Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.160
Filter
1.
Reprod Domest Anim ; 59(7): e14660, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962998

ABSTRACT

The objectives of this experiment were to evaluate the effects of supplementation of Nellore (Bos indicus) cows with ß-carotene + vitamins A + D3 + E + biotin on body condition score (BCS), oestrus, pregnancy, and foetal morphometry. Lactating cows (n = 497) from two herds were balanced for BCS and calving period [early calving (EC); late calving (LC)] and were assigned randomly to: Control (n = 251)-supplementation with a mineral supplement; and SUP (n = 246)-supplementation with the mineral supplement fed to control + ß-carotene (150 mg/day) + vitamin A (40,000 IU/day) + vitamin D3 (5000 IU/day) + vitamin E (300 mg/day) + biotin (20 mg/day). Cows were supplemented from Days -30 to 30 (Day 0 = timed artificial insemination; TAI). Pregnancy was diagnosed 30 days after TAI and foetal crown-rump distance and thoracic diameter were measured at 30 and 77 days of gestation. Cows in the SUP treatment were more likely to have BCS ≥3.0 on Day 0 (63.0 ± 3.1 vs. 60.2 ± 3.1; p < .01) and were more likely to gain BCS from Days -30 to 30 (57.7 ± 3.3 vs. 44.1 ± 3.3%; p < .01). Fewer LC cows in the SUP treatment were detected in oestrus at the time of the first TAI (Control: LC: 75.4 ± 4.4 vs. SUP: LC: 64.0 ± 5.2 vs. Control: EC: 65.3 ± 4.0 vs. SUP: EC: 71.8 ± 3.7; p = .04). There was a tendency for the SUP treatment to increase pregnancy to the first TAI (64.2 ± 3.0 vs. 56.6 ± 3.1%; p = .08). A greater percentage of SUP cows was detected in oestrus at the time of the second TAI (70.1 ± 5.0 vs. 52.3 ± 4.8%; p = .01). The SUP treatment increased pregnancy to the second TAI among LC cows (SUP: LC: 75.9 ± 8.0% vs. Control: LC: 50.0 ± 8.3% vs. Control: EC: 52.0 ± 5.9% vs. SUP: EC: 41.4 ± 6.5%; p = .02). The SUP treatment increased foetal size (crown-rump; p = .04 and thoracic diameter; p < .01) at 30 days of gestation and, despite decreasing crow-rump length at 77 days after the first TAI among EC cows (p < .01), it increased the thoracic diameter at 77 days after the first TAI independent of calving season. Our results support that pregnancy establishment and foetal growth can be improved when grazing Nellore cows are supplemented with ß-carotene and vitamins A + D3 + E + biotin.


Subject(s)
Biotin , Dietary Supplements , Estrus , Vitamin A , Vitamin E , beta Carotene , Animals , Cattle , Female , Pregnancy , Vitamin A/administration & dosage , Vitamin A/pharmacology , beta Carotene/administration & dosage , beta Carotene/pharmacology , Vitamin E/administration & dosage , Vitamin E/pharmacology , Estrus/drug effects , Biotin/administration & dosage , Biotin/pharmacology , Cholecalciferol/pharmacology , Cholecalciferol/administration & dosage , Ovarian Follicle/drug effects , Diet/veterinary , Vitamins/administration & dosage , Vitamins/pharmacology , Animal Feed , Lactation , Fetus/drug effects
2.
Int Ophthalmol ; 44(1): 314, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965086

ABSTRACT

BACKGROUND: Oxidative stress-induced retinal pigment epithelium (RPE) cell damage is a major factor in age-related macular degeneration (AMD). Vitamin D3 (VD3) is a powerful antioxidant and it has been suggested to have anti-aging properties and potential for treating AMD. This study aimed to investigate the effect of VD3 on RPE cell oxidative apoptosis of RPE cells in order to provide experimental evidence for the treatment of AMD. METHODS: Human retinal pigment epithelial cell 19 (ARPE-19) cells were divided into four groups: blank group (untreated), model group (incubated in medium with 400 µmol/L H2O2 for 1 h), VD3 group (incubated in medium with 100 µmol/L VD3 for 24 h), and treatment group (incubated in medium with 400 µmol/L H2O2 for 1 h and 100 µmol/L VD3 for 24 h). Cell viability, cell senescence, ROS content, expression levels of vitamin D specific receptors, Akt, Sirt1, NAMPT, and JNK mRNA expression levels, SOD activity, and MDA, GSH, and GPX levels were measured. RESULTS: We first established an ARPE-19 cell stress model with H2O2. Our control experiment showed that VD3 treatment had no significant effect on ARPE-19 cell viability within 6-48 h. Treating the stressed ARPE-19 cells with VD3 showed mixed results; caspase-3 expression was decreased, Bcl-2 expression was increased, MDA level of ARPE-19 cells was decreased, GSH-PX, GPX and SOD levels were increased, the relative mRNA expression levels of Akt, Sirt1, NAMPT were increased (P < 0.05), and the relative mRNA expression level of JNK was decreased (P < 0.05). CONCLUSION: VD3 can potentially slow the development of AMD.


Subject(s)
Apoptosis , Cell Survival , Oxidative Stress , Retinal Pigment Epithelium , Humans , Oxidative Stress/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Cell Survival/drug effects , Apoptosis/drug effects , Macular Degeneration/metabolism , Vitamins/pharmacology , Vitamin D/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Cells, Cultured , Sirtuin 1/metabolism , Sirtuin 1/genetics , Cellular Senescence/drug effects , Cell Line , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity
3.
PLoS One ; 19(6): e0305099, 2024.
Article in English | MEDLINE | ID: mdl-38843257

ABSTRACT

This study investigated the effects of different doses of limestone, light durations, light intensities, and vitamins on both the productive performance and egg quality. The study utilized two rearing houses (control and treatment), each accommodating 75000 Lohmann Brown Classic chicks reared in open-sided rearing cages from one day old until they reached 89 weeks of age. Throughout the laying period, the hens were subjected to a specific light regimen (light = 14 h; dark = 10 h a day). At the end of experiment, the treatment group displayed significant (p<0.05) differences compared to the control group across various parameters. Notably, the treatment group exhibited lower daily feed intake (treatment: 112 g/bird vs control: 115 g/bird), 9.6% higher egg production (treatment: 78.5% vs control: 68.9%), lower body weight (treatment: 2057 g vs control: 2073 g), lower feed conversion ratio (FCR)/egg (treatment: 1.44 vs control: 1.69), higher egg weight (treatment: 69.4 g vs control: 68.5 g), greater egg mass (treatment: 56.14 vs control: 48.76), greater shell thickness (treatment: 3.52 mm vs control: 3.44 mm), and greater shell weight (treatment: 9.3 g vs control: 8.79 g). However, the albumin weight, yolk weight, yolk diameter, shape index, and Haugh units (HU) were not significantly (p˃0.05) affected after 75 weeks of treatment when compared with those of the control group. Therefore, this study is the first of its kind to demonstrate that different ratios of limestone, different durations and intensities of light, and different vitamin supplementation doses in the treatment group (subjected to the novel rearing recommendations described in this study) may yield a profit of 180,541 USD, exceeding the baseline profit of the control group (subjected to conventional rearing methods).


Subject(s)
Chickens , Animals , Female , Eggs , Animal Feed/analysis , Animal Husbandry/methods , Calcium Carbonate , Vitamins/administration & dosage , Vitamins/pharmacology , Egg Shell , Light , Body Weight/drug effects
4.
Adipocyte ; 13(1): 2369777, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38937879

ABSTRACT

Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micronutrients with anti-inflammatory activities that have unclear mechanisms. The present study aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, target prediction, and molecular docking simulation calculations to support our hypotheses. Our results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the pharmacological potential of using an anti-inflammatory and multitarget treatment based on vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an insulin-resistant context.


Subject(s)
Insulin Resistance , Molecular Docking Simulation , NF-kappa B , Vitamins , Humans , Vitamins/pharmacology , NF-kappa B/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Mitogen-Activated Protein Kinases/metabolism
5.
Oxid Med Cell Longev ; 2024: 4293391, 2024.
Article in English | MEDLINE | ID: mdl-38938696

ABSTRACT

Spinal cord injury (SCI) is a common neurological disease worldwide, often resulting in a substantial decrease in quality of life, disability, and in severe cases, even death. Unfortunately, there is currently no effective treatment for this disease. Nevertheless, current basic and clinical evidence suggests that vitamins, with their antioxidant properties and biological functions, may play a valuable role in improving the quality of life for individuals with SCI. They can promote overall health and facilitate the healing process. In this review, we discuss the mechanisms and therapeutic potential of vitamins in the treatment of SCI.


Subject(s)
Spinal Cord Injuries , Vitamins , Spinal Cord Injuries/drug therapy , Humans , Vitamins/therapeutic use , Vitamins/pharmacology , Animals , Antioxidants/therapeutic use , Antioxidants/pharmacology
6.
Nutrients ; 16(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732639

ABSTRACT

The combination of vitamin A and D derivatives with classical chemotherapeutic treatments results in more satisfactory outcomes. The use of drug combinations, such as 9cUAB130 with carboplatin and cisplatin with TAC-101, shows enhanced cytotoxic effects and reductions in ovarian tumor volume compared to single-drug treatments. Combining cisplatin with calcitriol and progesterone increases VDR expression, potentially enhancing the effectiveness of anticancer therapy in ovarian cancer. The effectiveness of vitamin derivatives in anticancer treatment may vary depending on the characteristics of the tumor and the cell line from which it originated. An increase in thiamine intake of one unit is associated with an 18% decrease in HPV infection. Higher intake of vitamin C by 50 mg/day is linked to a lower risk of cervical neoplasia. Beta-carotene, vitamin C, and vitamin E are associated with risk reductions of 12%, 15%, and 9% in endometrial cancer, respectively. A balanced daily intake of vitamins is important, as both deficiency and excess can influence cancer development. It has been observed that there is a U-shaped relationship between group B vitamins and metabolic markers and clinical outcomes.


Subject(s)
Genital Neoplasms, Female , Vitamins , Humans , Female , Vitamins/pharmacology , Vitamins/administration & dosage , Ovarian Neoplasms , Vitamin D/administration & dosage , Dietary Supplements , Antineoplastic Combined Chemotherapy Protocols , Vitamin A , Antineoplastic Agents/pharmacology , Vitamin E/pharmacology
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731838

ABSTRACT

The effect of dietary supplementation with sodium butyrate, ß-glucan and vitamins (A, D3, E, K, C) on breeding indicators and immune parameters of juvenile African catfish was examined. The fish were fed with unenriched (group C) and enriched feed with a variable proportion of sodium butyrate/ß-glucan, and constant content of vitamins (W1-W3). After the experiment, blood and the middle gut were collected. The microbiome of the gut was determined using Next Generation Sequencing (NGS). Liver tissue was collected for determination of expression of immune-related genes (HSP70, IL-1ß, TNFα). W2 and W3 were characterized by the most favorable values of breeding indicators (p < 0.05). The highest blood cortisol concentration was in group C (71.25 ± 10.45 ng/mL), and significantly the lowest in W1 (46.03 ± 7.01 ng/ mL) (p < 0.05). The dominance of Cetobacterium was observed in all study groups, with the largest share in W3 (65.25%) and W1 (61.44%). Gene expression showed an increased number of HSP70 genes in W1. IL-1ß and TNFα genes peaked at W3. The W3 variant turns out to be the most beneficial supplementation, due to the improvement of breeding and immunological parameters. The data obtained can be used to create a preparation for commercial use in the breeding of this species.


Subject(s)
Butyric Acid , Catfishes , Dietary Supplements , Gastrointestinal Microbiome , Hydrocortisone , Vitamins , beta-Glucans , Animals , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , Gastrointestinal Microbiome/drug effects , Butyric Acid/pharmacology , Catfishes/immunology , Catfishes/genetics , Catfishes/microbiology , Hydrocortisone/blood , Vitamins/pharmacology , Vitamins/administration & dosage , Animal Feed , HSP70 Heat-Shock Proteins/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism
8.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38666437

ABSTRACT

To examine the effects of feeding a vitamin and mineral supplement to beef heifers throughout gestation on mineral status and hormone/endocrine profiles in the dam and calf, and morphometric characteristics and organ mass of the calf at 30 h after birth, Angus-based heifers (n = 72, 14 to 15 mo of age, initial body weight [BW] = 380.4 ±â€…50.56 kg) were estrus synchronized and artificially inseminated (AI) with female-sexed semen. Heifers were blocked by BW and randomly assigned to receive either a basal diet (CON; n = 36) or a basal diet plus a vitamin and mineral supplement (VTM; n = 36) via an individual feeding system beginning at breeding, with both diets targeting BW gains of 0.45 kg heifer-1·d-1. Heifers not pregnant after the first AI (CON, n = 19; VTM, n = 18) were rebred via AI 60 d after treatment initiation, and heifers gestating female fetuses (CON, n = 7; VTM, n = 7) received treatments throughout gestation and were experimental units for this study. Calves were separated from their dams and fed colostrum replacer within 2 h of birth and euthanized 30 h after the first feeding. Calf morphometrics were recorded, and tissues were weighed and sampled. Serum from the dam at calving and serum, liver, and muscle from the calf at 30 h were analyzed for concentrations of minerals. Serum from the dam and calf were analyzed for concentrations of leptin, vitamins A, D, and E, cortisol, growth hormone, and insulin-like growth factor 1. All response variables were analyzed using the MIXED procedure of SAS. Calf body morphometrics and BW of the dam at calving (P ≥ 0.32), calf organ weights (P ≥ 0.21), and calf ovarian follicle counts (P ≥ 0.13) were not affected by maternal treatment. Concentrations of Se and Co in calf serum and Se in calf liver were increased (P ≤ 0.02) in VTM. Serum concentrations of Co and vitamin A in the dam were greater (P ≤ 0.01) in supplemented compared with nonsupplemented dams, and serum concentrations of vitamin D were greater (P ≤ 0.0003) in supplemented dams and calves compared with the nonsupplemented cohort. Maternal supplementation supported vitamin and mineral status in the neonate, yet had no discernable impact on BW, organ mass, or circulating hormones/metabolites in the calf. Evaluating offspring at later postnatal time points is warranted to determine if prenatal vitamin and mineral supplementation affects performance, health, metabolism, and efficiency of energy utilization in key metabolic tissues in the calf.


Vitamins and minerals are essential for the reproduction, performance, skeletal support, and overall health of beef cattle. During pregnancy, vitamins and minerals are critical for proper fetal growth, development, and establishment of postnatal micronutrient reserves. The study objectives were to evaluate the impacts of vitamin and mineral supplementation to beef heifers throughout gestation on female offspring morphometric characteristics at birth, mineral status and blood metabolite/endocrine profiles of the dam and calf, histological evaluation of calf ovaries, and organ weights of the neonate at 30 h of age. We hypothesized that vitamin and mineral supplementation to the dam during pregnancy would increase calf size and organ masses, mineral status, and blood metabolite and hormone profiles. We observed no differences in calf body measurements, organ masses, and offspring ovarian reserve between calves from supplemented and nonsupplemented dams. However, Co, Se, and vitamin D status was increased in the supplemented dam and calf, and we propose that enhanced vitamin and mineral status at birth may support the underdeveloped immune system, growth performance, and overall health of the neonate in the postnatal period. Further research is warranted to investigate postnatal offspring health, performance, and efficiency of energy utilization in key metabolic tissues in the calf.


Subject(s)
Animal Feed , Animals, Newborn , Diet , Dietary Supplements , Vitamins , Animals , Cattle/physiology , Cattle/growth & development , Female , Pregnancy , Vitamins/administration & dosage , Vitamins/pharmacology , Animals, Newborn/growth & development , Animal Feed/analysis , Diet/veterinary , Animal Nutritional Physiological Phenomena , Minerals/metabolism , Minerals/pharmacology , Trace Elements/pharmacology , Trace Elements/administration & dosage , Trace Elements/blood , Random Allocation
9.
Res Vet Sci ; 172: 105253, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579632

ABSTRACT

The aim of the study was to examine the effects of repeated administrations of antioxidant multiminerals and vitamins in transition buffaloes on udder defense mechanism, antioxidant activity and occurrence of intramammary infection (IMI) in early lactation period. Forty clinically healthy pregnant buffaloes were enrolled 45 days before expected date of calving and randomly allocated into five different supplementation groups (n = 8): only basal ration (control), vitamin E and selenium (VES), multiminerals (MM), ascorbic acid (AA) and chromium (Cr) picolinate in basal diet. The udder defense mechanism was monitored by measuring phagocytic activity (PA), myeloperoxidase (MPO) and nitric oxide (NO) productions in milk leukocytes, antioxidant activity was evaluated by measuring total antioxidant capacity (TAC) in plasma and occurrence of IMI was assessed by milk cytology, bacterial count in milk and visible clinical signs of udder until day 28 post-calving. The results showed that the VES and MM supplementations exhibited significantly higher PA, MPO and NO productions of milk leukocytes till first week of lactation whereas, elevated mean TAC in plasma was maintained from day -7 to 1 of calving in MM supplementation group as compared to control group. Statistically, no significant difference in occurrences of subclinical or clinical IMI was noted across the groups until four weeks of lactation. Taken together, it is concluded that repeated administrations of VES and MM to transition buffaloes could be an effective strategy to maintain good udder health by augmenting milk leukocyte functions and antioxidant status and preventing incidence of IMI in early lactation.


Subject(s)
Antioxidants , Buffaloes , Dietary Supplements , Lactation , Mammary Glands, Animal , Vitamins , Animals , Female , Antioxidants/administration & dosage , Antioxidants/metabolism , Lactation/drug effects , Vitamins/administration & dosage , Vitamins/pharmacology , Mammary Glands, Animal/drug effects , Milk/chemistry , Diet/veterinary , Animal Feed/analysis , Minerals/administration & dosage , Pregnancy , Random Allocation
10.
Steroids ; 205: 109394, 2024 May.
Article in English | MEDLINE | ID: mdl-38458370

ABSTRACT

BACKGROUND: Inconsistencies exist regarding the influence of vitamin D2 (ergocalciferol) supplementation on serum vitamin D levels. These inconsistencies could be attributed to numerous factors, such as dosage, baseline vitamin D levels, and duration of intervention. Hence, this dose-response meta-analysis of randomized controlled trials was conducted to assess the efficacy of vitamin D2 supplementation on vitamin D levels. METHODS: Relevant studies were searched in PubMed/Medline, Web of Science, Embase, and Scopus, from their inception to 3 January 2023. Variable alterations were considered to calculate the pooled weighted mean difference (WMD) with 95% confidence interval (CI) using the random effects model. RESULTS: Pooled results from 33 study arms demonstrated that Vitamin D2 treatment significantly increases total vitamin D concentrations (WMD: 11.47 ng/mL, 95 %CI: 9.29 to 13.64, p < 0.001), 25(OH)D2 concentrations (WMD: 11.40 ng/mL, 95 %CI: 4.72 to 18.09, p = 0.001), and 1,25(OH)D concentrations (WMD: 5.61 ng/mL, 95 %CI: 0.74 to 10.48, p = 0.024), but decreases 25(OH)D3 concentrations (WMD: -4.63 ng/mL, 95 %CI: -6.46 to -2.81, p < 0.001). In subgroup analyses, increase in total vitamin D concentrations was more significant in vitamin D2 doses >2000 IU/day (WMD: 13.82 ng/mL), studies with duration ≤12 weeks (WMD: 12.53 ng/mL), participants aged ≥60 years (WMD: 14.40 ng/mL), and trials with basal 25(OH)D concentrations <20 ng/mL (WMD: 11.47 ng/mL). CONCLUSIONS: This meta-analysis indicates that the supplementation of vitamin D2 significantly increases the serum concentrations of total vitamin D, 25(OH)D2, and 1,25(OH)D, but decreases 25(OH)D3 concentrations. Careful consideration of patient characteristics, dosage, and treatment duration is recommended for vitamin D2 supplementation.


Subject(s)
Vitamin D , Vitamins , Humans , Vitamin D/pharmacology , Randomized Controlled Trials as Topic , Vitamins/pharmacology , Vitamins/therapeutic use , Calcifediol , Ergocalciferols/pharmacology , Dietary Supplements , Cholecalciferol/therapeutic use
11.
Cell Biochem Funct ; 42(2): e3972, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500392

ABSTRACT

Cell death and the efficient removal of dead cells are two basic mechanisms that maintain homeostasis in multicellular organisms. efferocytosis, which includes four steps recruitment, recognition, binding and signaling, and engulfment. Effectively and quickly removes apoptotic cells from the body. Any alteration in efferocytosis can lead to several diseases, including autoimmune and inflammatory conditions, atherosclerosis, and cancer. A wide range of dietary components affects apoptosis and, subsequently, efferocytosis. Some vitamins, including fat-soluble vitamins, affect different stages of efferocytosis. Among other things, by affecting macrophages, they are effective in the apoptotic cleansing of cells. Also, polyphenols indirectly intervene in efferocytosis through their effect on apoptosis. Considering that there are limited articles on the effect of nutrition on efferocytosis, in this article we will examine the effect of some dietary components on efferocytosis.


Subject(s)
Efferocytosis , Phagocytosis , Phagocytosis/physiology , Macrophages/metabolism , Apoptosis , Vitamins/pharmacology , Vitamins/metabolism
12.
BMC Vet Res ; 20(1): 101, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481237

ABSTRACT

BACKGROUND: Nutrition has a primary role for optimum expression of genetic potential, and most of the farmers have limited resources of green fodder. Hence, a fat-soluble vitamin, especially vitamin A and E and trace elements remained most critical in the animal's ration and affects their productive and reproductive performance adversely. Animals cannot be able to produce these vitamins in their bodies; hence, an exogenous regular supply is needed to fulfil the physiological needs and to maintain high production performance. This study elucidated effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) administration on gene expression, metabolic, antioxidants and immunological parameters in dromedary camels during transition period. RESULTS: At 0 day, there were no appreciable differences in the expression patterns of the metabolic (IGF-I, ACACA, SCD, FASN, LPL, and BTN1A1) genes between the control and treatment groups, despite lower levels. A substantial variation in the mRNA levels of SOD1, SOD3, PRDX2, PRDX3, PRDX4, PRDX6, and AhpC/TSA was observed between the control and treatment groups, according to the antioxidant markers. In comparison to the control group, the treatment group displayed a significant up-regulation at 0 and 21 days. The treatment and control groups exhibited substantial differences in the mRNA values of IL-1α, IL-1ß, IL-6, and TNFα, as indicated by immunological markers. In comparison to the control group, there was a noticeable down-regulation in the treatment group at 0 and + 21 days. But IL10 produced the opposite pattern. No significant difference was observed in glucose, cholesterol, triglyceride, HDL, total protein, NEFA, BHBA, cortisol and IGF-1 levels between control and treatment group. The activity of serum GPx, SOD and TAC was significantly affected by time and treatment x time in supplemented groups as compared with control group. IL-1, IL-1, IL-6, and TNF were noticeably greater in the control group and lower in the treatment group. Additionally, in all groups, the concentration of all pro-inflammatory cytokines peaked on the day of delivery and its lowest levels showed on day 21 following calving. The IL-10 level was at its peak 21 days prior to calving and was lowest on calving day. CONCLUSION: The results demonstrated a beneficial effect of antioxidant vitamins and trace elements on the metabolic, antioxidant and immunological markers in dromedary camels throughout their transition period.


Subject(s)
Trace Elements , Animals , Trace Elements/pharmacology , Antioxidants/metabolism , Vitamins/pharmacology , Camelus , Vitamin A/pharmacology , Interleukin-6 , Vitamin K , Zinc , RNA, Messenger , Gene Expression , Interleukin-1
13.
Mol Biol Rep ; 51(1): 456, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536498

ABSTRACT

BACKGROUND: To better understand the molecular mechanism responsible for the therapeutic potential of vitamin D, we conducted an analysis of the liver transcriptomes of adult female rats. METHODS: Adult female rats (n = 18) were divided into three groups, receiving different doses of vitamin D: group I, 0; group II, 1000 U/kg; and group III, 5000 U/kg. Growth, body weight, the weight of main organs, blood haematological and biochemical parameters were evaluated. Gene expression in the liver were analyzed using RNA-seq and qPCR techniques. RESULTS: We observed a lower platelet count (p < 0,008) and a significantly greater (p < 0.02) number of WBCs in rats supplemented with 1000 U/kg than in rats from group III (5000 U/kg). Moreover, we noted a trend (p < 0.06) in total cholesterol concentration, suggesting a linear decrease with increasing doses of vitamin D. RNA-seq analysis did not reveal any differentially expressed genes with FDR < 0.05. However, GSEA revealed significant activation of a number of processes and pathways, including: "metallothionein, and TspO/MBR family", and "negative regulation of tumor necrosis factor production". qPCR analysis revealed significant upregulation of the Mt1, Mt2 and Orm1 genes in animals receiving high doses of vitamin D (p < 0.025, p < 0.025, and p < 0009, respectively). Moreover, Srebp2 and Insig2 were significantly lower in both experimental groups than in the control group (p < 0.003 and p < 0.036, respectively). CONCLUSIONS: Our results support the anti-inflammatory, anitioxidant and anticholesterologenic potential of vitamin D but suggest that high doses of vitamin D are needed to obtain significant results in this regard.


Subject(s)
Cholecalciferol , Vitamin D , Rats , Female , Animals , Cholecalciferol/pharmacology , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins/pharmacology , Dietary Supplements , Liver/metabolism , Gene Expression , Orosomucoid/pharmacology
14.
Nutrients ; 16(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542670

ABSTRACT

(1) Background: Nutrients play an essential role in bone health, whether in achieving peak bone mineral density (BMD) or maintaining bone health. This study explores the relationship between nutrient supply and femoral bone health at different ages. (2) Methods: A total of 5603 participants meeting the inclusion and exclusion criteria were included in this study using the National Health and Nutrition Examination Survey (NHANES) database from 2005 to 2010, 2013 to 2014, and 2017 to 2018. Femoral bone mineral density and bone status were dependent variables, and dietary nutrient intake and nutrient intake status were independent variables. The relationship between dietary nutrient intake and bone mineral density was explored, and the importance of nutrients affecting bone status was analyzed through a neural network model. At the same time, we investigated the relationship between nutrient intake and bone status. (3) Results: The peak of age and femoral bone mineral density appeared at 20 years old in our study. After grouping by age, logistic regression analysis showed that before 20 years old, without adjusting other variables, high-fat diet was more likely to have normal bone mass than appropriate fat diet (OR: 4.173, 95%CI: 1.007-17.289). After adjusting for all demographic factors, niacin intake (OR: 1.062, 95%CI: 1.019-1.108) was beneficial for normal bone mass, while vitamin B6 intake (OR: 0.627, 95%CI: 0.408-0.965) was not. After 20 years old, after adjusting for carbohydrate, protein, vitamin B6, niacin, dietary fat, vitamin B2, and vitamin B12, vitamin B2 intake (OR: 1.153, 95%CI: 1.04-1.278) was beneficial for normal bone mass, while vitamin B6 intake (OR: 0.842, 95%CI: 0.726-0.976) was not. After adjusting for all confounding factors, vitamin B2 intake (OR: 1.288, 95%CI: 1.102-1.506) was beneficial for normal bone mass. In addition, we found that even if there was no statistical significance, the effects of high-fat diet on bone mass were different at different ages. (4) Conclusions: By conducting an in-depth analysis of the NHANES database, this study reveals that dietary factors exert divergent effects on bone health across different age groups, implying the necessity of implementing tailored dietary strategies to maintain optimal bone health at distinct life stages.


Subject(s)
Bone Density , Niacin , Humans , Young Adult , Adult , Nutrition Surveys , Niacin/pharmacology , Diet , Diet, High-Fat , Riboflavin/pharmacology , Vitamins/pharmacology
15.
Nutrients ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542817

ABSTRACT

Aging is the result of several complex and multifactorial processes, where several agents contribute to an increased intrinsic vulnerability and susceptibility to age-related diseases. The hallmarks of aging are a set of biological mechanisms that are finely regulated and strictly interconnected, initiating or contributing to biological changes and anticipating several age-related diseases. The complex network of cellular and intercellular connections between the hallmarks might represent a possible target for the research of agents with pleiotropic effects. Vitamin D (VitD) is known to have a positive impact not only on muscle and bone health but also on several extra-skeletal districts, due to the widespread presence of Vitamin D Receptors (VDRs). VitD and VDR could be molecules potentially targeting the hallmarks of the aging network. To date, evidence about the potential effects of VitD on the hallmarks of aging is scarce in humans and mainly based on preclinical models. Although underpowered and heterogeneous, in-human studies seem to confirm the modulatory effect of VitD on some hallmarks of aging and diseases. However, more investigations are needed to clarify the pleiotropic effects of VitD and its impact on the hallmark of aging, hopefully highlighting the courses for translational applications and potential clinical conclusions.


Subject(s)
Vitamin D Deficiency , Vitamin D , Humans , Vitamins/pharmacology , Aging , Bone and Bones
16.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473753

ABSTRACT

Regardless of the unprecedented progress in malignant melanoma treatment strategies and clinical outcomes of patients during the last twelve years, this skin cancer remains the most lethal one. We have previously documented that vitamin D and its low-calcaemic analogues enhance the anticancer activity of drugs including a classic chemotherapeutic-dacarbazine-and an antiangiogenic VEGFRs inhibitor-cediranib. In this study, we explored the response of A375 and RPMI7951 melanoma lines to CPL304110 (CPL110), a novel selective inhibitor of fibroblast growth factor receptors (FGFRs), and compared its efficacy with that of AZD4547, the first-generation FGFRs selective inhibitor. We also tested whether 1,25(OH)2D3, the active form of vitamin D, modulates the response of the cells to these drugs. CPL304110 efficiently decreased the viability of melanoma cells in both A375 and RPMI7951 cell lines, with the IC50 value below 1 µM. However, the metastatic RPMI7951 melanoma cells were less sensitive to the tested drug than A375 cells, isolated from primary tumour site. Both tested FGFR inhibitors triggered G0/G1 cell cycle arrest in A375 melanoma cells and increased apoptotic/necrotic SubG1 fraction in RPMI7951 melanoma cells. 1,25(OH)2D3 modulated the efficacy of CPL304110, by decreasing the IC50 value by more than 4-fold in A375 cell line, but not in RPMI7951 cells. Further analysis revealed that both inhibitors impact vitamin D signalling to some extent, and this effect is cell line-specific. On the other hand, 1,25(OH)2D3, have an impact on the expression of FGFR receptors and phosphorylation (FGFR-Tyr653/654). Interestingly, 1,25(OH)2D3 and CPL304110 co-treatment resulted in activation of the ERK1/2 pathway in A375 cells. Our results strongly suggested possible crosstalk between vitamin D-activated pathways and activity of FGFR inhibitors, which should be considered in further clinical studies.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/metabolism , Vitamin D/metabolism , Receptors, Calcitriol/metabolism , Cell Line, Tumor , Skin Neoplasms/pathology , Vitamins/pharmacology , Receptors, Fibroblast Growth Factor , Cell Proliferation
17.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473779

ABSTRACT

The use of vitamin C (VC) in high doses demonstrates a potent tumor suppressive effect by mediating a glucose-dependent oxidative stress in Kirsten rat sarcoma (KRAS) mutant cancer cells. VC with arsenic trioxide (ATO) is a promising drug combination that might lead to the development of effective cancer therapeutics. Considering that a tumor suppressive effect of VC requires its high-dose administration, it is of interest to examine the toxicity of two enantiomers of VC (enantiomer d-optical isomer D-VC and natural l-optical isomer L-VC) in vitro and in vivo. We show that the combinations of L-VC with ATO and D-VC with ATO induced a similar cytotoxic oxidative stress in KrasG12D-expressing mutant cancer cells as indicated by a substantial increase in reactive oxidative species (ROS) production and depolarization of mitochondria. To examine the L-VC and D-VC toxicity effects, we administered high doses of D-VC and L-VC to CD1 mice and carried out an evaluation of their toxic effects. The daily injections of L-VC at a dose of 9.2 g/kg for 18 days were lethal to mice, while 80% of mice remained alive following the similar high-dose administration of D-VC. Following the drug injection courses and histopathological studies, we determined that a natural form of VC (L-VC) is more harmful and toxic to mice when compared to the effects caused by the similar doses of D-VC. Thus, our study indicates that the two enantiomers of VC have a similar potency in the induction of oxidative stress in cancer cells, but D-VC has a distinctive lower toxicity in mice compared to L-VC. While the mechanism of a distinctive toxicity between D-VC and L-VC is yet to be defined, our finding marks D-VC as a more preferable option compared to its natural enantiomer L-VC in clinical settings.


Subject(s)
Ascorbic Acid , Neoplasms , Animals , Mice , Ascorbic Acid/pharmacology , Proto-Oncogene Proteins p21(ras) , Oxidative Stress , Vitamins/pharmacology , Arsenic Trioxide/pharmacology
18.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473850

ABSTRACT

Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.


Subject(s)
Antioxidants , Selenium , Humans , Antioxidants/pharmacology , Vitamins/pharmacology , Selenium/pharmacology , Polyphenols/pharmacology , Oxidative Stress , Vitamin A/pharmacology , Vitamin K/pharmacology , Reactive Oxygen Species/pharmacology
19.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474050

ABSTRACT

Although many types of antioxidant supplements are available, the effect is greater if multiple types are taken simultaneously rather than one type. However, it is difficult to know which type and how much to take, as it is possible to take too many of some vitamins. As it is difficult for general consumers to make this choice, it is important to provide information based on scientific evidence. This study investigated the various effects of continuous administration of a blended supplement to aging mice. In 18-month-old C57BL/6 mice given a blended supplement ad libitum for 1 month, spatial cognition and short-term memory in the Morris water maze and Y-maze improved compared with the normal aged mice (spontaneous alternative ratio, normal aged mice, 49.5%, supplement-treated mice, 68.67%, p < 0.01). No significant differences in brain levels of secreted neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, were observed between these two groups. In treadmill durability tests before and after administration, the rate of increase in running distance after administration was significantly higher than that of the untreated group (increase rate, normal aged mice, 91.17%, supplement-treated aged mice, 111.4%, p < 0.04). However, training had no reinforcing effect, and post-mortem serum tests showed a significant decrease in aspartate aminotransferase, alanine aminotransferase, and total cholesterol values. These results suggest continuous intake of a blended supplement may improve cognitive function and suppress age-related muscle decline.


Subject(s)
Memory, Short-Term , Vitamins , Mice , Animals , Maze Learning , Mice, Inbred C57BL , Vitamins/pharmacology , Aging/physiology , Cognition , Spatial Memory/physiology
20.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396960

ABSTRACT

Active vitamin D derivatives (VDDs)-1α,25-dihydroxyvitamin D3/D2 and their synthetic analogs-are well-known inducers of cell maturation with the potential for differentiation therapy of acute myeloid leukemia (AML). However, their dose-limiting calcemic activity is a significant obstacle to using VDDs as an anticancer treatment. We have shown that different activators of the NF-E2-related factor-2/Antioxidant Response Element (Nrf2/ARE) signaling pathway, such as the phenolic antioxidant carnosic acid (CA) or the multiple sclerosis drug monomethyl fumarate (MMF), synergistically enhance the antileukemic effects of various VDDs applied at low concentrations in vitro and in vivo. This study aimed to investigate whether glutathione, the major cellular antioxidant and the product of the Nrf2/ARE pathway, can mediate the Nrf2-dependent differentiation-enhancing activity of CA and MMF in HL60 human AML cells. We report that glutathione depletion using L-buthionine sulfoximine attenuated the enhancing effects of both Nrf2 activators concomitant with downregulating vitamin D receptor (VDR) target genes and the activator protein-1 (AP-1) family protein c-Jun levels and phosphorylation. On the other hand, adding reduced glutathione ethyl ester to dominant negative Nrf2-expressing cells restored both the suppressed differentiation responses and the downregulated expression of VDR protein, VDR target genes, as well as c-Jun and P-c-Jun levels. Finally, using the transcription factor decoy strategy, we demonstrated that AP-1 is necessary for the enhancement by CA and MMF of 1α,25-dihydroxyvitamin D3-induced VDR and RXRα protein expression, transactivation of the vitamin D response element, and cell differentiation. Collectively, our findings suggest that glutathione mediates, at least in part, the potentiating effect of Nrf2 activators on VDDs-induced differentiation of AML cells, likely through the positive regulation of AP-1.


Subject(s)
Abietanes , Leukemia, Myeloid, Acute , Transcription Factor AP-1 , Humans , Transcription Factor AP-1/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Vitamin D/therapeutic use , Vitamins/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Receptors, Calcitriol/metabolism , Cell Differentiation , Signal Transduction , Glutathione/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...