Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.482
Filter
1.
J Biochem Mol Toxicol ; 38(7): e23765, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967724

ABSTRACT

Mangiferin is a naturally occurring glucosylxanthone that has shown promising immunomodulatory effects. It is generally isolated from the leaves, peels, bark, and kernels of Mangifera indica Linn. Mangiferin is like a miraculous natural bioactive molecule that has an immunomodulatory function that makes it a potential therapeutic candidate for the treatment of rheumatoid arthritis (RA) and cancer. The anticancer activity of mangiferin acts by blocking NF-κB, as well as regulating the ß-catenin, EMT, MMP9, MMP2, LDH, ROS, and NO, and also by the activation of macrophages. It has no cytotoxic effect on grown chondrocytes and lowers matrix metalloproteinase levels. Additionally, it has a potent proapoptotic impact on synoviocytes. The precise molecular mechanism of action of mangiferin on RA and malignancies is still unknown. This comprehensive review elaborates on the immunomodulatory effect of mangiferin and its anticancer and anti-RA activity. This also explained the total synthesis of mangiferin and its in vitro and in vivo screening models.


Subject(s)
Arthritis, Rheumatoid , Neoplasms , Xanthones , Xanthones/pharmacology , Xanthones/therapeutic use , Xanthones/chemistry , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Animals , Neoplasms/drug therapy , Neoplasms/immunology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry
2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000485

ABSTRACT

Cytotoxic activity has been reported for the xanthone α-mangostin (AMN) against Glioblastoma multiforme (GBM), an aggressive malignant brain cancer with a poor prognosis. Recognizing that AMN's high degree of hydrophobicity is likely to limit its systemic administration, we formulated AMN using reconstituted high-density lipoprotein (rHDL) nanoparticles. The photophysical characteristics of the formulation, including fluorescence lifetime and steady-state anisotropy, indicated that AMN was successfully incorporated into the rHDL nanoparticles. To our knowledge, this is the first report on the fluorescent characteristics of AMN with an HDL-based drug carrier. Cytotoxicity studies in a 2D culture and 3D spheroid model of LN-229 GBM cells and normal human astrocytes showed an enhanced therapeutic index with the rHDL-AMN formulation compared to the unincorporated AMN and Temozolomide, a standard GBM chemotherapy agent. Furthermore, treatment with the rHDL-AMN facilitated a dose-dependent upregulation of autophagy and reactive oxygen species generation to a greater extent in LN-229 cells compared to astrocytes, indicating the reduced off-target toxicity of this novel formulation. These studies indicate the potential therapeutic benefits to GBM patients via selective targeting using the rHDL-AMN formulation.


Subject(s)
Glioblastoma , Lipoproteins, HDL , Nanoparticles , Spheroids, Cellular , Xanthones , Humans , Xanthones/chemistry , Xanthones/pharmacology , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Cell Line, Tumor , Nanoparticles/chemistry , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Spheroids, Cellular/drug effects , Drug Carriers/chemistry , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Autophagy/drug effects
3.
Bioorg Chem ; 150: 107609, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964145

ABSTRACT

Herein, we scrutinized the inhibitory potential of five xanthones and a flavonoid, sourced from Centaurium spicatum, against ß-glucuronidase activity. The results showed that gentisin and azaleatin emerged as the most potent inhibitors, with significantly lower IC50 values of 0.96 ± 0.10 and 0.57 ± 0.04 µM, respectively. The evaluation of enzyme kinetics unveiled that the isolated xanthones manifested inhibition of ß-glucuronidase through a mixed inhibition mode, whereas azaleatin exhibited a noncompetitive inhibition mechanism. The findings from molecular docking analysis unveiled that the compounds under investigation, particularly azaleatin, displayed comparatively diminished binding affinities towards ß-glucuronidase. Furthermore, the tested drugs were shown to occupy a common binding site as the employed reference drug. Our comprehensive Molecular Dynamics (MD) simulations analysis revealed consistent trajectories for the investigated drugs, wherein azaleatin and gentisin demonstrated notable stabilization of energy levels. Analysis of various MD parameters revealed that drugs with the lowest IC50 values maintained relatively stable interactions with ß-glucuronidase. These drugs were shown to exert notable alterations in their conformation or flexibility upon complexation with the target enzyme. Conversely, the flexibility and accessibility of ß-glucuronidase was reduced upon drug binding, particularly with azaleatin and gentisin, underscoring the stability of the drug-enzyme complexes. Analysis of Coul-SR and LJ-SR interaction energies unveiled consistent and stable interactions between certain isolated drugs and ß-glucuronidase. Azaleatin notably displayed the lowest average Coul-SR interaction energy, suggesting strong electrostatic interactions with the enzyme's active site and significant conformational variability during simulation. Remarkably, LJ-SR interaction energies across different xanthones complexes were more negative than their Coul-SR counterparts, emphasizing the predominant role of van der Waals interactions, encompassing attractive dispersion and repulsive forces, in stabilizing the drug-enzyme complexes rather than electrostatic interactions.


Subject(s)
Enzyme Inhibitors , Glucuronidase , Molecular Docking Simulation , Xanthones , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Xanthones/chemistry , Xanthones/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship , Humans , Glycoproteins
4.
BMC Complement Med Ther ; 24(1): 282, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054443

ABSTRACT

BACKGROUND: Malaria is a major global health concern, particularly in tropical and subtropical countries. With growing resistance to first-line treatment with artemisinin, there is an urgent need to discover novel antimalarial drugs. Mesua ferrea Linn., a plant used in traditional medicine for various purposes, has previously been investigated by our research group for its cytotoxic properties. The objective of this study was to explore the compounds isolated from M. ferrea with regards to their potential antiplasmodial activity, their interaction with Plasmodium falciparum lactate dehydrogenase (PfLDH), a crucial enzyme for parasite survival, and their pharmacokinetic and toxicity profiles. METHODS: The isolated compounds were assessed for in vitro antiplasmodial activity against a multidrug-resistant strain of P. falciparum K1 using a parasite lactate dehydrogenase (pLDH) assay. In vitro cytotoxicity against Vero cells was determined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The interactions between the isolated compounds and the target enzyme PfLDH were investigated using molecular docking. Additionally, pharmacokinetic and toxicity properties were estimated using online web tools SwissADME and ProTox-II, respectively. RESULTS: Among the seven compounds isolated from M. ferrea roots, rheediachromenoxanthone (5), which belongs to the pyranoxanthone class, demonstrated good in vitro antiplasmodial activity, with the IC50 being 19.93 µM. Additionally, there was no toxicity towards Vero cells (CC50 = 112.34 µM) and a selectivity index (SI) of 5.64. Molecular docking analysis revealed that compound (5) exhibited a strong binding affinity of - 8.6 kcal/mol towards PfLDH and was stabilized by forming hydrogen bonds with key amino acid residues, including ASP53, TYR85, and GLU122. Pharmacokinetic predictions indicated that compound (5) possessed favorable drug-like properties and desired pharmacokinetic characteristics. These include high absorption in the gastrointestinal tract, classification as a non-substrate of permeability glycoprotein (P-gp), non-inhibition of CYP2C19, ease of synthesis, a high predicted LD50 value of 4,000 mg/kg, and importantly, non-hepatotoxic, non-carcinogenic, and non-cytotoxic effects. CONCLUSIONS: This study demonstrated that compounds isolated from M. ferrea exhibit activity against P. falciparum. Rheediachromenoxanthone has significant potential as a scaffold for the development of potent antimalarial drugs.


Subject(s)
Antimalarials , Molecular Docking Simulation , Plant Extracts , Plant Roots , Plasmodium falciparum , Xanthones , Antimalarials/pharmacology , Antimalarials/pharmacokinetics , Antimalarials/chemistry , Antimalarials/toxicity , Plasmodium falciparum/drug effects , Xanthones/pharmacology , Xanthones/chemistry , Xanthones/pharmacokinetics , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chlorocebus aethiops , Vero Cells
5.
J Nanobiotechnology ; 22(1): 324, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858692

ABSTRACT

Breast cancer remains a malignancy that poses a serious threat to human health worldwide. Chemotherapy is one of the most widely effective cancer treatments in clinical practice, but it has some drawbacks such as poor targeting, high toxicity, numerous side effects, and susceptibility to drug resistance. For auto-amplified tumor therapy, a nanoparticle designated GDTF is prepared by wrapping gambogic acid (GA)-loaded dendritic porous silica nanoparticles (DPSNs) with a tannic acid (TA)-Fe(III) coating layer. GDTF possesses the properties of near-infrared (NIR)-enhanced and pH/glutathione (GSH) dual-responsive drug release, photothermal conversion, GSH depletion and hydroxyl radical (·OH) production. When GDTF is exposed to NIR laser irradiation, it can effectively inhibit cell proliferation and tumor growth both in vitro and in vivo with limited toxicity. This may be due to the synergistic effect of enhanced tumor accumulation, and elevated reactive oxygen species (ROS) production, GSH depletion, and TrxR activity reduction. This study highlights the enormous potential of auto-amplified tumor therapy.


Subject(s)
Breast Neoplasms , Glutathione , Nanoparticles , Reactive Oxygen Species , Silicon Dioxide , Breast Neoplasms/drug therapy , Female , Nanoparticles/chemistry , Animals , Glutathione/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Silicon Dioxide/chemistry , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Xanthones/chemistry , Xanthones/pharmacology , Tannins/chemistry , Tannins/pharmacology , Cell Proliferation/drug effects , Mice, Inbred BALB C , Drug Liberation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
6.
J Nat Prod ; 87(6): 1628-1634, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38869194

ABSTRACT

The unfolded protein response (UPR) is a key component of fungal virulence. The prenylated xanthone γ-mangostin isolated from Garcinia mangostana (Clusiaceae) fruit pericarp, has recently been described to inhibit this fungal adaptative pathway. Considering that Calophyllum caledonicum (Calophyllaceae) is known for its high prenylated xanthone content, its stem bark extract was fractionated using a bioassay-guided procedure based on the cell-based anti-UPR assay. Four previously undescribed xanthone derivatives were isolated, caledonixanthones N-Q (3, 4, 8, and 12), among which compounds 3 and 8 showed promising anti-UPR activities with IC50 values of 11.7 ± 0.9 and 7.9 ± 0.3 µM, respectively.


Subject(s)
Calophyllum , Unfolded Protein Response , Xanthones , Xanthones/pharmacology , Xanthones/chemistry , Xanthones/isolation & purification , Unfolded Protein Response/drug effects , Calophyllum/chemistry , Molecular Structure , Humans , Plant Bark/chemistry
7.
Mar Drugs ; 22(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921589

ABSTRACT

Overwhelming evidence points to an aberrant Wnt/ß-catenin signaling as a critical factor in hepatocellular carcinoma (HCC) and cervical cancer (CC) pathogenesis. Dicerandrol C (DD-9), a dimeric tetrahydroxanthenone isolated from the endophytic fungus Phomopsis asparagi DHS-48 obtained from mangrove plant Rhizophora mangle via chemical epigenetic manipulation of the culture, has demonstrated effective anti-tumor properties, with an obscure action mechanism. The objective of the current study was to explore the efficacy of DD-9 on HepG2 and HeLa cancer cells and its functional mechanism amid the Wnt/ß catenin signaling cascade. Isolation of DD-9 was carried out using various column chromatographic methods, and its structure was elucidated with 1D NMR. The cytotoxicity of DD-9 on HepG2 and HeLa cells was observed with respect to the proliferation, clonality, migration, invasion, apoptosis, cell cycle, and Wnt/ß-catenin signaling cascade. We found that DD-9 treatment significantly reduced tumor cell proliferation in dose- and time-dependent manners in HepG2 and HeLa cells. The subsequent experiments in vitro implied that DD-63 could significantly suppress the tumor clonality, metastases, and induced apoptosis, and that it arrested the cell cycle at the G0/G1 phase of HepG2 and HeLa cells. Dual luciferase assay, Western blot, and immunofluorescence assay showed that DD-9 could dose-dependently attenuate the Wnt/ß-catenin signaling by inhibiting ß-catenin transcriptional activity and abrogating ß-catenin translocated to the nucleus; down-regulating the transcription level of ß-catenin-stimulated Wnt target gene and the expression of related proteins including p-GSK3-ß, ß-catenin, LEF1, Axin1, c-Myc, and CyclinD1; and up-regulating GSK3-ß expression, which indicates that DD-9 stabilized the ß-catenin degradation complex, thereby inducing ß-catenin degradation and inactivation of the Wnt/ß-catenin pathway. The possible interaction between DD-9 and ß-catenin and GSK3-ß protein was further confirmed by molecular docking studies. Collectively, DD-9 may suppress proliferation and induce apoptosis of liver and cervical cancer cells, possibly at least in part via GSK3-ß-mediated crosstalk with the Wnt/ß-catenin signaling axis, providing insights into the mechanism for the potency of DD-9 on hepatocellular and cervical cancer.


Subject(s)
Apoptosis , Cell Proliferation , Wnt Signaling Pathway , Humans , HeLa Cells , Apoptosis/drug effects , Wnt Signaling Pathway/drug effects , Cell Proliferation/drug effects , Hep G2 Cells , beta Catenin/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Liver Neoplasms/drug therapy , Xanthones/pharmacology , Xanthones/chemistry , Xanthones/isolation & purification , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Movement/drug effects , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology
8.
Int J Pharm ; 660: 124303, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38848801

ABSTRACT

Although the combination of anti-vascular strategy plus immunotherapy has emerged as the optimal first-line treatment of hepatocellular carcinoma, lack of tumor targeting leads to low antitumor efficacy and serious side effect. Here, we report an ultra-pH-sensitive nanoparticle of gambogenic acid (GNA) encapsulated by poly(ethylene glycol)-poly(2-azepane ethyl methacrylate) (PEG-PAEMA) for tumor-targeting combined therapy of anti-vascular strategy plus immunotherapy. PEG-PAEMA-GNA nanoparticle was quite stable at pH 7.4 for 30 d. In contrast, it exerted size shrinkage, charge reversal and the release of GNA at pH 6.7 within 24 h. Moreover, PEG-PAEMA-GNA significantly enhanced the anti-vascular activity, membrane-disruptive capability and pro-apoptosis when pH changed from 7.4 to 6.7. Western blot analysis exhibits that PEG-PAEMA and its GNA nanoparticle facilitated the phosphorylation of STING protein. In vivo assays show that PEG-PAEMA-GNA not only displayed much higher tumor inhibition of 92 % than 37 % of free GNA, but also inhibited tumor vasculature, promoted the maturation of dendritic cells and recruited more cytotoxic t-lymphocytes for sufficient anti-vascular therapy and immunotherapy. All these results demonstrate that PEG-PAEMA-GNA displayed tumor-targeting combined treatment of anti-vascular therapy and immunotherapy. This study offers a simple and novel method for the combination of anti-vascular therapy and immunotherapy with high selectivity towards tumor.


Subject(s)
Immunotherapy , Nanoparticles , Polyethylene Glycols , Xanthenes , Animals , Immunotherapy/methods , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage , Xanthenes/chemistry , Xanthenes/administration & dosage , Xanthenes/pharmacology , Cell Line, Tumor , Humans , Mice , Apoptosis/drug effects , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Mice, Inbred C57BL , Dendritic Cells/drug effects , Dendritic Cells/immunology , Mice, Inbred BALB C , Xanthones/chemistry , Xanthones/administration & dosage , Xanthones/pharmacology , Drug Liberation , Human Umbilical Vein Endothelial Cells , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects
9.
Acta Trop ; 257: 107291, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38889863

ABSTRACT

Owing to the persistent number of parasitic deaths, Visceral leishmaniasis continues to haunt several economically weaker sections of India. The disease causes over 30,000 deaths and threatens millions annually on a global scale. The standard pentavalent antimonials, on the other hand, are associated with health adversities and disease relapse. The current study is focused on the search for the most potential natural bioactive phytocompound from the bark extract of the Northeastern Indian plant, Garcinia cowa, that shows potent anti-leishmanial properties. The High Resonance Liquid Chromatography followed by Mass Spectrometry (HR-LCMS) study followed by an in silico molecular docking using computational tools revealed that α-mangostin might potentially possess antiparasitic activity. To validate the anti-leishmanial efficacy of the compound, a cell viability assay was performed, which demonstrated the parasite-specific inhibitory activity of α-mangostin; with IC50 values ranging from 4.95 - 7.37 µM against the different forms of Leishmania donovani parasite. The flow cytometric analysis of the phytocompound treated parasites indicated an oxidative and nitrosative stress-mediated apoptotic cell death in the parasites, by the suggestive surge in nuclear fragmentation and mitochondrial dysfunction. Simultaneously, a cytokine profiling study suggested approximate two-to-three-fold upregulated levels of pro-inflammatory cytokines post-compound treatment, which is predicted to actively contribute to parasite-killing. α-mangostin was also found to reduce the chances of parasite survival by inhibiting arginase enzyme activity, which in favorable conditions facilitates its sustenance. This study thereby substantiates that α-mangostin significantly possesses anti-leishmanial potentiality that can be developed into a cure for this infectious disease.


Subject(s)
Antiprotozoal Agents , Garcinia , Leishmania donovani , Molecular Docking Simulation , Plant Extracts , Xanthones , Xanthones/pharmacology , Xanthones/chemistry , Garcinia/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Leishmania donovani/drug effects , Cell Survival/drug effects , India , Cytokines/metabolism , Plant Bark/chemistry , Inhibitory Concentration 50 , Animals , Humans , Apoptosis/drug effects
10.
ACS Appl Mater Interfaces ; 16(20): 25788-25798, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716694

ABSTRACT

Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), has great potential in tumor treatment. However, the presence of antioxidant glutathione (GSH) and the heat shock proteins (HSPs) expression caused by high temperature can weaken the effects of PDT and PTT. Here, a multifunctional nanocomplex BT&GA@CL is constructed to realize enhanced synergistic PDT/PTT. Cinnamaldehyde liposomes (CLs) formed by cinnamaldehyde dimer self-assembly were loaded with in gambogic acid (GA) and an aggregation-induced emission molecule BT to obtain BT&GA@CL. As a drug carrier, CL can consume glutathione (GSH) and release drugs responsively. The released BT aggregates can simultaneously act as both a photothermal agent and photosensitizer to achieve PDT and PTT under 660 nm laser irradiation. Specifically, GA as an HSP90 inhibitor can attenuate PTT-induced HSP90 protein expression, thereby weakening the tolerance of tumor cells to high temperatures and enhancing PTT. Such a multifunctional nanocomplex simultaneously modulates the content of GSH and HSP90 in tumor cells, thus enhancing both PDT and PTT, ultimately achieving the goal of efficient combined tumor suppression.


Subject(s)
Glutathione , Liposomes , Photochemotherapy , Photosensitizing Agents , Xanthones , Liposomes/chemistry , Glutathione/metabolism , Glutathione/chemistry , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Xanthones/chemistry , Xanthones/pharmacology , Animals , Mice , Photothermal Therapy , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
11.
Adv Colloid Interface Sci ; 329: 103188, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761602

ABSTRACT

With the target of fabricating healthier products, food manufacturing companies look for natural-based nutraceuticals that can potentially improve the physicochemical properties of food systems while being nutritive to the consumer and providing additional health benefits (biological activities). In this regard, Mangiferin joins all these requirements as a potential nutraceutical, which is typically contained in Mangifera indica products and its by-products. Unfortunately, knowing the complex chemical composition of Mango and its by-products, the extraction and purification of Mangiferin remains a challenge. Therefore, this comprehensive review revises the main strategies proposed by scientists for the extraction and purification of Mangiferin. Importantly, this review identifies that there is no report reviewing and criticizing the literature in this field so far. Our attention has been targeted on the timely findings on the primary extraction techniques and the relevant insights into isolation and purification. Our discussion has emphasized the advantages and limitations of the proposed strategies, including solvents, extracting conditions and key interactions with the target xanthone. Additionally, we report the current research gaps in the field after analyzing the literature, as well as some examples of functional food products containing Mangiferin.


Subject(s)
Mangifera , Xanthones , Xanthones/isolation & purification , Xanthones/chemistry , Mangifera/chemistry , Dietary Supplements/analysis , Humans , Solvents/chemistry
12.
J Mater Chem B ; 12(24): 5940-5949, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38804636

ABSTRACT

Gambogic acid (GA) as a naturally derived chemotherapeutic agent is of increasing interest for antitumor therapy. However, current research mainly focuses on improving the pharmacological properties to overcome the shortcomings in clinical applications or as a synergistic anticancer agent in combination with chemotherapy and chemophototherapy. Yet, the material properties of GA (e.g., self-assembly) are often neglected. Herein, we validated the self-assembly function of GA and its huge potential as a single-component active carrier for synergistic delivery using pyropheophorbide-a (PPa) as a drug model. The results showed that self-assembled GA drives the formation of nano-GA/PPa mainly through noncovalent interactions such as π-π stacking, hydrophobic interactions, and hydrogen bonding. Additionally, although no significant differences in cytotoxicity were found between the individual in vitro chemotherapy and combined chemophototherapy, the as-prepared nano-GA/PPa exhibits remarkably improved water solubility and multiple favorable therapeutic features, leading to a prominent in vivo photochemotherapy efficiency of 89.3% inhibition rate with reduced hepatotoxicity of GA. This work highlights the potential of self-assembled GA as a drug delivery carrier for synergistic biomedical applications.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Xanthones , Xanthones/chemistry , Xanthones/pharmacology , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Mice , Drug Screening Assays, Antitumor , Chlorophyll/chemistry , Chlorophyll/analogs & derivatives , Chlorophyll/pharmacology , Cell Survival/drug effects , Nanoparticles/chemistry , Cell Proliferation/drug effects , Photochemotherapy , Particle Size , Mice, Inbred BALB C , Drug Carriers/chemistry , Molecular Structure
13.
J Org Chem ; 89(11): 7692-7704, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38768258

ABSTRACT

A MS/MS-based molecular networking approach compared to the Global Natural Product Social Molecular Networking library, in association with genomic annotation of natural product biosynthetic gene clusters within a marine-derived fungus, Aspergillus sydowii, identified a suite of xanthone metabolites. Chromatographic techniques applied to the cultured fungus led to the isolation of 11 xanthone-based alkaloids, dubbed sydoxanthones F-M. The structures of these alkaloids were elucidated using extensive spectroscopic data, including electronic circular dichroism and single-crystal X-ray diffraction data for configurational assignments. Among these analogues, sydoxanthones F-K exhibit structure features typical of nucleobase-coupled xanthones, with sydoxanthone H being an N-bonded xanthone dimer. Notably, (±)sydoxanthones F (1a/1b), (±)sydoxanthones H (3b/3a), and (±)sydoxanthones J (5b/5a) are enantiomeric pairs, while sydoxanthones G (2), I (4), and K (6) are stereoisomers of 1, 3, and 5, respectively. Furthermore, (+)sydoxanthone H (3a) demonstrated significant rescue of cell viability in H2O2-injuried SH-SY5Y cells by inhibiting reactive oxygen species production, suggesting its potential for neuroprotection.


Subject(s)
Aspergillus , Reactive Oxygen Species , Xanthones , Xanthones/chemistry , Xanthones/pharmacology , Xanthones/isolation & purification , Aspergillus/chemistry , Humans , Reactive Oxygen Species/metabolism , Molecular Structure , Cell Line, Tumor
14.
Eur J Pharm Biopharm ; 200: 114334, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768764

ABSTRACT

Functional polymer-lipid hybrid nanoparticles (H-NPs) are a promising class of nanocarriers that combine the benefits of polymer and lipid nanoparticles, offering biocompatibility, structural stability, high loading capacity, and, most importantly, superior surface functionalization. Here, we report the synthesis and design of highly functional H-NPs with specificity toward the transferrin receptor (TfR), using a small molecule ligand, gambogic acid (GA). A fluorescence study revealed the molecular orientation of H-NPs, where the lipid-dense core is surrounded by a polymer exterior, functionalized with GA. Urolithin A, an immunomodulator and anti-inflammatory agent, served as a model drug-like compound to prepare H-NPs via traditional emulsion-based techniques, where H-NPs led to smaller particles (132 nm) and superior entrapment efficiencies (70 % at 10 % drug loading) compared to GA-conjugated polymeric nanoparticles (P-NPs) (157 nm and 52 % entrapment efficiency) and solid lipid nanoparticles (L-NPs) (186 nm and 29 % entrapment efficiency). H-NPs showed superior intracellular accumulation compared to individual NPs using human small intestinal epithelial (FHs 74) cells. The in vitro efficacy was demonstrated by flow cytometry analysis, in which UA-laden H-NPs showed excellent anti-inflammatory properties in cisplatin-induced injury in healthy human proximal tubular cell (HK2) model by decreasing the TLR4, NF-κß, and IL-ß expression. This preliminary work highlights the potential of H-NPs as a novel functional polymer-lipid drug delivery system, establishing the foundation for future research on its therapeutic potential in addressing chemotherapy-induced acute kidney injury in cancer patients.


Subject(s)
Cisplatin , Nanoparticles , Polymers , Humans , Cisplatin/pharmacology , Nanoparticles/chemistry , Polymers/chemistry , Lipids/chemistry , Drug Carriers/chemistry , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Xanthones/pharmacology , Xanthones/chemistry , Xanthones/administration & dosage , Cell Line , Coumarins/chemistry , Coumarins/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Liposomes
15.
Org Biomol Chem ; 22(29): 5886-5890, 2024 07 24.
Article in English | MEDLINE | ID: mdl-38804835

ABSTRACT

Neutral rhodol-based red emitters are shown to efficiently localize in mitochondria, as demonstrated by confocal microscopy and co-localization studies. A simple model is proposed to explain the localization mechanism of neutral molecules. The model takes into account the strong coupling between the molecular dipole moment and the electric field of the inner mitochondrial membrane.


Subject(s)
Fluorescent Dyes , Mitochondria , Mitochondria/metabolism , Mitochondria/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Microscopy, Confocal , Xanthones/chemistry , Molecular Structure , HeLa Cells
16.
ACS Appl Mater Interfaces ; 16(19): 24221-24234, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709623

ABSTRACT

Clinical studies have continually referred to the involvement of drug carrier having dramatic negative influences on the biocompatibility, biodegradability, and loading efficacy of hydrogel. To overcome this deficiency, researchers have proposed to directly self-assemble natural herbal small molecules into a hydrogel without any structural modification. However, it is still a formidable challenge due to the high requirements on the structure of natural molecules, leading to a rarity of this type of hydrogel. Mangiferin (MF) is a natural polyphenol of C-glucoside xanthone with various positive health benefits, including the treatment of diabetic wounds, but its poor hydrosolubility and low bioavailability significantly restrict the clinical application. Inspired by these, with heating/cooling treatment, a carrier-free hydrogel (MF-gel) is developed by assembling the natural herbal molecule mangiferin, which is mainly governed through hydrogen bonds and intermolecular π-π stacking interactions. The as-prepared hydrogel has injectable and self-healing properties and shows excellent biocompatibility, continuous release ability, and reversible stimuli-responsive performances. All of the superiorities enable the MF-based hydrogel to serve as a potential wound dressing for treating diabetic wounds, which was further confirmed by both the vitro and vivo studies. In vitro, the MF-gel could promote the migration of healing-related cells from peripheral as well as the angiogenesis and displays the capacity of mediating inflammation response by scavenging the intracellular ROS. In vivo, the MF-gel accelerates wound contraction and healing via inflammatory adjustment, collagen deposition, and angiogenesis. This study provides a facile and effective method for diabetic wound management and emphasizes the direct self-assembly hydrogel from natural herbal small molecule.


Subject(s)
Hydrogels , Wound Healing , Xanthones , Xanthones/chemistry , Xanthones/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Humans , Mice , Diabetes Mellitus, Experimental/drug therapy , Rats , Male
17.
Int J Biol Macromol ; 270(Pt 2): 132348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750838

ABSTRACT

Gambogic acid is a natural compound with anticancer properties and is effective for many tumors. But its low water solubility and dose-dependent side effects limit its clinical application. This study aims to develop a novel drug delivery system for intratumoral delivery of gambogic acid. In our experimental study, we propose a new method for encapsulating gambogic acid nanoparticles using a manganese composite hyaluronic acid hydrogel as a carrier, designed for targeted drug delivery to tumors. The hydrogel delivery system is synthesized through the coordination of hyaluronic acid-dopamine (HA-DOPA) and manganese ions. The incorporation of manganese ions serves three purposes:1.To form cross-linked hydrogels, thereby improving the mechanical properties of HA-DOPA.2.To monitor the retention of hydrogels in vivo in real-time using magnetic resonance imaging (MRI).3.To activate the body's immune response. The experimental results show that the designed hydrogel has good biosafety, in vivo sustained release effect and imaging tracking ability. In the mouse CT26 model, the hydrogel drug-loaded group can better inhibit tumor growth. Further immunological analysis shows that the drug-loaded hydrogel group can stimulate the body's immune response, thereby better achieving anti-tumor effects. These findings indicate the potential of the developed manganese composite hyaluronic acid hydrogel as an effective and safe platform for intratumoral drug delivery. The amalgamation of biocompatibility, controlled drug release, and imaging prowess positions this system as a promising candidate for tumor treatment.


Subject(s)
Hyaluronic Acid , Hydrogels , Manganese , Nanoparticles , Xanthones , Hyaluronic Acid/chemistry , Animals , Manganese/chemistry , Xanthones/chemistry , Xanthones/pharmacology , Xanthones/administration & dosage , Mice , Nanoparticles/chemistry , Hydrogels/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Cell Line, Tumor , Drug Liberation , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Magnetic Resonance Imaging
18.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 40-47, 2024 03 31.
Article in English | MEDLINE | ID: mdl-38650157

ABSTRACT

The penicillin binding protein 2a (PBP2a) is a key enzyme associated with bacterial cell wall synthesis and bacterial infection. Therefore, targeting PBPa2 offers a promising approach for the therapeutics of bacterial resistance and infection. This study presents a comprehensive analysis of alpha-mangostin as a potential inhibitor of PBPa2. Molecular docking simulations revealed a strong binding affinity between alpha-mangostin and PBP2a, with an affinity score of -6.01 kcal/mol. Notably, alpha-mangostin formed a preferential hydrogen bond with THR216 of PBP2a, alongside several other polar and hydrophobic interactions. ADME and Toxicity predictions indicated that alpha-mangostin possesses favourable pharmacokinetic properties, suggesting its potential as a therapeutic agent. PASS analysis further highlighted its broad range of favourable biological properties. SwissTargetPrediction analysis reinforced these findings, indicating alpha-mangostin's association with various biological processes. Cell toxicity assays demonstrated that alpha-mangostin had no significant impact on the viability of HEK-293 cells, suggesting its potential safety for further development. The IC50 value for alpha-mangostin was found to be 33.43µM. Fluorescence-based binding assays showed that alpha-mangostin effectively inhibited PBP2a activity in a concentration-dependent manner, supporting its role as an inhibitor. In conclusion, the results suggest alpha-mangostin as a promising candidate for inhibiting PBP2a. Further,  extensive studies are warranted to explore its clinical applications.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Molecular Docking Simulation , Penicillin-Binding Proteins , Xanthones , Penicillin-Binding Proteins/antagonists & inhibitors , Penicillin-Binding Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Humans , Xanthones/chemistry , Xanthones/pharmacology , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Protein Binding
19.
Int J Nanomedicine ; 19: 3611-3622, 2024.
Article in English | MEDLINE | ID: mdl-38660022

ABSTRACT

Background: Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods: In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results: The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion: Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.


Subject(s)
Biological Availability , Carbon , Paeonia , Particle Size , Rats, Sprague-Dawley , Solubility , Xanthones , Xanthones/pharmacokinetics , Xanthones/chemistry , Xanthones/administration & dosage , Animals , Carbon/chemistry , Carbon/pharmacokinetics , Male , Rats , Paeonia/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Quantum Dots/chemistry , Quantum Dots/toxicity , Cell Line , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Cell Survival/drug effects
20.
Fitoterapia ; 175: 105952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614405

ABSTRACT

Three new xanthone derivatives irpexols A-C (1-3) and five known xanthones including three dimeric ones were successfully isolated from Irpex laceratus A878, an endophytic fungus of the family Irpicaceae from the medicinal plant Pogostemon cablin (Blanco) Bentham (Lamiaceae). The structures of these compounds were elucidated by extensive spectroscopic analyses including ultraviolet-visible spectroscopy (UV), infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance (NMR). All of the three new compounds (1-3) share a de-aromatic and highly­oxygenated xanthone skeleton. In addition, the cytotoxic activity of compounds 1-8 were evaluated against SF-268, MCF-7, HepG2, and A549 tumor cell lines. The results revealed that compound 6 showed moderate cytotoxic activity with the IC50 values ranging from 24.83 to 45.46 µM, while the IC50 values of the positive control adriamycin was ranging from 1.11 to 1.44 µM.


Subject(s)
Endophytes , Xanthones , Xanthones/isolation & purification , Xanthones/pharmacology , Xanthones/chemistry , Molecular Structure , Humans , Endophytes/chemistry , Cell Line, Tumor , Pogostemon/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/chemistry , China
SELECTION OF CITATIONS
SEARCH DETAIL