCBI RefSeq database to find the microbial characteristics of AA. R-vegan package was used to analyze α diversity and ß diversity. α diversity included box diagram, and ß diversity included Principal Component Analysis (PCA), principal co-ordinates analysis (PCoA), and non-metric multidimensional scaling (NMDS). The AA risk prediction models were constructed based on six kinds of machine learning algorithms. In addition, unsupervised clustering methods were used to classify bacteria and viruses. Finally, the characteristics of bacteria and viruses in different subtypes were analyzed. RESULTS: The abundance of Prevotella sp900557255, Alistipes putredinis, and Megamonas funiformis were higher in AA, while the abundance of Lilyvirus, Felixounavirus, and Drulisvirus were also higher in AA. The Catboost based model for predicting the risk of AA has the highest accuracy (bacteria test set: 87.27%; virus test set: 83.33%). In addition, 4 subtypes (B1V1, B1V2, B2V1, and B2V2) were distinguished based on the abundance of gut bacteria and enteroviruses (EVs). Escherichia coli D, Prevotella sp900557255, CAG-180 sp000432435, Phocaeicola plebeiuA, Teseptimavirus, Svunavirus, Felixounavirus, and Jiaodavirus are the characteristic bacteria and viruses of 4 subtypes. The results of Catboost model indicated that the accuracy of prediction improved after incorporating subtypes. The accuracy of discovery sets was 100%, 96.34%, 100%, and 98.46% in 4 subtypes, respectively. CONCLUSION: Prevotella sp900557255 and Felixounavirus have high value in early warning of AA. As promising non-invasive biomarkers, gut microbes can become potential diagnostic targets for AA, and the accuracy of predicting AA can be improved by typing.


Subject(s)
Adenoma , Bacteria , Colorectal Neoplasms , Feces , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Adenoma/microbiology , Adenoma/virology , Feces/microbiology , Feces/virology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/virology , Male , Middle Aged , Female , Viruses/isolation & purification , Viruses/classification , Viruses/genetics , Viruses/pathogenicity , High-Throughput Nucleotide Sequencing , Aged , Machine Learning
14.
Compr Rev Food Sci Food Saf ; 23(4): e13410, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39030812

ABSTRACT

Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.


Subject(s)
Bacteria , Food Microbiology , Seafood , Viruses , Seafood/microbiology , Bacteria/isolation & purification , Viruses/isolation & purification , Humans , Food Safety , Food Contamination/analysis , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/prevention & control , Foodborne Diseases/virology , Animals , Food Handling/methods
15.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965948

ABSTRACT

BACKGROUND: The FilmArray Respiratory Panel RP 2.1 plus (FilmArray RP) is a point-of-care syndromic panel for respiratory pathogens. Although highly valuable in the clinical settings, the co-detection of pathogens in FilmArray RP may confound result interpretation. METHODS: Nasopharyngeal swab specimens collected from patients with respiratory symptoms were analyzed by comparing co-detection results from FilmArray RP with those of Allplex Respiratory Panels (Allplex RP: Power-Chek for SARS-CoV-2). RESULTS: Out of 765 FilmArray RP tests, 143 (18.7%) showed co-detections (two: 122 (85.3%), three: 18 (12.6%), four: 2 (1.4%), and five viruses: 1 (0.7%). The most frequent co-detection was human rhinovirus/enterovirus (HRV/HEV) with respiratory syncytial virus (RSV) (22.3%, 32/143). The overall discordance rate between Film-Array RP and other tests was 32.9%. Notably, discordance in detecting adenovirus (AdV) was significant, with cases detected by FilmArray often not appearing in Allplex RP. CONCLUSIONS: Discordances were varied by virus combination. It is advisable to perform additional confirmatory testing based on clinical relevance.


Subject(s)
Coinfection , Multiplex Polymerase Chain Reaction , Respiratory Tract Infections , Humans , Multiplex Polymerase Chain Reaction/methods , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Coinfection/virology , Coinfection/diagnosis , Male , Middle Aged , Female , Adult , Aged , Nasopharynx/virology , Child , COVID-19/diagnosis , COVID-19/virology , Child, Preschool , Adolescent , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Young Adult , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Virus Diseases/diagnosis , Virus Diseases/virology , Infant
16.
J Med Virol ; 96(7): e29809, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016466

ABSTRACT

Pancreatic cancer (PC) is a highly aggressive malignancy with a poor prognosis, making early diagnosis crucial for improving patient outcomes. While the gut microbiome, including bacteria and viruses, is believed to be essential in cancer pathogenicity, the potential contribution of the gut virome to PC remains largely unexplored. In this study, we conducted a comparative analysis of the gut viral compositional and functional profiles between PC patients and healthy controls, based on fecal metagenomes from two publicly available data sets comprising a total of 101 patients and 82 healthy controls. Our results revealed a decreasing trend in the gut virome diversity of PC patients with disease severity. We identified significant alterations in the overall viral structure of PC patients, with a meta-analysis revealing 219 viral operational taxonomic units (vOTUs) showing significant differences in relative abundance between patients and healthy controls. Among these, 65 vOTUs were enriched in PC patients, and 154 were reduced. Host prediction revealed that PC-enriched vOTUs preferentially infected bacterial members of Veillonellaceae, Enterobacteriaceae, Fusobacteriaceae, and Streptococcaceae, while PC-reduced vOTUs were more likely to infect Ruminococcaceae, Lachnospiraceae, Clostridiaceae, Oscillospiraceae, and Peptostreptococcaceae. Furthermore, we constructed random forest models based on the PC-associated vOTUs, achieving an optimal average area under the curve (AUC) of up to 0.879 for distinguishing patients from controls. Through additional 10 public cohorts, we demonstrated the reproducibility and high specificity of these viral signatures. Our study suggests that the gut virome may play a role in PC development and could serve as a promising target for PC diagnosis and therapeutic intervention. Future studies should further explore the underlying mechanisms of gut virus-bacteria interactions and validate the diagnostic models in larger and more diverse populations.


Subject(s)
Feces , Gastrointestinal Microbiome , Metagenomics , Pancreatic Neoplasms , Virome , Humans , Pancreatic Neoplasms/virology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/microbiology , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Feces/virology , Feces/microbiology , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Metagenome , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Middle Aged , Male , Female , Aged , Case-Control Studies
17.
Viruses ; 16(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39066204

ABSTRACT

In recent years, the transmission of viruses from wildlife to humans has raised significant public health concerns, exemplified by the COVID-19 pandemic caused by the betacoronavirus SARS-CoV-2. Human activities play a substantial role in increasing the risk of zoonotic virus transmission from wildlife to humans. Rats and mice are prevalent in urban environments and may act as reservoirs for various pathogens. This study aimed to evaluate the presence of zoonotic viruses in wild rats and mice in both urban and rural areas, focusing on well-known zoonotic viruses such as betacoronavirus, hantavirus, arenavirus, kobuvirus, and monkeypox virus, along with other viruses occasionally detected in rats and mice, including rotavirus, norovirus, and astrovirus, which are known to infect humans at a high rate. A total of 128 animals were captured, including 70 brown rats (Rattus norvegicus), 45 black rats (Rattus rattus), and 13 house mice (Mus musculus), and feces, lung, and liver were collected. Among brown rats, one fecal sample tested positive for astrovirus RNA. Nucleotide sequencing revealed high sequence similarity to both human and rat astrovirus, suggesting co-presence of these viruses in the feces. Murine kobuvirus (MuKV) was detected in fecal samples from both black (n = 7) and brown (n = 6) rats, primarily from urban areas, as confirmed by sequence analysis. These findings highlight the importance of surveillance and research to understand and mitigate the risks associated with the potential transmission of pathogens by rodents.


Subject(s)
Feces , Zoonoses , Animals , Humans , Mice , Rats/virology , Feces/virology , Zoonoses/virology , Zoonoses/transmission , Phylogeny , COVID-19/virology , COVID-19/transmission , COVID-19/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Animals, Wild/virology , Disease Reservoirs/virology , Muridae/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viruses/classification , Viruses/isolation & purification , Viruses/genetics
18.
Viruses ; 16(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39066219

ABSTRACT

The gut microbiota is involved in the pathogenesis of diarrhea-predominant irritable bowel syndrome (IBS-D), but few studies have focused on the role of the gut virome in IBS-D. We aimed to explore the characteristics of the gut virome in patients with IBS-D, its interactions with bacteria and metabolites, and the associations between gut multiomics profiles and symptoms. This study enrolled twelve patients with IBS-D and eight healthy controls (HCs). The stool samples were subjected to metavirome sequencing, 16S rRNA gene sequencing, and untargeted metabolomic analysis. The participants completed relevant scales to assess the severity of their gastrointestinal symptoms, depression, and anxiety. The results revealed unique DNA and RNA virome profiles in patients with IBS-D with significant alterations in the abundance of contigs from Siphoviridae, Podoviridae, Microviridae, Picobirnaviridae, and Tombusviridae. Single-omics co-occurrence network analyses demonstrated distinct differences in the gut virus, bacteria, and metabolite network patterns between patients with IBS-D and HCs. Multiomics networks revealed that short-chain fatty acid-producing bacteria occupied more core positions in IBS-D networks, but had fewer links to viruses. Amino acids and their derivatives exhibit unique connectivity patterns and centrality features within the IBS-D network. The gastrointestinal and psychological symptom factors of patients with IBS-D were highly clustered in the symptom-multiomics network compared with those of HCs. Machine learning models based on multiomics data can distinguish IBS-D patients from HCs and predict the scores of gastrointestinal and psychological symptoms. This study provides insights into the interactions among gut viruses, bacteria, metabolites, and clinical symptoms in patients with IBS-D, indicating further classification and personalized treatment for IBS-D.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Virome , Humans , Irritable Bowel Syndrome/virology , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/metabolism , Male , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Female , Feces/virology , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Middle Aged , Metabolomics , Viruses/classification , Viruses/genetics , Viruses/metabolism , Viruses/isolation & purification , Diarrhea/virology , Diarrhea/microbiology , Young Adult , Multiomics
19.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066281

ABSTRACT

Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), porcine parvovirus (PPV), porcine circovirus 2, 3, 4 (PCV2, 3, 4), hepatitis E virus genotype 3 (HEV3), porcine endogenous retrovirus-C (PERV-C), and recombinant PERV-A/C have been selected. In the past, several pig breeds, minipigs, and genetically modified pigs generated for xenotransplantation had been analyzed using these methods. Here, spleen, liver, and blood samples from 10 German slaughterhouse pigs were screened using both PCR-based and immunological assays. Five viruses: PCMV/PRV, PLHV-1, PLHV-3, and PERV-C, were found in all animals, and PCV3 in one animal. Some animals were latently infected with PCMV/PRV, as only virus-specific antibodies were detected. Others were also PCR positive in the spleen and/or liver, indicative of an ongoing infection. These results provide important information on the viruses that infect German slaughterhouse pigs, and together with the results of previous studies, they reveal that the methods and test strategies efficiently work under field conditions.


Subject(s)
Swine Diseases , Transplantation, Heterologous , Animals , Swine , Transplantation, Heterologous/adverse effects , Swine Diseases/virology , Swine Diseases/diagnosis , Germany , Abattoirs , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Polymerase Chain Reaction/methods , Liver/virology , Spleen/virology , Virus Diseases/veterinary , Virus Diseases/diagnosis , Virus Diseases/virology
20.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38976038

ABSTRACT

Environmental viruses (primarily bacteriophages) are widely recognized as playing an important role in ecosystem homeostasis through the infection of host cells. However, the majority of environmental viruses are still unknown as their mosaic structure and frequent mutations in their sequences hinder genome construction in current metagenomics. To enable the large-scale acquisition of environmental viral genomes, we developed a new single-viral genome sequencing platform with microfluidic-generated gel beads. Amplification of individual DNA viral genomes in mass-produced gel beads allows high-throughput genome sequencing compared to conventional single-virus genomics. The sequencing analysis of river water samples yielded 1431 diverse viral single-amplified genomes, whereas viral metagenomics recovered 100 viral metagenome-assembled genomes at the comparable sequence depth. The 99.5% of viral single-amplified genomes were determined novel at the species level, most of which could not be recovered by a metagenomic assembly. The large-scale acquisition of diverse viral genomes identified protein clusters commonly detected in different viral strains, allowing the gene transfer to be tracked. Moreover, comparative genomics within the same viral species revealed that the profiles of various methyltransferase subtypes were diverse, suggesting an enhanced escape from host bacterial internal defense mechanisms. Our use of gel bead-based single-virus genomics will contribute to exploring the nature of viruses by accelerating the accumulation of draft genomes of environmental DNA viruses.


Subject(s)
Genome, Viral , Metagenomics , Rivers , Rivers/virology , Metagenome , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Genomics , High-Throughput Nucleotide Sequencing , Genetic Variation , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL