Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 197.169
1.
PeerJ ; 12: e17285, 2024.
Article En | MEDLINE | ID: mdl-38708359

Background: Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging. Methods: We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies. Results: Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.


Arabidopsis , Gene Expression Regulation, Plant , Musa , Plant Proteins , Plant Roots , Plants, Genetically Modified , Stress, Physiological , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Musa/genetics , Musa/growth & development , Musa/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified/genetics , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Water/metabolism
2.
Carbohydr Polym ; 337: 122164, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710558

Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.


Glucans , Glycosyltransferases , Water , Glucans/chemistry , Water/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Streptococcus/enzymology , Solubility , Streptococcus mutans/enzymology
3.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710565

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Galactans , Humic Substances , Hydrogels , Mannans , Plant Gums , Quaternary Ammonium Compounds , Soil , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogels/chemistry , Soil/chemistry , Quaternary Ammonium Compounds/chemistry , Fertilizers , Delayed-Action Preparations/chemistry , Germination/drug effects , Water/chemistry
4.
Glob Chang Biol ; 30(5): e17304, 2024 May.
Article En | MEDLINE | ID: mdl-38711381

Subtropical forests, recognized for their intricate vertical canopy stratification, exhibit high resistance to extreme drought. However, the response of leaf phenology to drought in the species-rich understory remains poorly understood. In this study, we constructed a digital camera system, amassing over 360,000 images through a 70% throughfall exclusion experiment, to explore the drought response of understory leaf phenology. The results revealed a significant advancement in understory leaf senescence phenology under drought, with 11.75 and 15.76 days for the start and end of the leaf-falling event, respectively. Pre-season temperature primarily regulated leaf development phenology, whereas soil water dominated the variability in leaf senescence phenology. Under drought conditions, temperature sensitivities for the end of leaf emergence decreased from -13.72 to -11.06 days °C-1, with insignificance observed for the start of leaf emergence. Consequently, drought treatment shortened both the length of the growing season (15.69 days) and the peak growth season (9.80 days) for understory plants. Moreover, this study identified diverse responses among intraspecies and interspecies to drought, particularly during the leaf development phase. These findings underscore the pivotal role of water availability in shaping understory phenology patterns, especially in subtropical forests.


Droughts , Plant Leaves , Seasons , Plant Leaves/growth & development , Plant Leaves/physiology , Temperature , Forests , Water/metabolism , Trees/growth & development , Trees/physiology , Soil , Tropical Climate , China
5.
Glob Chang Biol ; 30(5): e17315, 2024 May.
Article En | MEDLINE | ID: mdl-38721865

Grasslands provide important ecosystem services to society, including biodiversity, water security, erosion control, and forage production. Grasslands are also vulnerable to droughts, rendering their future vitality under climate change uncertain. Yet, the grassland response to drought is not well understood, especially for heterogeneous Central European grasslands. We here fill this gap by quantifying the spatiotemporal sensitivity of grasslands to drought using a novel remote sensing dataset from Landsat/Sentinel-2 paired with climate re-analysis data. Specifically, we quantified annual grassland vitality at fine spatial scale and national extent (Germany) from 1985 to 2021. We analyzed grassland sensitivity to drought by testing for statistically robust links between grassland vitality and common drought indices. We furthermore explored the spatiotemporal variability of drought sensitivity for 12 grassland habitat types given their different biotic and abiotic features. Grassland vitality maps revealed a large-scale reduction of grassland vitality during past droughts. The unprecedented drought of 2018-2019 stood out as the largest multi-year vitality decline since the mid-1980s. Grassland vitality was consistently coupled to drought (R2 = .09-.22) with Vapor Pressure Deficit explaining vitality best. This suggests that high atmospheric water demand, as observed during recent compounding drought and heatwave events, has major impacts on grassland vitality in Central Europe. We found a significant increase in drought sensitivity over time with highest sensitivities detected in periods of extremely high atmospheric water demand, suggesting that drought impacts on grasslands are becoming more severe with ongoing climate change. The spatial variability of grassland drought sensitivity was linked to different habitat types, with declining sensitivity from dry and mesic to wet habitats. Our study provides the first large-scale, long-term, and spatially explicit evidence of increasing drought sensitivities of Central European grasslands. With rising compound droughts and heatwaves under climate change, large-scale grassland vitality loss, as in 2018-2019, will thus become more likely in the future.


Climate Change , Droughts , Grassland , Remote Sensing Technology , Germany , Water/analysis , Atmosphere
6.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722356

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Dental Bonding , Glass , Materials Testing , Resin Cements , Silanes , Surface Properties , Tensile Strength , Water , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Silanes/chemistry , Water/chemistry , Dental Bonding/methods , Glass/chemistry , Microscopy, Electron, Scanning , Dental Stress Analysis
7.
Science ; 384(6696): 697-703, 2024 May 10.
Article En | MEDLINE | ID: mdl-38723080

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Anopheles , Hydrology , Malaria , Mosquito Vectors , Animals , Malaria/transmission , Africa , Anopheles/parasitology , Mosquito Vectors/parasitology , Climate Change , Humans , Seasons , Rain , Models, Theoretical , Water , Greenhouse Gases/analysis
8.
J Chem Phys ; 160(18)2024 May 14.
Article En | MEDLINE | ID: mdl-38726933

We investigate how electronic excitations and subsequent dissipative dynamics in the water soluble chlorophyll-binding protein (WSCP) are connected to features in two-dimensional (2D) electronic spectra, thereby comparing results from our theoretical approach with experimental data from the literature. Our calculations rely on third-order response functions, which we derived from a second-order cumulant expansion of the dissipative dynamics involving the partial ordering prescription, assuming a fast vibrational relaxation in the potential energy surfaces of excitons. Depending on whether the WSCP complex containing a tetrameric arrangement of pigments composed of two dimers with weak excitonic coupling between them binds the chlorophyll variant Chl a or Chl b, the resulting linear absorption and circular dichroism spectra and particularly the 2D spectra exhibit substantial differences in line shapes. These differences between Chl a WSCP and Chl b WSCP cannot be explained by the slightly modified excitonic couplings within the two variants. In the case of Chl a WSCP, the assumption of equivalent dimer subunits facilitates a reproduction of substantial features from the experiment by the calculations. In contrast, for Chl b WSCP, we have to assume that the sample, in addition to Chl b dimers, contains a small but distinct fraction of chemically modified Chl b pigments. The existence of such Chl b derivates has been proposed by Pieper et al. [J. Phys. Chem. B 115, 4042 (2011)] based on low-temperature absorption and hole-burning spectroscopy. Here, we provide independent evidence.


Chlorophyll Binding Proteins , Chlorophyll , Water , Chlorophyll/chemistry , Water/chemistry , Chlorophyll Binding Proteins/chemistry , Spectrum Analysis/methods , Solubility , Circular Dichroism
9.
Luminescence ; 39(5): e4769, 2024 May.
Article En | MEDLINE | ID: mdl-38720528

Fluorene nucleus derivatives show great potential for building outstanding fluorescence probes. In this paper, a novel fluorescent probe was developed by reacting with fluorene core with azacyclobutane, which exhibits typical solvation chromogenic effect in solvent. The fluorescence of the probe quenched in highly polar solvent. Based on this phenomenon, a novel fluorescence system for trace water was constructed. The response of this probe was fast (30 s) and sensitive for the detection of trace water in organic solvents, and the detection limit of water content in DMSO reached 0.13%. In addition, the probe can also be made as a test strip combined with homemade portable device and a smartphone for rapid detection of trace water. The luminescence mechanism of the probe is theoretically calculated based on time-contained density functional theory (TDDFT). To showcase its practicality, it has been applied for the detection of trace water in honey and alcohol by dipstick. This method provides a new idea for designing efficient fluorescent probes based on dipstick and mobile phone rapid detection.


Fluorenes , Fluorescent Dyes , Spectrometry, Fluorescence , Water , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorenes/chemistry , Water/chemistry , Molecular Structure , Limit of Detection , Density Functional Theory , Fluorescence , Water Pollutants, Chemical/analysis
10.
Food Res Int ; 186: 114400, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729703

Since hydrothermal treatments can enhance resistant starch (RS) content in rice and provide health benefits when consumed, a less laborious and non-destructive method to determine RS content is needed. Terahertz (THz) spectroscopy is hypothesized as a suitable method to quantify RS content in rice after hydrothermal treatment with its sensitivity for the intermolecular forces increase in the formation of RS. In this study, we first used the traditional in vitro hydrolysis method to determine the content of RS in rice. Then, the potential of starch absorbance peaks to quantify RS content after three commonly used hydrothermal methods, soaking, mild heat-moisture treatment, and parboiling, was investigated. The second derivative intensities of the peak at 9.0, 10.5, 12.1, and 13.1 THz were confirmed as being correlated with RS content and showed the high accuracy to predict RS content in samples (R2 > 0.96). Our results indicate the RS content of hydrothermally treated rice can be accurately quantified using these peaks.


Hot Temperature , Oryza , Starch , Terahertz Spectroscopy , Oryza/chemistry , Starch/analysis , Terahertz Spectroscopy/methods , Hydrolysis , Resistant Starch/analysis , Food Handling/methods , Water/chemistry
11.
Food Res Int ; 186: 114320, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729710

High-moisture extrusion (HME) is widely used to produce meat analogues. During HME the plant-based materials experience thermal and mechanical stresses. It is complicated to separate their effects on the final products because these effects are interrelated. In this study we hypothesize that the intensity of the thermal treatment can explain a large part of the physicochemical changes that occur during extrusion. For this reason, near-infrared (NIR) spectroscopy was used as a novel method to quantify the thermal process intensity during HME. High-temperature shear cell (HTSC) processing was used to create a partial least squares (PLS) regression curve for processing temperature under controlled processing conditions (root mean standard error of cross-validation (RMSECV) = 4.00 °C, coefficient of determination of cross-validation (R2CV) = 0.97). This PLS regression model was then applied to HME extrudates produced at different screw speeds (200-1200 rpm) and barrel temperatures (100-160 °C) with two different screw profiles to calculate the equivalent shear cell temperature as a measure for thermal process intensity. This equivalent shear cell temperature reflects the effects of changes in local temperature conditions, residence time and thermal stresses. Furthermore, it can be related to the degree of texturization of the extrudates. This information can be used to gain new insights into the effect of various process parameters during HME on the thermal process intensity and extrudate quality.


Food Handling , Hot Temperature , Soybean Proteins , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Food Handling/methods , Soybean Proteins/chemistry , Soybean Proteins/analysis , Least-Squares Analysis , Water/chemistry
12.
Food Res Int ; 186: 114374, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729731

As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.


Chlorogenic Acid , Emulsifying Agents , Emulsions , Ergosterol , Particle Size , Water , Ergosterol/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Water/chemistry , Chlorogenic Acid/chemistry , Viscosity , Antioxidants/chemistry , Oils/chemistry , Hydrogen-Ion Concentration
13.
PLoS One ; 19(5): e0293786, 2024.
Article En | MEDLINE | ID: mdl-38718010

α-zeins are amphiphilic maize seed storage proteins with material properties suitable for a multitude of applications e.g., in renewable plastics, foods, therapeutics and additive manufacturing (3D-printing). To exploit their full potential, molecular-level insights are essential. The difficulties in experimental atomic-resolution characterization of α-zeins have resulted in a diversity of published molecular models. However, deep-learning α-zein models are largely unexplored. Therefore, this work studies an AlphaFold2 (AF2) model of a highly expressed α-zein using molecular dynamics (MD) simulations. The sequence of the α-zein cZ19C2 gave a loosely packed AF2 model with 7 α-helical segments connected by turns/loops. Compact tertiary structure was limited to a C-terminal bundle of three α-helices, each showing notable agreement with a published consensus sequence. Aiming to chart possible α-zein conformations in practically relevant solvents, rather than the native solid-state, the AF2 model was subjected to MD simulations in water/ethanol mixtures with varying ethanol concentrations. Despite giving structurally diverse endpoints, the simulations showed several patterns: In water and low ethanol concentrations, the model rapidly formed compact globular structures, largely preserving the C-terminal bundle. At ≥ 50 mol% ethanol, extended conformations prevailed, consistent with previous SAXS studies. Tertiary structure was partially stabilized in water and low ethanol concentrations, but was disrupted in ≥ 50 mol% ethanol. Aggregated results indicated minor increases in helicity with ethanol concentration. ß-sheet content was consistently low (∼1%) across all conditions. Beyond structural dynamics, the rapid formation of branched α-zein aggregates in aqueous environments was highlighted. Furthermore, aqueous simulations revealed favorable interactions between the protein and the crosslinking agent glycidyl methacrylate (GMA). The proximity of GMA epoxide carbons and side chain hydroxyl oxygens simultaneously suggested accessible reactive sites in compact α-zein conformations and pre-reaction geometries for methacrylation. The findings may assist in expanding the applications of these technologically significant proteins, e.g., by guiding chemical modifications.


Molecular Dynamics Simulation , Zein , Zein/chemistry , Protein Conformation , Zea mays/chemistry , Zea mays/metabolism , Amino Acid Sequence , Water/chemistry
14.
J Phys Chem B ; 128(18): 4456-4463, 2024 May 09.
Article En | MEDLINE | ID: mdl-38691101

Ionic liquids (ILs) have shown promising potential in membrane protein extraction; however, the underlying mechanism remains unclear. Herein, we employed GPU-accelerated molecular dynamics (MD) simulations to investigate the dynamic insertion process of ILs into cell membranes containing membrane proteins. Our findings reveal that ILs spontaneously insert into the membrane, and the presence of membrane proteins significantly decelerates the rate of IL insertion into the membrane. Specifically, the relationship between the insertion rate and inserting free energy exhibits non-monotonic changes, which can be attributed to interfacial effects. The protein-water interface acts as trap for free ions and ionic clusters, while free ions preferentially insert into the membrane from the protein-lipid interface, which limits the insertion rate due to its narrowness. Thus, the insertion rate is governed by a combination of the free energy and interfacial effects. These findings provide valuable insights into the interfacial effects of protein-lipid bilayers and have implications for various biochemical-related applications.


Cell Membrane , Imidazoles , Ionic Liquids , Lipid Bilayers , Molecular Dynamics Simulation , Ionic Liquids/chemistry , Imidazoles/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Thermodynamics , Water/chemistry
15.
Anim Sci J ; 95(1): e13956, 2024.
Article En | MEDLINE | ID: mdl-38797661

Dry-cured beef ham quality is determined by moisture content; however, it is hard to do non-destructive monitoring. We investigated whether the internal moisture content of dry-cured beef ham could be determined from the impedance of the surface, which is removed at the time of eating. Supraspinatus muscle samples from Japanese Shorthorn steers were dried for different periods. The samples were then divided into the parts to be removed (surface) and edible parts. Their respective impedance and moisture content were measured, and the correlation between these two parameters was investigated. A negative correlation was observed between the impedance and moisture content of the surface and the shallow and deep sections of the edible part. There was also a negative correlation between the impedance of the surface and the moisture content of the shallow and deep sections of the edible part. Therefore, the results of this study indicate that during drying, the moisture content in the shallow and deep sections of dry-cured hams can be estimated by measuring the impedance of the surface. This non-destructive method of measuring the moisture content of dry-cured hams can help in regulating the moisture content during drying to produce high-quality dry-cured hams.


Electric Impedance , Food Quality , Water , Animals , Water/analysis , Cattle , Desiccation , Food Handling/methods , Meat Products/analysis , Food Analysis/methods , Swine , Red Meat/analysis , Male , Muscle, Skeletal
16.
Physiol Plant ; 176(3): e14360, 2024.
Article En | MEDLINE | ID: mdl-38797869

Potassium (K+) is an essential macronutrient for appropriate plant development and physiology. However, little is known about the mechanisms involved in the regulation of leaf water relations by K under water deficit. A pot experiment with two K supplies of 0.45 and 0 g K2O per pot (3 kg soil per pot) and two watering conditions (well-watered and water-deficit) was conducted to explore the effects of K deficiency on canopy transpiration characteristics, leaf water status, photosynthesis, and hydraulic traits in two rice genotypes with contrasting resistance to drought. The results showed that K deficiency reduced canopy transpiration rate by decreasing stomatal conductance, which led to higher canopy temperatures, resulting in limited water deficit tolerance in rice. In addition, K deficiency led to further substantial reductions in leaf relative water content and water potential under water deficit, which increased the imbalance in leaf water relations under water deficit. Notably, K deficiency limited leaf gas exchange by reducing leaf hydraulic conductance, but decreased the intrinsic water use efficiency under water deficit, especially for the drought-resistant cultivar. Further analysis of the underlying process of leaf hydraulic resistance revealed that the key limiting factor of leaf hydraulic conductance under K deficiency was the outside-xylem hydraulic conductance rather than the xylem hydraulic conductance. Overall, our results provide a comprehensive perspective for assessing leaf water relations under K deficiency, water deficit, and their combined stresses, which will be useful for optimal rice fertilization strategies.


Droughts , Oryza , Plant Leaves , Plant Transpiration , Potassium , Water , Oryza/physiology , Oryza/genetics , Oryza/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism , Water/metabolism , Plant Transpiration/physiology , Potassium/metabolism , Photosynthesis/physiology , Plant Stomata/physiology , Xylem/physiology , Xylem/metabolism
17.
J Mol Model ; 30(6): 187, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801468

CONTEXT: A systematic study of hydrogen bonds in base pairs and the interaction of cisplatin with DNA fragments was carried out. Structure, binding energies, and electron density were analyzed. xTB has proven to be an accurate method for obtaining structures and binding energies in DNA structures. Our xTB values for DNA base binding energy were in the same order and in some cases better than CAM-B3LYP values compared to experimental values. Double-stranded DNA-cisplatin structures have been calculated and the hydrogen bonds of water molecules are a decisive factor contributing to the preference for the cisplatin-Guanine interaction. Higher values of the water hydrogen bonding energies were obtained in cisplatin-Guanine structures. Furthermore, the electrostatic potential was used to investigate and improve the analysis of DNA-cisplatin structures. METHODS: We applied the xTB method and the CAM-B3LYP functional combined with def2-SVP basis set to perform and analyze of the bonding energies of the cisplatin interaction and the effects of the hydrogen bonds. Results were calculated employing the xTB and the ORCA software.


Cisplatin , DNA , Hydrogen Bonding , Cisplatin/chemistry , DNA/chemistry , Static Electricity , Density Functional Theory , Models, Molecular , Thermodynamics , Water/chemistry , Antineoplastic Agents/chemistry , Base Pairing
18.
Luminescence ; 39(5): e4761, 2024 May.
Article En | MEDLINE | ID: mdl-38807512

The fear of an increase in blood sugar can be very traumatic. Being diabetic either type I or type II leads to a disorder called diabetes distress having traits of stress, depression, and anxiety. Among risk factors of diabetes mellitus heavy and trace metal toxicity emerges as new risk factors reported in many studies. In this study we target toxic metals, viz., Ni2+, Zn2+, and Cu2+, involved in the pathogenesis of diabetes and diabetic stress with naphthazarin esters. The compounds C1-C3 isolated from the leaves and roots of Arnebia guttata were tested for their metal-binding ability in an aqueous medium in UV-Visible and nuclear magnetic resonance (NMR) studies. These probes are well-known naphthoquinones present in the Arnebia species. In the UV-Visible titrations of compounds C1-C3 with Na2+, K2+, Zn2+, Ca2+, Cu2+, Mg2+, Co2+, and Ni2+ ions, significant binding was observed with Ni2+, Cu2+, and Zn2+ ions in MeOH/H2O. There occurs a beautiful formation of red-shifted bands between the 520 to 620 nm range with a synergistic increase in absorbance. Also, the disappearance of proton peaks in the 1H NMR spectrum on addition of metal ions confirmed binding. Compounds C1-C3 isolated from A. guttata came out as potent Ni2+, Zn2+, and Cu2+ sensors that are reportedly involved in islet function and induction of diabetes.


Esters , Naphthoquinones , Esters/chemistry , Naphthoquinones/chemistry , Diabetes Mellitus/metabolism , Neurotoxins/chemistry , Neurotoxins/metabolism , Water/chemistry , Molecular Structure , Plant Leaves/chemistry
19.
Biomolecules ; 14(5)2024 May 04.
Article En | MEDLINE | ID: mdl-38785962

Here, we describe GS-9, a novel water-soluble fatty acid-based formulation comprising L-lysine and arachidonic acid, that we have shown to induce ferroptosis. GS-9 forms vesicle-like structures in solution and mediates lipid peroxidation, as evidenced by increased C11-BODIPY fluorescence and an accumulation of toxic malondialdehyde, a downstream product of lipid peroxidation. Ferroptosis inhibitors counteracted GS-9-induced cell death, whereas caspase 3 and 7 or MLKL knock-out cell lines are resistant to GS-9-induced cell death, eliminating other cell death processes such as apoptosis and necroptosis as the mechanism of action of GS-9. We also demonstrate that through their role of sequestering fatty acids, lipid droplets play a protective role against GS-9-induced ferroptosis, as inhibition of lipid droplet biogenesis enhanced GS-9 cytotoxicity. In addition, Fatty Acid Transport Protein 2 was implicated in GS-9 uptake. Overall, this study identifies and characterises the mechanism of GS-9 as a ferroptosis inducer. This formulation of arachidonic acid offers a novel tool for investigating and manipulating ferroptosis in various cellular and anti-cancer contexts.


Arachidonic Acid , Ferroptosis , Ferroptosis/drug effects , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Humans , Lipid Peroxidation/drug effects , Cell Line, Tumor , Water/chemistry , Solubility , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Lipid Droplets/metabolism , Lipid Droplets/drug effects
20.
An Acad Bras Cienc ; 96(2): e20220448, 2024.
Article En | MEDLINE | ID: mdl-38775552

The present study investigated mushroom by-products as a substitute for emulsifiers in the microencapsulation of apricot kernel oil. Mushroom by-product emulsions were more viscous and had higher centrifugal (85.88±1.19 %) and kinetic (90.52±0.98 %) stability than control emulsions (Tween 20 was used as emulsifier). Additionally, spray-drying mushroom by-product emulsions yielded a high product yield (62.56±1.11 %). Furthermore, the oxidative stability of powder products containing mushroom by-products was observed to be higher than that of the control samples. For an accelerated oxidation test, the samples were kept at various temperatures (20, 37, and 60 °C). TOTOX values were assessed as indicators of oxidation, with values exceeding 30 indicating oxidation of the samples. Of the samples stored at 60 °C, the non-microencapsulated apricot kernel oil oxidized by the fifth day (41.12±0.13 TOTOX value), whereas the powder samples containing the mushroom by-products remained unoxidized until the end of the tenth day (37.05±0.08 TOTOX value). This study revealed that mushroom by-products could be a viable alternative for synthetic emulsifiers in the microencapsulation of apricot kernel oil. It has been observed that using mushroom by-products instead of synthetic emulsifiers in oil microencapsulation can also delay oxidative degradation in microencapsulated powders.


Emulsifying Agents , Emulsions , Plant Oils , Prunus armeniaca , Emulsions/chemistry , Emulsifying Agents/chemistry , Plant Oils/chemistry , Prunus armeniaca/chemistry , Drug Compounding , Agaricales/chemistry , Oxidation-Reduction , Water/chemistry
...