Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.221
Filter
1.
Anim Cogn ; 27(1): 50, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052136

ABSTRACT

We examined the possibility of a cross-modal effect in naïve Cotesia vestalis, a parasitoid wasp of diamondback moth larvae, by using artificial flower models of four colours (blue, green, yellow, and red) in the absence or presence of floral scent collected from Brassica rapa inflorescences. In a four-choice test, regardless of the floral scent, non-starved female wasps visited green and yellow models significantly more often than blue and red ones, although no significant difference was observed between visits to the green and yellow models. They seldom visited blue and red models. When starved, the wasps became even more particular, visiting yellow significantly more frequently than green models, irrespective of the presence of the floral scent, indicating that they preferred to use yellow visual cues in their food search. Furthermore, a factorial analysis of variance revealed a significant effect of the interaction between model colour and floral scent on the wasps' visits to flower models. The floral scent induced starved and non-starved wasps to visit yellow and green models about twice as often as without the scent. A cross-modal effect of olfactory perception on the use of chromatic information by wasps may allow them to search efficiently for food sources.


Subject(s)
Color Perception , Flowers , Odorants , Wasps , Animals , Wasps/physiology , Female , Cues , Choice Behavior , Moths/parasitology , Olfactory Perception , Color
2.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38989842

ABSTRACT

Advances in molecular ecology can overcome many challenges in understanding host-parasitoid interactions. Genetic characterization of the key-players in systems helps to confirm species and identify trophic linkages essential for ecological service delivery by biological control agents; however, relatively few agroecosystems have been explored using this approach. Pecan production consists of a large tree perennial system containing an assortment of seasonal pests and natural enemies. As a first step to characterizing host-parasitoid associations in pecan food webs, we focus on aphid species and their parasitoids. Based on DNA barcoding of field-collected and reared specimens, we confirmed the presence of 3 species of aphid, one family of primary parasitoids, and 5 species of hyperparasitoids. By applying metabarcoding to field-collected aphid mummies, we were able to identify multiple species within each aphid mummy to unravel a complex food web of 3 aphids, 2 primary parasitoids, and upward of 8 hyperparasitoid species. The results of this study demonstrate that multiple hyperparasitoid species attack a single primary parasitoid of pecan aphids, which may have negative consequences for successful aphid biological control. Although further research is needed on a broader spatial scale, our results suggest multiple species exist in this system and may suggest a complex set of interactions between parasitoids, hyperparasitoids, and the 3 aphid species. This was the first time that many of these species have been characterized and demonstrates the application of novel approaches to analyze the aphid-parasitoid food webs in pecans and other tree crop systems.


Subject(s)
Aphids , Food Chain , Host-Parasite Interactions , Animals , Aphids/parasitology , Aphids/genetics , Carya/parasitology , DNA Barcoding, Taxonomic , Wasps/physiology , Wasps/genetics
3.
Neotrop Entomol ; 53(4): 715-725, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955944

ABSTRACT

Several crops depend on both managed and wild bees to produce fruits and/or seeds, and the efficiency of numerous wild bees is higher than that of some managed species. Therefore, knowing and understanding the required resources for wild bees could enabled the establishment of management practices to increase their populations. Here, we provide information about the nesting biology of Megachile (Chrysosarus) jenseni, a Faboideae-specialist bee species. Based on observations from two populations occurring in contrasting agroecosystems, this bivoltine species showed common behavioral features shared with other species of subgenus Chrysosarus, such as the use of petal pieces and mud as nesting materials and the utilization of pre-existing cavities. Both studied populations showed a bivoltine life cycle with a rapid early-summer generation and a second generation, with most individuals overwintering. Main causes of mortality were unknown diseases (or other factors), causing the death of preimaginal stages. Moreover, this species was attacked by a cleptoparasite megachilid (Coelioxys remissa), a parasitic eulophid wasp (Melittobia sp.), and a bee fly (Anthrax oedipus). Finally, we discussed the potential use of this leaf-cutter bee species for alfalfa pollination.


Subject(s)
Medicago sativa , Nesting Behavior , Pollination , Animals , Bees/physiology , Female , Wasps/physiology , Brazil , Seasons
4.
Neotrop Entomol ; 53(4): 868-879, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980502

ABSTRACT

Here we describe two new Grotea species from Ecuador, G. akakana Mazón & Bordera sp. nov., and G. romeri Mazón sp. nov., as well as the male of G. cundinamarquesa Herrera-Flórez 2018. G. akakana sp. nov. is characterized by the combination of a postgenal process long, a 45-flagellomeres antenna without a white band and a mesopleuron black with two yellow spots separated by a red one. On the other hand, G. romeri sp. nov. is characterized by the combination of a postgenal process very short, a 36-flagellomeres antenna without a white band, a propodeum with a long and narrow area lateralis, uninterrupted yellow-colored orbits and a mesopleuron black with a yellow spot in the middle. The species G. santandereana Herrera-Flórez 2018 and G. surinamese Herrera-Flórez 2019 are recorded from Ecuador for the first time. This brings the total of described Grotea species to 31, all from the New World, with 27 of these exclusively Neotropical. A key for the identification of Neotropical species is included.


Subject(s)
Wasps , Ecuador , Animals , Male , Female , Wasps/anatomy & histology , Wasps/classification
5.
PLoS Pathog ; 20(7): e1012349, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950076

ABSTRACT

Innate immune responses that allow hosts to survive infection depend on the action of multiple conserved signaling pathways. Pathogens and parasites in turn have evolved virulence factors to target these immune signaling pathways in an attempt to overcome host immunity. Consequently, the interactions between host immune molecules and pathogen virulence factors play an important role in determining the outcome of an infection. The immune responses of Drosophila melanogaster provide a valuable model to understand immune signaling and host-pathogen interactions. Flies are commonly infected by parasitoid wasps and mount a coordinated cellular immune response following infection. This response is characterized by the production of specialized blood cells called lamellocytes that form a tight capsule around wasp eggs in the host hemocoel. The conserved JAK-STAT signaling pathway has been implicated in lamellocyte proliferation and is required for successful encapsulation of wasp eggs. Here we show that activity of Stat92E, the D. melanogaster STAT ortholog, is induced in immune tissues following parasitoid infection. Virulent wasp species are able to suppress Stat92E activity during infection, suggesting they target JAK-STAT pathway activation as a virulence strategy. Furthermore, two wasp species (Leptopilina guineaensis and Ganaspis xanthopoda) suppress phenotypes associated with a gain-of-function mutation in hopscotch, the D. melanogaster JAK ortholog, indicating that they inhibit the activity of the core signaling components of the JAK-STAT pathway. Our data suggest that parasitoid wasp virulence factors block JAK-STAT signaling to overcome fly immune defenses.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Host-Parasite Interactions , Janus Kinases , STAT Transcription Factors , Signal Transduction , Wasps , Animals , Drosophila melanogaster/parasitology , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Virulence , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Immunity, Innate
6.
J Environ Manage ; 365: 121625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959772

ABSTRACT

This is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin. Therefore, in the winter and spring of 2022/23, we sampled reed galls from the same set of reed beds of anthropogenic and natural origin as those in 2012/13. At 10 sites, the number of sampled galls was similar in both time periods (80-122% of the value from 2012/13); 12 sites experienced a moderate decline (30-79% of the value from 2012/13), and the number of galls at six sampling sites was only 3-23% of their abundance in 2012/13. Spontaneous development was associated with increasing populations. After 10 years of spontaneous development, the populations of bees and wasps (including their parasitoids) bound to Lipara-induced reed galls increased in abundance and species richness or remained at their previous levels, which was dependent on the sampling site. The only identified threat consisted of reclamation efforts. The effects of habitat age were limited, and the assemblages in habitats of near-natural and anthropogenic origin largely overlapped. However, several species were consistently present at lower abundances in the anthropogenic habitats and vice versa. In conclusion, we provided evidence-based support for the establishment of oligotrophic reed beds of anthropogenic origin as management tools providing sustainable habitats for specialized reed gall-associated aculeate hymenopteran inquilines, including the threatened species.


Subject(s)
Ecosystem , Wasps , Animals , Wasps/physiology , Hymenoptera/physiology , Poaceae , Bees/parasitology , Plant Tumors/parasitology
7.
Sci Rep ; 14(1): 15363, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965389

ABSTRACT

The therapeutic potential of insect-derived bioactive molecules as anti-SARS-CoV-2 agents has shown promising results. Hymenopteran venoms, notably from Apis mellifera (honeybee) and Vespa orientalis (oriental wasp), were examined for the first time in an in vitro setting for their potential anti-COVID-19 activity. This assessment utilized an immunodiagnostic system to detect the SARS-CoV-2 nucleocapsid antigen titer reduction. Further analyses, including cytotoxicity assays, plaque reduction assays, and in silico docking-based screening, were performed to evaluate the efficacy of the most potent venom. Results indicated that bee and wasp venoms contain bioactive molecules with potential therapeutic effects against SARS-CoV-2.Nevertheless, the wasp venom exhibited superior efficacy compared to bee venom, achieving a 90% maximal (EC90) concentration effect of antigen depletion at 0.184 mg/mL, in contrast to 2.23 mg/mL for bee venom. The cytotoxicity of the wasp venom was assessed on Vero E6 cells 48 h post-treatment using the MTT assay. The CC 50 of the cell growth was 0.16617 mg/mL for Vero E6 cells. The plaque reduction assay of wasp venom revealed 50% inhibition (IC50) at a 0.208 mg/mL concentration. The viral count at 50% inhibition was 2.5 × 104 PFU/mL compared to the initial viral count of 5 × 104 PFU/mL. In silico data for the wasp venom revealed a strong attraction to binding sites on the ACE2 protein, indicating ideal interactions. This substantiates the potential of wasp venom as a promising viral inhibitor against SARS-CoV-2, suggesting its consideration as a prospective natural preventive and curative antiviral drug. In conclusion, hymenopteran venoms, particularly wasp venom, hold promise as a source of potential therapeutic biomolecules against SARS-CoV-2. More research and clinical trials are needed to evaluate these results and investigate their potential for translation into innovative antiviral therapies.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Molecular Docking Simulation , SARS-CoV-2 , Wasp Venoms , Vero Cells , SARS-CoV-2/drug effects , Chlorocebus aethiops , Animals , Humans , Antiviral Agents/pharmacology , COVID-19/virology , Wasp Venoms/pharmacology , Wasp Venoms/chemistry , Bee Venoms/pharmacology , Bee Venoms/chemistry , Egypt , Bees , Wasps
8.
PLoS One ; 19(7): e0306411, 2024.
Article in English | MEDLINE | ID: mdl-38954720

ABSTRACT

Transperineal laser ablation is a minimally invasive thermo-ablative treatment for prostate cancer that requires the insertion of a needle for accurate optical fiber positioning. Needle insertion in soft tissues may cause tissue motion and deformation, resulting in tissue damage and needle positioning errors. In this study, we present a wasp-inspired self-propelled needle that uses pneumatic actuation to move forward with zero external push force, thus avoiding large tissue motion and deformation. The needle consists of six parallel 0.25-mm diameter Nitinol rods driven by a pneumatic actuation system. The pneumatic actuation system consists of Magnetic Resonance (MR) safe 3D-printed parts and off-the-shelf plastic screws. A self-propelled motion is achieved by advancing the needle segments one by one, followed by retracting them simultaneously. The advancing needle segment has to overcome a cutting and friction force, while the stationary needle segments experience a friction force in the opposite direction. The needle self-propels through the tissue when the friction force of the five stationary needle segments overcomes the sum of the friction and cutting forces of the advancing needle segment. We evaluated the prototype's performance in 10-wt% gelatin phantoms and ex vivo porcine liver tissue inside a preclinical Magnetic Resonance Imaging (MRI) scanner in terms of the slip ratio of the needle with respect to the phantom or liver tissue. Our results demonstrated that the needle was able to self-propel through the phantom and liver tissue with slip ratios of 0.912-0.955 and 0.88, respectively. The prototype is a promising step toward the development of self-propelled needles for MRI-guided transperineal laser ablation as a method to treat prostate cancer.


Subject(s)
Equipment Design , Needles , Animals , Male , Humans , Wasps/physiology , Printing, Three-Dimensional , Laser Therapy/methods , Swine , Prostatic Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods
10.
Sci Rep ; 14(1): 17415, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075129

ABSTRACT

Amber captures a snapshot of life and death from millions of years in the past. Here, the fate of three fossil Darwin wasps in Baltic amber is virtually dissected with the help of micro-CT scanning, to better understand the taphonomic processes that affected their preservation. The states of the fossils range from nearly perfect preservation, including remains of internal organs, to empty casts that were strongly affected by decomposition. We describe the three specimens as new taxa, Osparvis aurorae gen. et sp. nov., Grana harveydenti gen. et sp. nov. and Xorides? romeo sp. nov. Based on the taphonomic and morphological interpretations, we conclude that two specimens were trapped alive, and the third ended up in resin post-mortem. The morphology and classification of the specimens provide clues regarding their ecology, and we discuss their likely hosts and parasitation modes. Taken together, our three wasp fossils showcase how an integrative analysis of amber taphonomy, taxonomic association and morphology can shed light onto past biodiversity and offer valuable insights for interpreting their evolutionary history.


Subject(s)
Amber , Fossils , Wasps , Animals , Fossils/anatomy & histology , Wasps/anatomy & histology , Wasps/classification , Biological Evolution , X-Ray Microtomography
11.
Sci Total Environ ; 947: 174709, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38997018

ABSTRACT

Global change is affecting plant-insect interactions in agroecosystems and can have dramatic consequences on yields when causing non-targeted pest outbreaks and threatening the use of pest natural enemies for biocontrol. The vineyard agroecosystem is an interesting system to study multi-stress conditions: on the one hand, agricultural intensification comes with high inputs of copper-based fungicides and, on the other hand, temperatures are rising due to climate change. We investigated interactive and bottom-up effects of both temperature increase and copper-based fungicides exposure on the important Lepidopteran vineyard pest Lobesia botrana and its natural enemy, the oophagous parasitoid Trichogramma oleae. We exposed L. botrana larvae to three increasing copper sulfate concentrations under two fluctuating thermal regimes, one current and one future. Eggs produced by L. botrana were then exposed to T. oleae. Our results showed that the survival of L. botrana, was only reduced by the highest copper sulfate concentration and improved under the warmer regime. The development time of L. botrana was strongly reduced by the warmer regime but increased with increasing copper sulfate concentrations, whereas pupal mass was reduced by both thermal regime and copper sulfate. T. oleae F1 emergence rate was reduced and their development time increased by combined effects of the warmer regime and increasing copper sulfate concentrations. Size, longevity and fecundity of T. oleae F1 decreased with high copper sulfate concentrations. These effects on the moth pest and its natural enemy are probably the result of trade-offs between the survival and the development of L. botrana facing multi-stress conditions and implicate potential consequences for future biological pest control. Our study supplies valuable data on how the interaction between pests and biological control agents is affected by multi-stress conditions.


Subject(s)
Climate Change , Moths , Pest Control, Biological , Wasps , Animals , Moths/physiology , Wasps/physiology , Wasps/drug effects , Pest Control, Biological/methods , Fungicides, Industrial/toxicity , Fungicides, Industrial/pharmacology , Copper Sulfate/toxicity , Larva/drug effects , Stress, Physiological
12.
PLoS One ; 19(7): e0307404, 2024.
Article in English | MEDLINE | ID: mdl-39074088

ABSTRACT

Species richness is one of the fundamental metrics of biodiversity. Estimating species richness helps spotlight taxonomic groups that are particularly under-studied, such as the highly diverse Darwin wasps. The only available estimate of the number of Darwin wasps in the Afrotropics proposed almost 11,000 species, compared to the 2,322 recorded species. However, it relied exclusively on the ratio of morphospecies to described species in Henry Townes' personal collection. We provide an updated estimate of the Afrotropical Darwin wasp species, using empirical data from multiple sources, including the increase in species numbers following generic revisions, morphospecies sorting in natural history collections, and diversity patterns of better-studied insects (butterflies) for extrapolation. Our analyses suggest that our knowledge of Darwin wasps is highly incomplete, with only 13-22% of species known in the five most extensively studied countries in the Afrotropics. We estimate 9,206-15,577 species of Darwin wasps within the entire Afrotropics, with the highest concentration expected in the Equatorial Afrotropics and Madagascar. Due to data constraints, our approach tends to underestimate diversity at each step, rendering the upper estimate (15,577 species) more realistic. We highlight reasons contributing to the gap between recorded and estimated species richness, including logistical and financial factors, as well as post-colonial influences.


Subject(s)
Biodiversity , Wasps , Animals , Wasps/classification , Wasps/physiology , Africa
13.
Multimedia | Multimedia Resources, MULTIMEDIA-SMS-SP | ID: multimedia-13190

ABSTRACT

Folhedo informativo sobre o abelhas e vespas


Subject(s)
Bees , Wasps , Venom Hypersensitivity/prevention & control , Primary Health Care , Pamphlets
14.
Braz J Biol ; 84: e279850, 2024.
Article in English | MEDLINE | ID: mdl-38896727

ABSTRACT

The gall wasp, Leptocybe invasa, poses a significant global threat to Eucalyptus cultivation, by causing substantial economic losses. The objective of this study was to differentiate between resistant and susceptible genotypes by morphological characteristics using image analysis based on the damage caused by the gall wasp. In addition, consensus sequences derived from transposable elements (TEs) and the genome of Eucalyptus spp. Were identified by in silico analysis. Furthermore, another objective was to discriminate Eucalyptus genotypes in response to Leptocybe invasa by conducting molecular analyses involving transposable elements and inter simple sequence markers. For image analysis, the GroundEye ® system was used to collect images of 60 leaves from six genotypes, three of which were resistant and three susceptible. Eucalyptus spp. sequences were obtained from the GenBank database by in silico analysis and pairwise alignments with TE sequences were conducted using BLASTN. Multiple sequence alignment was performed with Clustal Omega, followed by the identification of conserved regions in Jalview. A motif signature was generated using Weblogo. For molecular characterization using ISSR markers and TEs, samples of young leaves were obtained from a total of 80 Eucalyptus seedlings, of which 50 were classified as resistant and 30 as susceptible to L. invasa. It was possible to distinguish gall wasp susceptible and resistant genotypes by image analysis. In silico analysis enabled the identification of conserved regions in the Eucalyptus spp. genome, which were associated with proteins involved in secondary metabolite production, e.g., terpenes, which play a role in the response to L. invasa. The discrimination capacity of TEs and ISSR primers was demonstrated and bands were generated that could be used to identify resistant genotypes. However, increasing the number of markers required to discriminate genotypes in both cases is suggested.


Subject(s)
Eucalyptus , Genotype , Phenotype , Wasps , Eucalyptus/genetics , Eucalyptus/parasitology , Animals , Wasps/genetics , Wasps/classification , Disease Resistance/genetics , Computer Simulation , Plant Diseases/parasitology , Plant Diseases/genetics , DNA Transposable Elements/genetics
15.
Invertebr Syst ; 382024 Jun.
Article in English | MEDLINE | ID: mdl-38838190

ABSTRACT

Hymenoptera has some of the highest diversity and number of individuals among insects. Many of these species potentially play key roles as food sources, pest controllers and pollinators. However, little is known about the diversity and biology and ~80% of the species have not yet been described. Classical taxonomy based on morphology is a rather slow process but DNA barcoding has already brought considerable progress in identification. Innovative methods such as image-based identification and automation can further speed up the process. We present a proof of concept for image data recognition of a parasitic wasp family, the Diapriidae (Hymenoptera), obtained as part of the GBOL III project. These tiny (1.2-4.5mm) wasps were photographed and identified using DNA barcoding to provide a solid ground truth for training a neural network. Taxonomic identification was used down to the genus level. Subsequently, three different neural network architectures were trained, evaluated and optimised. As a result, 11 different genera of diaprids and one mixed group of 'other Hymenoptera' can be classified with an average accuracy of 96%. Additionally, the sex of the specimen can be classified automatically with an accuracy of >97%.


Subject(s)
Neural Networks, Computer , Wasps , Animals , Wasps/genetics , Wasps/anatomy & histology , DNA Barcoding, Taxonomic , Image Processing, Computer-Assisted/methods , Female , Classification/methods , Species Specificity , Male
17.
Curr Biol ; 34(11): R547-R549, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834030

ABSTRACT

The Wolbachia strain that infects the parasitoid wasp Encarsia formosa induces female-producing parthenogenesis. A new study shows that a Wolbachia-encoded gene has replaced the use of the ancestral wasp homologue that normally controls sexual reproduction, resulting in parthenogenesis.


Subject(s)
Parthenogenesis , Wasps , Wolbachia , Wolbachia/physiology , Wolbachia/genetics , Animals , Wasps/microbiology , Wasps/physiology , Female , Reproduction
18.
Toxins (Basel) ; 16(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38922129

ABSTRACT

Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.


Subject(s)
Insecticides , Polyamines , Spider Venoms , Wasps , Animals , Polyamines/chemistry , Spider Venoms/chemistry , Spider Venoms/toxicity , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/toxicity , Humans , Spiders
19.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829379

ABSTRACT

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Larva , RNA, Ribosomal, 16S , Tephritidae , Wasps , Animals , Tephritidae/microbiology , Tephritidae/parasitology , Wasps/microbiology , Wasps/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Larva/microbiology , Larva/parasitology , Larva/growth & development , RNA, Ribosomal, 16S/genetics , Fungi/genetics , Fungi/physiology , Host-Parasite Interactions , Microbiota , Dysbiosis/microbiology , Dysbiosis/parasitology
20.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928098

ABSTRACT

Aphidius gifuensis is the dominant parasitic natural enemy of aphids. Elucidating the molecular mechanism of host recognition of A. gifuensis would improve its biological control effect. Chemosensory proteins (CSPs) play a crucial role in insect olfactory systems and are mainly involved in host localization. In this study, a total of nine CSPs of A. gifuensis with complete open reading frames were identified based on antennal transcriptome data. Phylogenetic analysis revealed that AgifCSPs were mainly clustered into three subgroups (AgifCSP1/2/7/8, AgifCSP3/9, and AgifCSP4/5/6). AgifCSP2/5 showed high expression in the antennae of both sexes. Moreover, AgifCSP5 was found to be specifically expressed in the antennae. In addition, fluorescent binding assays revealed that AifCSP5 had greater affinities for 7 of 32 volatile odor molecules from various sources. Molecular docking and site-directed mutagenesis results revealed that the residue at which AgifCSP5 binds to these seven plant volatiles is Tyr75. Behavior tests further confirmed that trans-2-nonenal, one of the seven active volatiles in the ligand binding test, significantly attracted female adults at a relatively low concentration of 10 mg/mL. In conclusion, AgifCSP5 may be involved in locating aphid-infested crops from long distances by detecting and binding trans-2-nonenal. These findings provide a theoretical foundation for further understanding the olfactory recognition mechanisms and indirect aphid localization behavior of A. gifuensis from long distances by first identifying the host plant of aphids.


Subject(s)
Aphids , Insect Proteins , Phylogeny , Animals , Aphids/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Female , Male , Host-Parasite Interactions/genetics , Arthropod Antennae/metabolism , Molecular Docking Simulation , Amino Acid Sequence , Receptors, Odorant/genetics , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Wasps/genetics , Wasps/physiology
SELECTION OF CITATIONS
SEARCH DETAIL