Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44.414
Filter
1.
J Environ Sci (China) ; 147: 101-113, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003032

ABSTRACT

Control of N-nitrosodimethylamine (NDMA) in drinking water could be achieved by removing its precursors as one practical way. Herein, superfine powdered activated carbons with a diameter of about 1 µm (SPACs) were successfully prepared by grinding powdered activated carbon (PAC, D50=24.3 µm) and applied to remove model NDMA precursors, i.e. ranitidine (RAN) and nizatidine (NIZ). Results from grain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size, and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ. Moreover, kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path. Furthermore, performance comparison experiments suggested that the removal of RAN and NIZ (C0=0.5 mg/L) could reach 61.3% and 60%, respectively, within 5 min, when the dosage of SAPC-1.1 (D50=1.1 µm) was merely 5 mg/L, while PAC-24.3 could only eliminate 17.5% and 18.6%. The adsorption isotherm was well defined by Langmuir isotherm model, indicating that the adsorption of RAN/NIZ was a monolayer coverage process. The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent, and high adsorption capacity could be observed under the condition of pH > pka+1. The coexistence of humic acid (HA) had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously. The coexistence of anions had little effect on the adsorption also. This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.


Subject(s)
Charcoal , Dimethylnitrosamine , Particle Size , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Dimethylnitrosamine/chemistry , Kinetics , Models, Chemical
2.
J Environ Sci (China) ; 147: 451-461, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003061

ABSTRACT

Ketoprofen (KET), as a non-steroidal anti-inflammatory drug frequently detected in aqueous environments, is a threat to human health due to its accumulation and low biodegradability, which requires the transformation and degradation of KET in aqueous environments. In this paper, the reaction process of ozone-initiated KET degradation in water was investigated using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The detailed reaction path of KET ozonation is proposed. The thermodynamic results show that ozone-initiated KET degradation is feasible. Under ultraviolet irradiation, the reaction of ozone with water can also produce OH radicals (HO·) that can react with KET. The degradation reaction of KET caused by HO· was further studied. The kinetic calculation illustrates that the reaction rate (1.99 × 10-1 (mol/L)-1 sec-1) of KET ozonation is relatively slow, but the reaction rate of HO· reaction is relatively high, which can further improve the degradation efficiency. On this basis, the effects of pollutant concentration, ozone concentration, natural organic matter, and pH value on degradation efficiency under UV/O3 process were analyzed. The ozonolysis reaction of KET is not sensitive to pH and is basically unaffected. Finally, the toxicity prediction of oxidation compounds produced by degradation reaction indicates that most of the degradation products are harmless, and a few products containing benzene rings are still toxic and have to be concerned. This study serves as a theoretical basis for analyzing the migration and transformation process of anti-inflammatory compounds in the water environment.


Subject(s)
Ketoprofen , Ozone , Water Pollutants, Chemical , Ketoprofen/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Models, Chemical , Water Purification/methods
3.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003084

ABSTRACT

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Subject(s)
Cadmium , Iron Compounds , Magnesium Compounds , Silicates , Water Pollutants, Chemical , Cadmium/chemistry , Water Pollutants, Chemical/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Iron Compounds/chemistry , Adsorption , Models, Chemical , Water Purification/methods
4.
Environ Geochem Health ; 46(9): 357, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083123

ABSTRACT

Rapid growth in the industry has released large quantities of contaminants, particularly metal discharges into the environment. Heavy metal poisoning in water bodies has become a major problem due to its toxicity to living organisms. In this study, we developed a 3-chloropropyl triethoxysilane incorporated mesoporous silica nanoparticle (SBA-15) based adsorbent utilizing the sol-gel process and Pluronic 123 (P123) as a structure-directing surfactant. Furthermore, the produced SBA-15 NPs were functionalized with bis(2-aminoethyl)amine (BDA) using the surface grafting approach. The physical and chemical properties of the prepared SBA-15@BDA NPs were determined using a variety of instruments, including small-angle X-ray diffraction (SAXS), Fourier-transform infrared (FTIR), scanning electron microscope (SEM), N2 adsorption-desorption, thermogravimetric, particle size distribution, and zeta potential analysis. The MSN has a large surface area of up to 574 m2/g, a pore volume of 0.57 cm3/g, and a well-ordered mesoporous nanostructure with an average pore size of 3.6 nm. The produced SBA-15@BDA NPs were used to adsorb selectively to lead (Pd2+) ions from an aqueous solution. The adsorption study was performed under various conditions, including the influence of solution pH, adsorbent dose, adsorption kinetics, adsorption selectivity in the presence of competing metal ions, and reusability. The results of the kinetic study demonstrated that SBA-15@BDA NPs absorb selectively Pb2+ ions via chemisorption. The SBA-15@BDA NPs show Pb2+ ions with a maximum adsorption capacity of ~ 88% and an adsorbed quantity of approximately ~ 112 mg/g from the studied aqueous solution. The adsorption mechanism relies on coordination bonding between Pb2+ ions and surface-functionalized amine groups on SBA-15@BDA NPs. Furthermore, the proposed SBA-15@BDA NPs adsorbent demonstrated excellent reusability over five cycles without significantly reducing adsorption performance. As a consequence, SBA-15@BDA NPs might serve as an effective adsorbent for the selective removal of Pb2+ ions from aqueous effluent.


Subject(s)
Lead , Silicon Dioxide , Wastewater , Water Pollutants, Chemical , Silicon Dioxide/chemistry , Adsorption , Lead/chemistry , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Porosity , Water Purification/methods , Nanoparticles/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning
5.
BMC Public Health ; 24(1): 2031, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075367

ABSTRACT

BACKGROUND: The majority of existing industries in Ethiopia discharge untreated effluents into nearby water bodies, streams and open land. The wastewater generated by Gondar malt factory (GMF) was disposed freely and join a natural wetland implemented for the treatment of the wastewater. The objective of the study was to analyze and characterize wastewater from GMF and to evaluate the effectiveness of the wetland for the treatment purpose. METHODS: Different Physicochemical quality indicators (color, turbidity pH, temperature, Total Dissolved solids, Total Suspended solids, total solid, conductivity, alkalinity, hardness, nitrate, phosphate, sulfate, free chlorides, heavy metals-(Cd, Cr, Fe, Mn, and Pb)and Biological Oxygen Demand were measured according to the standard procedures. Data was analyzed using Statistical Package for Social Sciences (SPSS-25). Analysis of Variance (ANOVA) was used to find whether significant differences existed in the different sampling stations for the parameters studied. P value less than 0.05 was considered to show significant difference. RESULTS: The results of this study revealed that most of the quality indicators were improved in value after the water passed through the wetland except for alkalinity M, sulfite, Mn, temperature and pH. From ANOVA result, it was noted that there was a significant mean difference between the stations except for chromium, manganese and lead. The result showed that the wetland plays a great role in the removal of pollutants where the best performance was obtained at removal efficiency of 96.188% PO4HR,75.63% Nitrate,>99% Cl2, ammonia and nitrite 99.99%, 92.77% sulfate,84.36% Total hardness,87.43% color, and for others it is ranged between 30 and 60%. CONCLUSION: the study concluded that GMF wetland was almost effective and had potential in treatment of the wastewater from the discharging facilities (especially for nutrients, alkalinity P, hardness, color and chloride). It is recommended that wetlands should be conserved and used as wastewater treatment facility.


Subject(s)
Wastewater , Wetlands , Ethiopia , Wastewater/chemistry , Waste Disposal, Fluid/methods , Industrial Waste/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Poaceae , Water Purification/methods , Water Purification/standards
6.
Sci Rep ; 14(1): 17607, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080297

ABSTRACT

In this study, the removal effect of a new MOF-on MOF adsorbent based on Cu-Co bimetallic organic frameworks on tetracycline antibiotics (TCs) in water system was studied. The adsorbent (Cu-MOF@Co-MOF) were synthesized by solvothermal and self-assembly method at different concentrations of Co2+/Cu2+. The characterization results of SEM, XRD, XPS, FTIR and BET indicated that the MOF-on MOF structure of Cu-MOF@Co-MOF exhibited the best recombination and physicochemical properties when the molar ratio of Co2+: Cu2+ is 5:1. In addition, the Cu-MOF@Co-MOF have a high specific surface area and bimetallic clusters, which can achieve multi-target synergistic adsorption of TCs. Based on above advantages, Cu-MOF@Co-MOF provided a strong affinity and could efficiently adsorb more than 80% of pollutants in just 5 to 15 min using only 10 mg of the adsorbent. The adsorption capacity of tetracycline and doxycycline was 434.78 and 476.19 mg/g, respectively, showing satisfactory adsorption performance. The fitting results of the experimental data were more consistent with the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process of TC and DOX occurred at the homogeneous adsorption site and was mainly controlled by chemisorption. Thermodynamic experiments showed that Cu-MOF@Co-MOF was thermodynamically advantageous for the removal of TCs, and the whole process was spontaneous. The excellent adsorption capacity and rapid adsorption kinetics indicate the prepared MOF-on MOF adsorbent can adsorb TCs economically and quickly, and have satisfactory application prospects for removing TCs in practical environments. The results of the study pave a new way for preparing novel MOFs-based water treatment materials with great potential for efficient removal.


Subject(s)
Anti-Bacterial Agents , Copper , Metal-Organic Frameworks , Tetracycline , Water Pollutants, Chemical , Water Purification , Adsorption , Copper/chemistry , Metal-Organic Frameworks/chemistry , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Tetracycline/chemistry , Tetracycline/isolation & purification , Water Purification/methods , Cobalt/chemistry , Kinetics
7.
Environ Sci Technol ; 58(26): 11843-11854, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952299

ABSTRACT

Advanced oxidation processes (AOPs) are the most efficient water cleaning technologies, but their applications face critical challenges in terms of mass/electron transfer limitations and catalyst loss/deactivation. Bipolar electrochemistry (BPE) is a wireless technique that is promising for energy and environmental applications. However, the synergy between AOPs and BPE has not been explored. In this study, by combining BPE with AOPs, we develop a general approach of using carbon nanotubes (CNTs) as electric-field-induced bipolar electrodes to control electron transfer for efficient water purification. This approach can be used for permanganate and peroxide activation, with superior performances in the degradation of refractory organic pollutants and excellent durability in recycling and scale-up experiments. Theoretical calculations, in situ measurements, and physical experiments showed that an electric field could substantially reduce the energy barrier of electron transfer over CNTs and induce them to produce bipolar electrodes via electrochemical polarization or to form monopolar electrodes through a single particle collision effect with feeding electrodes. This approach can continuously provide activated electrons from one pole of bipolar electrodes and simultaneously achieve "self-cleaning" of catalysts through CNT-mediated direct oxidation from another pole of bipolar electrodes. This study provides a fundamental scientific understanding of BPE, expands its scope in the environmental field, and offers a general methodology for water purification.


Subject(s)
Electrodes , Nanotubes, Carbon , Oxidation-Reduction , Water Purification , Nanotubes, Carbon/chemistry , Water Purification/methods , Catalysis
8.
Water Environ Res ; 96(7): e11072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961619

ABSTRACT

This work assessed the performance of a pilot-scale cascade anaerobic digestion (AD) system when treating mixed municipal wastewater treatment sludges. The cascade system was compared with a conventional continuous stirred tank reactor (CSTR) digester (control) in terms of process performance, stability, and digestate quality. The results showed that the cascade system achieved higher volatile solids removal (VSR) efficiencies (28-48%) than that of the reference (25-41%) when operated at the same solids residence time (SRT) in the range of 11-15 days. When the SRT of the cascade system was reduced to 8 days the VSR (32-36%) was only slightly less than that of the reference digester that was operated at a 15-day SRT (39-43%). Specific hydrolysis rates in the first stage of the cascade system were 66-152% higher than those of the reference. Additionally, the cascade system exhibited relatively stable effluent concentrations of volatile fatty acids (VFAs: 100-120 mg/l), while the corresponding concentrations in the control effluent demonstrated greater fluctuations (100-160 mg/l). The cascade system's effluent pH and VFA/alkalinity ratios were consistently maintained within the optimal range. During a dynamic test when the feed total solids concentration was doubled, total VFA concentrations (85-120 mg/l) in the cascade system were noticeably less than those (100-170 mg/l) of the control, while the pH and VFA/alkalinity levels remained in a stable range. The cascade system achieved higher total solids (TS) content in the dewatered digestate (19.4-26.8%) than the control (17.4-22.1%), and E. coli log reductions (2.0-4.1 log MPN/g TS) were considerably higher (p < 0.05) than those in the control (1.3-2.9 log MPN/g TS). Overall, operating multiple CSTRs in cascade mode at typical SRTs and mixed sludge ratios enhanced the performance, stability digesters, and digestate quality of AD. PRACTITIONER POINTS: Enhanced digestion of mixed sludge digestion with cascade system. Increased hydrolysis rates in the cascade system compared to a reference CSTR. More stable conditions for methanogen growth at both steady and dynamic states. Improved dewaterability and E. coli reduction of digestate from the cascade system.


Subject(s)
Bioreactors , Sewage , Waste Disposal, Fluid , Wastewater , Anaerobiosis , Waste Disposal, Fluid/methods , Pilot Projects , Wastewater/chemistry , Sewage/chemistry , Fatty Acids, Volatile/metabolism , Water Purification/methods
9.
Environ Geochem Health ; 46(8): 283, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963423

ABSTRACT

Phosphorus (P) scarcity and eutrophication have triggered the development of new materials for P recovery. In this work, a novel magnetic calcium-rich biochar nanocomposite (MCRB) was prepared through co-precipitation of crab shell derived biochar, Fe2+ and Fe3+. Characteristics of the material demonstrated that the MCRB was rich in calcite and that the Fe3O4 NPs with a diameter range of 18-22 nanometers were uniformly adhered on the biochar surface by strong ether linking (C-O-Fe). Batch tests demonstrated that the removal of P was pH dependent with an optimal pH of 3-7. The MCRB exhibited a superior P removal performance, with a maximum removal capacity of 105.6 mg g-1, which was even higher than the majority lanthanum containing compounds. Study of the removal mechanisms revealed that the P removal by MCRB involved the formation of hydroxyapatite (HAP-Ca5(PO4)3OH), electrostatic attraction and ligand exchange. The recyclability test demonstrated that a certain level (approximately 60%) was still maintained even after the six adsorption-desorption process, suggesting that MCRB is a promising material for P removal from wastewater.


Subject(s)
Charcoal , Nanocomposites , Phosphates , Water Pollutants, Chemical , Charcoal/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Phosphates/chemistry , Adsorption , Hydrogen-Ion Concentration , Calcium/chemistry , Water Purification/methods , Wastewater/chemistry
10.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954124

ABSTRACT

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Subject(s)
Anti-Bacterial Agents , Oxidation-Reduction , Tetracycline , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry , Catalysis , Wastewater/chemistry , Bismuth/chemistry , Graphite/chemistry , Nitrogen Compounds/chemistry , Tungsten Compounds/chemistry , Photolysis , Water Purification/methods , Sewage/chemistry
11.
Sci Total Environ ; 946: 174479, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38969112

ABSTRACT

Here, we offer thoughts concerning a 'zero residual nanoadsorbent toxicity' environmental policy which we strongly advocate. Our discussions in support of this policy are based on the adage 'Prevention is better than cure'. Besides emphasizing the need for strict regulations (regional and international), research and development avenues are highlighted for the technology that can achieve 'zero tolerance' for residual nanoadsorbent levels escaping and building up in receiving ecosystems. We do not oppose nanoadsorbents. On the contrary, their water and wastewater purification potentials are well recognized. However, they should not be permitted to translocate downstream from the exit point of a final effluent.


Subject(s)
Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Water Purification , Wastewater/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods , Environmental Policy , Adsorption
12.
Environ Sci Technol ; 58(29): 13157-13167, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996057

ABSTRACT

Dichloramine (NHCl2) naturally exists in reverse osmosis (RO) permeate due to its application as an antifouling chemical in membrane-based potable reuse treatment. This study investigated mechanisms of background NHCl2 hydrolysis associated with the generation of oxidative radical species in RO permeate, established a kinetic model to predict the oxidative capacity, and examined its removal efficiency on trace organic contaminants in potable reuse. Results showed that NHCl2 hydrolysis generated transient peroxynitrite (ONOO-) and subsequently dissociated into hydroxyl radical (HO•). The maximal HO• exposure was observed at an RO permeate pH of 8.4, higher than that from typical ultraviolet (UV)-based advanced oxidation processes. The HO• exposure during NHCl2 hydrolysis also peaked at a NH2Cl-to-NHCl2 molar ratio of 1:1. The oxidative capacity rapidly degraded 1,4-dioxane, carbamazepine, atenolol, and sulfamethoxazole in RO permeate. Furthermore, background elevated carbonate in fresh RO permeate can convert HO• to carbonate radical (CO3•-). Aeration of the RO permeate removed total carbonate, significantly increased HO• exposure, and enhanced the degradation kinetics of trace organic contaminants. The kinetic model of NHCl2 hydrolysis predicted well the degradation of contaminants in RO permeate. This study provides new mechanistic insights into NHCl2 hydrolysis that contributes to the oxidative degradation of trace organic contaminants in potable reuse systems.


Subject(s)
Oxidation-Reduction , Water Purification , Hydrolysis , Water Purification/methods , Membranes, Artificial , Water Pollutants, Chemical/chemistry , Kinetics
13.
Toxins (Basel) ; 16(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39057950

ABSTRACT

Harmful cyanobacteria blooms and the escalating impact of cyanotoxins necessitates the effective removal of cyanobacteria from water ecosystems before they release cyanotoxins. In this study, cyanobacteria removal from water samples taken from the eutrophic Aleksandrovac Lake (southern Serbia) was investigated. For that purpose, novel activated carbons derived from waste biomass-date palm leaf stalk (P_AC), black alder cone-like flowers (A_AC), and commercial activated carbon from coconut shell (C_AC) as a reference were used. To define the best adsorption conditions and explain the adsorption mechanism, the influence of contact time, reaction volume, and adsorbent mass, as well as FTIR analysis of the adsorbents before and after cyanobacteria removal, were studied. The removal efficiency of P_AC and A_AC achieved for the applied concentration of 10 mg/mL after 15 min was ~99%, while for C_AC after 24 h was only ~92% for the same concentration. To check the safety of the applied materials for human health and the environment, the concentrations of potentially toxic elements (PTEs), the health impact (HI) after water purification, and the toxicity (MTT and Comet assay) of the materials were evaluated. Although the P_AC and A_AC achieved much better removal properties in comparison with the C_AC, considering the demonstrated genotoxicity and cytotoxicity of the P_AC and the higher HI value for the C_AC, only the A_AC was further investigated. Results of the kinetics, FTIR analysis, and examination of the A_AC mass influence on removal efficiency indicated dominance of the physisorption mechanism. Initially, the findings highlighted the superior performance of A_AC, with great potential to be globally commercialized as an effective cyanobacteria cell adsorbent.


Subject(s)
Charcoal , Cyanobacteria , Charcoal/chemistry , Humans , Adsorption , Kinetics , Water Purification/methods , Serbia , Lakes/microbiology
14.
Microbiome ; 12(1): 134, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039555

ABSTRACT

BACKGROUND: Understanding the interactions and dynamics of microbiotas within biological wastewater treatment systems is essential for ensuring their stability and long-term sustainability. In this study, we developed a systematic framework employing multi-omics and Hi-C sequencing to extensively investigate prokaryotic and phage communities within a hybrid biofilm and activated sludge system. RESULTS: We uncovered distinct distribution patterns, metabolic capabilities, and activities of functional prokaryotes through the analysis of 454 reconstructed prokaryotic genomes. Additionally, we reconstructed a phage catalog comprising 18,645 viral operational taxonomic units (vOTUs) with high length and contiguity using hybrid assembly, and a distinct distribution of phages was depicted between activated sludge (AS) and biofilm. Importantly, 1340 host-phage pairs were established using Hi-C and conventional in silico methods, unveiling the host-determined phage prevalence. The majority of predicted hosts were found to be involved in various crucial metabolic processes, highlighting the potential vital roles of phages in influencing substance metabolism within this system. Moreover, auxiliary metabolic genes (AMGs) related to various categories (e.g., carbohydrate degradation, sulfur metabolism, transporter) were predicted. Subsequent activity analysis emphasized their potential ability to mediate host metabolism during infection. We also profiled the temporal dynamics of phages and their associated hosts using 13-month time-series metagenomic data, further demonstrating their tight interactions. Notably, we observed lineage-specific infection patterns, such as potentially host abundance- or phage/host ratio-driven phage population changes. CONCLUSIONS: The insights gained from this research contribute to the growing body of knowledge surrounding interactions and dynamics of host-phage and pave the way for further exploration and potential applications in the field of microbial ecology. Video Abstract.


Subject(s)
Bacteria , Bacteriophages , Sewage , Wastewater , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/physiology , Bacteriophages/isolation & purification , Sewage/virology , Sewage/microbiology , Wastewater/virology , Wastewater/microbiology , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Biofilms , Metagenomics , Water Purification/methods , Microbiota
15.
Environ Sci Pollut Res Int ; 31(33): 45847-45861, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976191

ABSTRACT

Recently, alcohol-based draw solute (DS), i.e., alcohol with water, is one of the trending research topics in forward osmosis (FO) because of its performance and ease of regeneration. Nevertheless, the higher reverse solute flux (RSF) of the alcohol-based DS hinders its commercialization in water and wastewater treatment applications. This research aims to minimize the RSF of the alcohol-based DS in FO by investigating the possibility of using alcohol-alcohol-based draw solutes for the first time. Three alcohol-alcohol-based draw solutions, namely, (1) E70 + IPA30 (ethanol: 70% + isopropanol: 30%), (2) E40 + IPA60 (ethanol: 40% + isopropanol: 60%), and (3) E10 + IPA90 (ethanol: 10% + isopropanol: 90%), were prepared and the properties (including osmolality, shear stress, and viscosity) of the DS were first investigated followed by the parametric investigation (concerning temperature and concentration). The results were further analyzed with the fixed-point iterative method in MATLAB to obtain the performance parameters. Results reveal that the E10 + IPA90 mixture yields a lower RSF of 40.62 g/m2/h and specific reverse solute flux of 3.78 g/L with a considerably good water flux and recovery percentage of 11.47 LMH and 26.29%, respectively, as compared to other DS E70 + IPA30 and E40 + IPA60 at 25 °C. Thus, E10 + IPA90 is recommended as a potential candidate to be used as a DS in FO.


Subject(s)
Osmosis , Water Purification , Water Purification/methods , Alcohols/chemistry , Wastewater/chemistry
16.
J Environ Sci Health B ; 59(8): 507-520, 2024.
Article in English | MEDLINE | ID: mdl-38978285

ABSTRACT

Heavy metal Cr(VI) and organic BPA have posed harmful risks to human health, aquatic organisms and the ecosystem. In this work, Chitosan/bone/bamboo biochar beads (CS-AMCM) were synthesized by co-pyrolysis and in situ precipitation method. These microbeads featured a particle size of approximately 1 ± 0.2 mm and were rich in oxygen/nitrogen functional groups. CS-AMCM was characterized using XRD, Zeta potential, FTIR, etc. Experiments showed that adsorption processes of CS-AMCM on Cr(VI) and BPA fitted well to Langmuir model, with theoretical maximum capacities of 343.61 mg/g and 140.30 mg/g, respectively. Pore filling, electrostatic attraction, redox, complexation and ion exchange were the main mechanisms for Cr(VI), whereas for BPA, the intermolecular force (hydrogen bond) and pore filling were involved. CS-AMCM with adsorbed Cr(VI) demonstrated effective activation in producing ·OH and ·O2 from H2O2, which degraded BPA and Cr(VI) with the removal rates of 99.2% and 98.2%, respectively. CS-AMCM offers the advantages of low-cost, large adsorption capacity, high catalytic degradation efficiency, and favorable recycling in treating Cr(VI) and BPA mixed wastewater, which shows great potential in treating heavy metal and organic matter mixed pollution wastewater.


Subject(s)
Benzhydryl Compounds , Charcoal , Chitosan , Chromium , Phenols , Water Pollutants, Chemical , Chromium/chemistry , Charcoal/chemistry , Chitosan/chemistry , Benzhydryl Compounds/chemistry , Water Pollutants, Chemical/chemistry , Phenols/chemistry , Adsorption , Water Purification/methods , Bone and Bones/chemistry
17.
Environ Sci Pollut Res Int ; 31(33): 45913-45928, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980483

ABSTRACT

One effective option to minimize N-nitrosodimethylamine (NDMA) in finished drinking water is to identify and control its precursors. However, previous works to identify significant precursors use formation potential (FP) tests using high doses to assure the maximum NDMA formation rather than the NDMA formation in finished waters. In this study, we applied characteristic low treatment doses of ozone (O3)-to-dissolved organic carbon (DOC) of target compounds of 0.8 mg/mg and NH2Cl of 2.5 ± 0.2 mg Cl2/L to evaluate the NDMAFP yields of organic compounds bearing N,N-dimethylamine (DMA) and N,N-dimethylhydrazine (DMH) during preozonation and post-chloramination. The results in pH-buffered Milli-Q water showed a significant decrease from ≤ 52% to non-detectable levels in the O3-NDMAFP yields of O3-reactive precursors (i.e., DMH-like compounds) after preozonation and post-chloramination. Similarly, a significant decrease from 0.5 to 12% to nonquantifiable levels was observed for the NH2Cl-NDMAFP yields of NH2Cl-reactive precursors; however, the NH2Cl-NDMAFP yields of N,N-dimethylbenzylamine (DMBzA)-like compounds only decreased from ~ 110 to ≤ 43%, suggesting that these compounds could contribute to NH2Cl-NDMAFPs even after preozonation. The effect of the matrix in sewage-effluent and lake water samples varied and was specific for precursors; for example, the O3-NDMAFP yield of 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene) disemicarbazide (TMDS), an important O3-reactive NDMA precursor, did not significantly decrease when tested in sewage-effluent samples. Based on the previous occurrence concentration of TMDS in sewage samples, we estimated an NDMAFP of ~ 315 ng/L. This estimate exceeds the guidance concentrations of NDMA (3-100 ng/L), highlighting the importance of TMDS and its related compounds for NDMA formation.


Subject(s)
Dimethylnitrosamine , Nitrogen Compounds , Ozone , Water Pollutants, Chemical , Dimethylnitrosamine/chemistry , Water Pollutants, Chemical/chemistry , Ozone/chemistry , Nitrogen Compounds/chemistry , Water Purification , Drinking Water/chemistry
18.
Environ Sci Pollut Res Int ; 31(33): 46038-46051, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981963

ABSTRACT

Heavy metals are highly toxic and nonbiodegradable, posing a serious threat to the water environment and human beings. Therefore, it is crucial to develop a highly efficient adsorbent that is easy to recover and separate for the removal of heavy metals. In this paper, nitrogen-doped magnetic carbon (NC-67) was prepared by carbonization and hydrochloric acid treatment using cobalt-containing MOF (ZIF-67) as precursor. Then, polyaniline (PANI) was grown directly on NC-67 with high specific surface area by in situ polymerization to prepare polyaniline-coated nitrogen-doped magnetic carbon (NC-67@PANI), which was characterized by XRD, SEM, TEM and VSM, etc. and used for the removal of Cr(VI)from wastewater. The experimental results showed that the adsorption process of Cr(VI) by NC-67@PANI was spontaneous and endothermic, which conformed to the pseudo-second-order model and Freundlich adsorption isotherm model. Due to the synergistic effect of adsorption and reduction, the experimental adsorption capacity of NC-67@PANI for Cr(VI) was 410.2 mg/g. NC-67@PANI maintained a removal efficiency of 65.8% for Cr(VI) after five cycles. In addition, NC-67@PANI had good magnetism and was easy to separate under external magnetic field. The excellent adsorption capacity and easy separation characteristics of NC-67@PANI indicate that it is a promising adsorbent for Cr(VI) removal from wastewater.


Subject(s)
Aniline Compounds , Carbon , Chromium , Nitrogen , Water Pollutants, Chemical , Chromium/chemistry , Aniline Compounds/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Adsorption , Nitrogen/chemistry , Wastewater/chemistry , Water Purification/methods , Metal-Organic Frameworks/chemistry , Imidazoles , Zeolites
19.
Bioresour Technol ; 406: 131072, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971387

ABSTRACT

Immobilized laccases are widely used as green biocatalysts for bioremediation of phenolic pollutants and wastewater treatment. Metal-organic frameworks (MOFs) show potential application for immobilization of laccase. Their unique adsorption properties provide a synergic effect of adsorption and biodegradation. This review focuses on bioremediation of wastewater pollutants using laccase-MOF composites, and summarizes the current knowledge and future perspective of their biodegradation and the enhancement strategies of enzyme immobilization. Mechanistic strategies of preparation of laccase-MOF composites were mainly investigated via physical adsorption, chemical binding, and de novo/co-precipitation approaches. The influence of architecture of MOFs on the efficiency of immobilization and bioremediation were discussed. Moreover, as sustainable technology, the integration of laccases and MOFs into wastewater treatment processes represents a promising approach to address the challenges posed by industrial pollution. The MOF-laccase composites can be promising and reliable alternative to conventional techniques for the treatment of wastewaters containing pharmaceuticals, dyes, and phenolic compounds. The detailed exploration of various immobilization techniques and the influence of MOF architecture on performance provides valuable insights for optimizing these composites, paving the way for future advancements in environmental biotechnology. The findings of this research have the potential to influence industrial wastewater treatment and promoting cleaner treatment processes and contributing to sustainability efforts.


Subject(s)
Biodegradation, Environmental , Enzymes, Immobilized , Laccase , Metal-Organic Frameworks , Water Pollutants, Chemical , Laccase/chemistry , Laccase/metabolism , Metal-Organic Frameworks/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Adsorption , Wastewater/chemistry , Water Purification/methods , Organic Chemicals/chemistry
20.
Bioresour Technol ; 406: 131069, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971388

ABSTRACT

The feasibility of inducing simultaneous nitrification and denitrification (SND) by S0 for low carbon to nitrogen (C/N) ratio wastewater remediation was investigated. Compared with S0 and/or organics absent systems (-3.4 %∼5.0 %), the higher nitrogen removal performance (18.2 %∼59.8 %) was achieved with C/N ratios and S0 dosages increasing when S0 and organics added simultaneously. The synergistic effect of S0 and organics stimulated extracellular polymeric substances secretion and weakened intermolecular binding force of S0, facilitating S0 bio-utilization and reducing the external organics requirement. It also promoted microbial metabolism (0.16 âˆ¼ 0.24 µg O2/(g VSS·h)) and ammonia assimilation (5.9 %∼20.5 %), thereby enhancing the capture of organics and providing more electron donors for SND. Furthermore, aerobic denitrifiers (15.91 %∼27.45 %) and aerobic denitrifying (napA and nirS) and ammonia assimilating genes were accumulated by this synergistic effect. This study revealed the mechanism of SND induced by coordination of S0 and organics and provided an innovative strategy for triggering efficient and stable SND.


Subject(s)
Carbon , Denitrification , Nitrification , Nitrogen , Sulfur , Wastewater , Wastewater/chemistry , Nitrogen/metabolism , Sulfur/metabolism , Ammonia/metabolism , Water Purification/methods , Organic Chemicals
SELECTION OF CITATIONS
SEARCH DETAIL