Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.567
Filter
1.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972980

ABSTRACT

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Subject(s)
Antioxidants , Aspergillus niger , Lead , Phosphates , Photosynthesis , Zea mays , Zea mays/growth & development , Zea mays/microbiology , Zea mays/drug effects , Zea mays/metabolism , Aspergillus niger/metabolism , Lead/metabolism , Antioxidants/metabolism , Photosynthesis/drug effects , Phosphates/metabolism , Soil Pollutants/metabolism , Stress, Physiological , Biodegradation, Environmental
2.
Theor Appl Genet ; 137(8): 183, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002016

ABSTRACT

KEY MESSAGE: The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.


Subject(s)
Cercospora , Chromosome Mapping , Disease Resistance , Plant Diseases , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Cercospora/genetics , Plant Breeding , Phenotype , Haploidy , Genotype , Genes, Plant
3.
Plant Cell Rep ; 43(7): 189, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960996

ABSTRACT

KEY MESSAGE: QTL mapping combined with genome-wide association studies, revealed a potential candidate gene for  resistance to northern leaf blight in the tropical CATETO-related maize line YML226, providing a basis for marker-assisted selection of maize varieties Northern leaf blight (NLB) is a foliar disease that can cause severe yield losses in maize. Identifying and utilizing NLB-resistant genes is the most effective way to prevent and control this disease. In this study, five important inbred lines of maize were used as parental lines to construct a multi-parent population for the identification of NLB-resistant loci. QTL mapping and GWAS analysis revealed that QTL qtl_YML226_1, which had the largest phenotypic variance explanation (PVE) of 9.28%, and SNP 5-49,193,921 were co-located in the CATETO-related line YML226. This locus was associated with the candidate gene Zm00001d014471, which encodes a pentatricopeptide repeat (PPR) protein. In the coding region of Zm00001d014471, YML226 had more specific SNPs than the other parental lines. qRT-PCR showed that the relative expressions of Zm00001d014471 in inoculated and uninoculated leaves of YML226 were significantly higher, indicating that the expression of the candidate gene was correlated with NLB resistance. The analysis showed that the higher expression level in YML226 might be caused by SNP mutations. This study identified NLB resistance candidate loci and genes in the tropical maize inbred line YML226 derived from the CATETO germplasm, thereby providing a theoretical basis for using modern marker-assisted breeding techniques to select genetic resources resistant to NLB.


Subject(s)
Chromosome Mapping , Disease Resistance , Genome-Wide Association Study , Plant Diseases , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics , Genes, Plant , Phenotype , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Curr Microbiol ; 81(8): 247, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951210

ABSTRACT

Stenotrophomonas species are recognized as rhizobacteria that play a pivotal role in promoting plant growth by making substantial contributions to enhanced soil fertility, nutrient recycling, and phytopathogen control. Employing them as bioinputs constitutes an environmentally sound strategy, particularly within the rhizospheric community. This study revealed the draft genome sequence of Stenotrophomonas geniculata LGMB417, which was originally isolated from root samples of maize (Zea mays L.). This research assessed the potential of a bacterial strain at the molecular level through genome mining, aiming to identify genes with biotechnological significance for promoting plant growth and protection. The assembly findings indicate that strain LGMB417 possesses a genome size of 4,654,011 bp, with a G + C content of 66.50%. The draft genome sequence revealed the presence of gene clusters responsible for the synthesis of secondary metabolites and carbohydrate active enzymes (CAZymes), glycoside hydrolases (23), glycosyltransferases (18), carbohydrate esterases (5), polysaccharide lyases (2), carbohydrate-binding modules (2), and auxiliary activities (1). Several genes related to growth promotion were found in the genome, including those associated with phosphate transport and solubilization, nitrogen metabolism, siderophore production and iron transport, hormonal modulation, stress responses (such as to drought, temperature fluctuations, osmotic challenges, and oxidative conditions), and volatile organic compounds (VOCs). Subsequent phases will encompass investigations utilizing gene expression methodologies, with future explorations concentrating on facets pertinent to agricultural production, including comprehensive field studies.


Subject(s)
Genome, Bacterial , Stenotrophomonas , Zea mays , Zea mays/microbiology , Stenotrophomonas/genetics , Stenotrophomonas/metabolism , Biotechnology , Base Composition , Plant Roots/microbiology , Soil Microbiology , Agriculture , Phylogeny , Multigene Family
5.
J Agric Food Chem ; 72(28): 15474-15486, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949855

ABSTRACT

Corn ear rot and fumonisin caused by Fusarium verticillioides pose a serious threat to food security. To find more highly active fungicidal and antitoxic candidates with structure diversity based on naturally occurring lead xanthatin, a series of novel spiropiperidinyl-α-methylene-γ-butyrolactones were rationally designed and synthesized. The in vitro bioassay results indicated that compound 7c showed broad-spectrum in vitro activity with EC50 values falling from 3.51 to 24.10 µg/mL against Rhizoctonia solani and Alternaria solani, which was more active than the positive controls xanthatin and oxathiapiprolin. In addition, compound 7c also showed good antitoxic efficacy against fumonisin with a 48% inhibition rate even at a concentration of 20 µg/mL. Fluorescence quenching and the molecular docking validated both 7c and oxathiapiprolin targeting at FvoshC. RNA sequencing analysis discovered that FUM gene cluster and protein processing in endoplasmic reticulum were downregulated. Our studies have discovered spiropiperidinyl-α-methylene-γ-butyrolactone as a novel FvoshC target-based scaffold for fungicide lead with antitoxin activity.


Subject(s)
Alternaria , Fungicides, Industrial , Fusarium , Molecular Docking Simulation , Rhizoctonia , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Alternaria/drug effects , Fusarium/drug effects , Rhizoctonia/drug effects , Structure-Activity Relationship , Plant Diseases/microbiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Receptors, Steroid/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/chemistry , Drug Discovery , Zea mays/chemistry , Zea mays/microbiology , Molecular Structure
6.
J Agric Food Chem ; 72(28): 15633-15642, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950134

ABSTRACT

The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.


Subject(s)
Bacillus , Bacterial Proteins , Biodegradation, Environmental , Nitroreductases , Zea mays , Bacillus/enzymology , Bacillus/metabolism , Bacillus/genetics , Nitroreductases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Zea mays/metabolism , Zea mays/microbiology , Cucumis sativus/microbiology , Cucumis sativus/metabolism , Soil Pollutants/metabolism , Soil Pollutants/chemistry
7.
BMC Plant Biol ; 24(1): 660, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987664

ABSTRACT

Arsenic (As) contamination is a major environmental pollutant that adversely affects plant physiological processes and can hinder nutrients and water availability. Such conditions ultimately resulted in stunted growth, low yield, and poor plant health. Using rhizobacteria and composted biochar (ECB) can effectively overcome this problem. Rhizobacteria have the potential to enhance plant growth by promoting nutrient uptake, producing growth hormones, and suppressing diseases. Composted biochar can enhance plant growth by improving aeration, water retention, and nutrient cycling. Its porous structure supports beneficial microorganisms, increasing nutrient uptake and resilience to stressors, ultimately boosting yields while sequestering carbon. Therefore, the current study was conducted to investigate the combined effect of previously isolated Bacillus faecalis (B. faecalis) and ECB as amendments on maize cultivated under different As levels (0, 300, 600 mg As/kg soil). Four treatments (control, 0.5% composted biochar (0.5ECB), B. faecalis, and 0.5ECB + B. faecalis) were applied in four replications following a completely randomized design. Results showed that the 0.5ECB + B. faecalis treatment led to a significant rise in maize plant height (~ 99%), shoot length (~ 55%), root length (~ 82%), shoot fresh (~ 87%), and shoot dry weight (~ 96%), root fresh (~ 97%), and dry weight (~ 91%) over the control under 600As stress. There was a notable increase in maize chlorophyll a (~ 99%), chlorophyll b (~ 81%), total chlorophyll (~ 94%), and shoot N, P, and K concentration compared to control under As stress, also showing the potential of 0.5ECB + B. faecalis treatment. Consequently, the findings suggest that applying 0.5ECB + B. faecalis is a strategy for alleviating As stress in maize plants.


Subject(s)
Arsenic , Charcoal , Zea mays , Zea mays/drug effects , Zea mays/growth & development , Zea mays/microbiology , Arsenic/toxicity , Bacillus/physiology , Soil Pollutants/toxicity , Chlorophyll/metabolism
8.
Microbiome ; 12(1): 124, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982519

ABSTRACT

BACKGROUND: Beneficial associations between plants and soil microorganisms are critical for crop fitness and resilience. However, it remains obscure how microorganisms are assembled across different root compartments and to what extent such recruited microbiomes determine crop performance. Here, we surveyed the root transcriptome and the root and rhizosphere microbiome via RNA sequencing and full-length (V1-V9) 16S rRNA gene sequencing from genetically distinct monogenic root mutants of maize (Zea mays L.) under different nutrient-limiting conditions. RESULTS: Overall transcriptome and microbiome display a clear assembly pattern across the compartments, i.e., from the soil through the rhizosphere to the root tissues. Co-variation analysis identified that genotype dominated the effect on the microbial community and gene expression over the nutrient stress conditions. Integrated transcriptomic and microbial analyses demonstrated that mutations affecting lateral root development had the largest effect on host gene expression and microbiome assembly, as compared to mutations affecting other root types. Cooccurrence and trans-kingdom network association analysis demonstrated that the keystone bacterial taxon Massilia (Oxalobacteraceae) is associated with root functional genes involved in flowering time and overall plant biomass. We further observed that the developmental stage drives the differentiation of the rhizosphere microbial assembly, especially the associations of the keystone bacteria Massilia with functional genes in reproduction. Taking advantage of microbial inoculation experiments using a maize early flowering mutant, we confirmed that Massilia-driven maize growth promotion indeed depends on flowering time. CONCLUSION: We conclude that specific microbiota supporting lateral root formation could enhance crop performance by mediating functional gene expression underlying plant flowering time in maize. Video Abstract.


Subject(s)
Flowers , Microbiota , Plant Roots , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Zea mays , Zea mays/microbiology , Zea mays/genetics , Plant Roots/microbiology , Flowers/microbiology , Flowers/growth & development , RNA, Ribosomal, 16S/genetics , Transcriptome , Mutation , Gene Expression Regulation, Plant
9.
Article in English | MEDLINE | ID: mdl-38954457

ABSTRACT

Four rod-shaped, non-motile, non-spore-forming, facultative anaerobic, Gram-stain-positive lactic acid bacteria, designated as EB0058T, SCR0080, LD0937T and SCR0063T, were isolated from different corn and grass silage samples. The isolated strains were characterized using a polyphasic approach and EB0058T and SCR0080 were identified as Lacticaseibacillus zeae by 16S rRNA gene sequence analysis. Based on whole-genome sequence-based characterization, EB0058T and SCR0080 were separated into a distinct clade from Lacticaseibacillus zeae DSM 20178T, together with CECT9104 and UD2202, whose genomic sequences are available from NCBI GenBank. The average nucleotide identity (ANI) values within the new subgroup are 99.9 % and the digital DNA-DNA hybridization (dDDH) values are 99.3-99.9 %, respectively. In contrast, comparison of the new subgroup with publicly available genomic sequences of L. zeae strains, including the type strain DSM 20178T, revealed dDDH values of 70.2-72.5 % and ANI values of 96.2-96.6 %. Based on their chemotaxonomic, phenotypic and phylogenetic characteristics, EB0058T and SCR0080 represent a new subspecies of L. zeae. The name Lacticaseibacillus zeae subsp. silagei subsp. nov. is proposed with the type strain EB0058T (=DSM 116376T=NCIMB 15474T). According to the results of 16S rRNA gene sequencing, LD0937T and SCR0063T are members of the Lacticaseibacillus group. The dDDH value between the isolates LD0937T and SCR0063T was 67.6 %, which is below the species threshold of 70 %, clearly showing that these two isolates belong to different species. For both strains, whole genome-sequencing revealed that the closest relatives within the Lacticaseibacillus group were Lacticaseibacillus huelsenbergensis DSM 115425 (dDDH 66.5 and 65.9 %) and Lacticaseibacillus casei DSM 20011T (dDDH 64.1 and 64.9 %). Based on the genomic, chemotaxonomic and morphological data obtained in this study, two novel species, Lacticaseibacillus parahuelsenbergensis sp. nov. and Lacticaseibacillus styriensis sp. nov. are proposed and the type strains are LD0937T (=DSM 116105T=NCIMB 15471T) and SCR0063T (=DSM 116297T=NCIMB 15473T), respectively.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , Poaceae , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Silage , Zea mays , RNA, Ribosomal, 16S/genetics , Zea mays/microbiology , Silage/microbiology , DNA, Bacterial/genetics , Fatty Acids/analysis , Poaceae/microbiology , Base Composition , Whole Genome Sequencing , Lacticaseibacillus
10.
BMC Microbiol ; 24(1): 200, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851702

ABSTRACT

There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.


Subject(s)
Alternaria , Aspergillus , Bioprospecting , Endophytes , Germination , Seeds , Siderophores , Zea mays , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/physiology , Seeds/microbiology , Seeds/growth & development , Alternaria/growth & development , Alternaria/physiology , Zea mays/microbiology , Zea mays/growth & development , Aspergillus/metabolism , Aspergillus/growth & development , Siderophores/metabolism , Bioprospecting/methods , Indoleacetic Acids/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Fungi/classification , Fungi/isolation & purification , Fungi/metabolism , Fungi/physiology , Antioxidants/metabolism , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism
11.
Sci Rep ; 14(1): 13580, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866928

ABSTRACT

Rhizoctonia solani, the causal agent of banded leaf and sheath blight (BL&SB), poses a significant threat to maize and various crops globally. The increasing concerns surrounding the environmental and health impacts of chemical fungicides have encouraged intensified concern in the development of biological control agents (BCAs) as eco-friendly alternatives. In this study, we explored the potential of 22 rhizobacteria strains (AS1-AS22) isolates, recovered from the grasslands of the Pithoragarh region in the Central Himalayas, as effective BCAs against BL&SB disease. Among these strains, two Pseudomonas isolates, AS19 and AS21, exhibited pronounced inhibition of fungal mycelium growth in vitro, with respective inhibition rates of 57.04% and 54.15% in cell cultures and 66.56% and 65.60% in cell-free culture filtrates. Additionally, both strains demonstrated effective suppression of sclerotium growth. The strains AS19 and AS21 were identified as Pseudomonas sp. by 16S rDNA phylogeny and deposited under accession numbers NAIMCC-B-02303 and NAIMCC-B-02304, respectively. Further investigations revealed the mechanisms of action of AS19 and AS21, demonstrating their ability to induce systemic resistance (ISR) and exhibit broad-spectrum antifungal activity against Alternaria triticina, Bipolaris sorokiniana, Rhizoctonia maydis, and Fusarium oxysporum f. sp. lentis. Pot trials demonstrated significant reductions in BL&SB disease incidence (DI) following foliar applications of AS19 and AS21, with reductions ranging from 25 to 38.33% compared to control treatments. Scanning electron microscopy revealed substantial degradation of fungal mycelium by the strains, accompanied by the production of hydrolytic enzymes. These findings suggest the potential of Pseudomonas strains AS19 and AS21 as promising BCAs against BL&SB and other fungal pathogens. However, further field trials are warranted to validate their efficacy under natural conditions and elucidate the specific bacterial metabolites responsible for inducing systemic resistance. This study contributes to the advancement of sustainable disease management strategies and emphasizes the potential of Pseudomonas strains AS19 and AS21 in combating BL&SB and other fungal diseases affecting agricultural crops.


Subject(s)
Plant Diseases , Pseudomonas , Rhizoctonia , Zea mays , Plant Diseases/microbiology , Plant Diseases/prevention & control , Zea mays/microbiology , Pseudomonas/metabolism , Rhizoctonia/physiology , Rhizoctonia/drug effects , Plant Leaves/microbiology , Biological Control Agents , Pest Control, Biological/methods , Antibiosis , Phylogeny
12.
PeerJ ; 12: e17543, 2024.
Article in English | MEDLINE | ID: mdl-38887621

ABSTRACT

Maize residue retention is an effective agricultural practice for improving soil fertility in black soil region, where suffered from long freezing-thawing periods and intense freeze-thawing (FT) cycles. However, very few studies have examined the influence of maize residue retention on soil microbial communities under FT cycles. We investigated the response of soil microbial communities and co-occurrence networks to maize residue retention at different FT intensities over 12 cycles using a microcosm experiment conditioned in a temperature incubator. Our results indicated that maize residue retention induced dramatic shifts in soil archaeal, bacterial and fungal communities towards copiotroph-dominated communities. Maize residue retention consistently reduced soil fungal richness across all cycles, but this effect was weaker for archaea and bacteria. Normalized stochastic ratio analysis revealed that maize residue retention significantly enhanced the deterministic process of archaeal, bacterial and fungal communities. Although FT intensity significantly impacted soil respiration, it did not induce profound changes in soil microbial diversity and community composition. Co-occurrence network analysis revealed that maize residue retention simplified prokaryotic network, while did not impact fungal network complexity. The network robustness index suggested that maize residue retention enhanced the fungal network stability, but reduced prokaryotic network stability. Moreover, the fungal network in severe FT treatment harbored the most abundant keystone taxa, mainly being cold-adapted fungi. By identifying modules in networks, we observed that prokaryotic Module #1 and fungal Module #3 were enhanced by maize residue retention and contributed greatly to soil quality. Together, our results showed that maize residue retention exerted stronger influence on soil microbial communities and co-occurrence network patterns than FT intensity and highlighted the potential of microbial interactions in improving soil functionality.


Subject(s)
Bacteria , Freezing , Fungi , Soil Microbiology , Zea mays , Zea mays/microbiology , Bacteria/classification , Bacteria/genetics , Microbiota , Archaea , Soil/chemistry
13.
Sci Rep ; 14(1): 14355, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906908

ABSTRACT

Intensification of staple crops through conventional agricultural practices with chemical synthetic inputs has yielded positive outcomes in food security but with negative environmental impacts. Ecological intensification using cropping systems such as maize edible-legume intercropping (MLI) systems has the potential to enhance soil health, agrobiodiversity and significantly influence crop productivity. However, mechanisms underlying enhancement of biological soil health have not been well studied. This study investigated the shifts in rhizospheric soil and maize-root microbiomes and associated soil physico-chemical parameters in MLI systems of smallholder farms in comparison to maize-monoculture cropping systems (MMC). Maize-root and rhizospheric soil samples were collected from twenty-five farms each conditioned by MLI and MMC systems in eastern Kenya. Soil characteristics were assessed using Black oxidation and Walkley methods. High-throughput amplicon sequencing was employed to analyze fungal and bacterial communities, predicting their functional roles and diversity. The different MLI systems significantly impacted soil and maize-root microbial communities, resulting in distinct microbe sets. Specific fungal and bacterial genera and species were mainly influenced and enriched in the MLI systems (e.g., Bionectria solani, Sarocladium zeae, Fusarium algeriense, and Acremonium persicinum for fungi, and Bradyrhizobium elkanii, Enterobacter roggenkampii, Pantoea dispersa and Mitsuaria chitosanitabida for bacteria), which contribute to nutrient solubilization, decomposition, carbon utilization, plant protection, bio-insecticides/fertilizer production, and nitrogen fixation. Conversely, the MMC systems enriched phytopathogenic microbial species like Sphingomonas leidyi and Alternaria argroxiphii. Each MLI system exhibited a unique composition of fungal and bacterial communities that shape belowground biodiversity, notably affecting soil attributes, plant well-being, disease control, and agroecological services. Indeed, soil physico-chemical properties, including pH, nitrogen, organic carbon, phosphorus, and potassium were enriched in MLI compared to MMC cropping systems. Thus, diversification of agroecosystems with MLI systems enhances soil properties and shifts rhizosphere and maize-root microbiome in favor of ecologically important microbial communities.


Subject(s)
Soil Microbiology , Soil , Zea mays , Zea mays/growth & development , Zea mays/microbiology , Soil/chemistry , Agriculture/methods , Rhizosphere , Microbiota , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Ecosystem , Plant Roots/microbiology , Plant Roots/growth & development , Biodiversity , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Fungi/genetics , Fungi/classification , Kenya , Crop Production/methods
14.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38877665

ABSTRACT

AIMS: The present work aimed to distinguish the indigenous Aspergillus flavus isolates obtained from the first (pioneer) grain corn farms in Terengganu, Malaysia, into aflatoxigenic and non-aflatoxigenic by molecular and aflatoxigenicity analyses, and determine the antagonistic capability of the non-aflatoxigenic isolates against aflatoxigenic counterparts and their aflatoxin production in vitro. METHODS AND RESULTS: Seven A. flavus isolates previously obtained from the farms were characterized molecularly and chemically. All isolates were examined for the presence of seven aflatoxin biosynthesis genes, and their aflatoxigenicity was confirmed using high performance liquid chromatography with fluorescence detector. Phylogenetic relationships of all isolates were tested using ITS and ß-tubulin genes. Of the seven isolates, two were non-aflatoxigenic, while the remaining were aflatoxigenic based on the presence of all aflatoxin biosynthesis genes tested and the productions of aflatoxins B1 and B2. All isolates were also confirmed as A. flavus following phylogenetic analysis. The indigenous non-aflatoxigenic isolates were further examined for their antagonistic potential against aflatoxigenic isolates on 3% grain corn agar. Both non-aflatoxigenic isolates significantly reduced AFB1 production of the aflatoxigenic isolates. CONCLUSION: The indigenous non-aflatoxigenic A. flavus strains identified in the present work were effective in controlling the aflatoxin production by the aflatoxigenic A. flavus isolates in vitro and can be utilized for in situ testing.


Subject(s)
Aflatoxins , Aspergillus flavus , Phylogeny , Zea mays , Aspergillus flavus/genetics , Aspergillus flavus/isolation & purification , Aspergillus flavus/metabolism , Zea mays/microbiology , Malaysia
15.
Plant Signal Behav ; 19(1): 2363126, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38832593

ABSTRACT

Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.


Subject(s)
Stress, Physiological , Bacteria/metabolism , Animals , Zea mays/microbiology , Zea mays/metabolism , Oligochaeta/metabolism , Oligochaeta/microbiology
16.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892244

ABSTRACT

Endophytic fungi are present in every plant, and crops are no exception. There are more than 50,000 edible plant species on the planet, but only 15 crops provide 90 percent of the global energy intake, and "the big four"-wheat, rice, maize and potato-are staples for about 5 billion people. Not only do the four staple crops contribute to global food security, but the endophytic fungi within their plant tissues are complex ecosystems that have been under scrutiny. This review presents an outline of the endophytic fungi and their secondary metabolites in four staple crops: wheat, rice, maize and potato. A total of 292 endophytic fungi were identified from the four major crops, with wheat having the highest number of 157 endophytic fungi. Potato endophytic fungi had the highest number of secondary metabolites, totaling 204 compounds, compared with only 23 secondary metabolites from the other three crops containing endophytic fungi. Some of the compounds are those with specific structural and pharmacological activities, which may be beneficial to agrochemistry and medicinal chemistry.


Subject(s)
Crops, Agricultural , Endophytes , Fungi , Secondary Metabolism , Endophytes/metabolism , Crops, Agricultural/microbiology , Fungi/metabolism , Triticum/microbiology , Zea mays/microbiology , Oryza/microbiology , Solanum tuberosum/microbiology
17.
Plant Physiol Biochem ; 213: 108839, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879986

ABSTRACT

Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.


Subject(s)
Droughts , Mycorrhizae , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Zea mays/metabolism , Mycorrhizae/physiology , Photosynthesis , Plant Roots/microbiology , Plant Roots/growth & development , Glomeromycota/physiology , Glomeromycota/growth & development , Water/metabolism , Biomass , Fungi
18.
Sci Total Environ ; 945: 174019, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885713

ABSTRACT

Emerging evidence suggests that plants experiencing abiotic stress actively seek help from soil microbes. However, the empirical evidence supporting this strategy is limited, especially in response to heavy metal stress. We used integrated microbial community profiling and culture-based methods to investigate the interaction between mercury (Hg) stress, the entophytic root microbiome, and maize seedlings. The results of the pot experiment showed that soil Hg (20 mg/kg) strongly inhibited maize growth, indicating its strong phytotoxicity. Furthermore, Hg stress significantly altered the structure of the bacterial and fungal communities and enriched the potentially pathogenic Fusarium sp., suggesting that soil Hg stress may enhance the bio-stress induced by Fusarium species in maize. Additionally, soil Hg also led to the enrichment of beneficial bacterial members of Streptomyces, Lysobacter, and Sphingomonas (defined as differential species), which were also identified as keystone species in the Hg treatment by the analysis of co-occurrence networks. Therefore, it can be postulated that the members of Streptomyces, Lysobacter, and Sphingomonas function as stress-alleviating microbes. We successfully isolated the representatives of these stress-alleviating microbes. As expected, these strains mitigated the detrimental effects of Hg stess for the maize seedlings, suggesting that plants recruit the stress-alleviated microbiota to combat Hg stress. This study provides insights into the potential of manipulating the root microbiome to enhance plant growth in polluted environments.


Subject(s)
Mercury , Microbiota , Plant Roots , Soil Microbiology , Soil Pollutants , Zea mays , Mercury/toxicity , Zea mays/microbiology , Zea mays/drug effects , Soil Pollutants/toxicity , Plant Roots/microbiology , Microbiota/drug effects , Endophytes/physiology , Stress, Physiological
19.
Anal Chim Acta ; 1315: 342760, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38879206

ABSTRACT

Mycotoxins are commonly found in food materials and severely threaten human health. Antibodies play a key role as a part of immunological techniques in detecting mycotoxins. Therefore, highly specific antibodies and detection techniques against mycotoxins need to be developed for advancements in medical research. In this study, we presented a novel strategy for quickly screening highly specific antigen-binding fragment (Fab) antibodies based on yeast surface display (YSD) and detecting small-molecule compounds based on a YSD biosensor. We constructed a yeast surface display Deoxynivalenol (DON)-Fab library with 105 cfu/mL with a galactose-inducible bidirectional promoter. By conducting efficient magnetic-activated cell sorting and fluorescence-activated cell sorting (MACS/FACS), four kinds of DON-selective yeasts were screened. As Fab@YSD C4# showed high sensitivity, we used it to build a one-pot Fab@YSD chemiluminescence biosensor with DON-BSA@Biotin and Streptavidin-alkaline phosphatase (SA-ALP). This method showed a low operational threshold (LOD = 0.166 pg/mL) and a high population range (linear range = 0.001-132.111 ng/mL) within 40 min, which facilitated the detection of DON with high specificity and better recovery in real samples (wheat, corn, flour, and cornmeal). Our results suggested that the Fab@YSD chemiluminescence biosensor is an inexpensive, reproducible, user-friendly, and sensitive method for detecting DON and may be used to quickly detect other small-molecule contaminants in food items.


Subject(s)
Biosensing Techniques , Trichothecenes , Trichothecenes/analysis , Biosensing Techniques/methods , Saccharomyces cerevisiae , Food Contamination/analysis , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Limit of Detection , Triticum/chemistry , Triticum/microbiology , Zea mays/chemistry , Zea mays/microbiology , Flour/analysis
20.
Sci Total Environ ; 941: 173737, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38844214

ABSTRACT

Bacterial communities in soil and rhizosphere maintain a large collection of antibiotic resistance genes (ARGs). However, few of these ARGs and antibiotic resistant bacteria (ARB) are well-characterized under traditional farming practices. Here we compared the ARG profiles of maize rhizosphere and their bulk soils using metagenomic analysis to identify the ARG dissemination and explored the potential impact of chemical fertilization on ARB. Results showed a relatively lower abundance but higher diversity of ARGs under fertilization than straw-return. Moreover, the abundance and diversity of MGEs were significantly promoted by chemical fertilizer inputs in the rhizosphere compared to bulk soil. Machine learning and bipartite networks identified three bacterial genera (Pseudomonas, Bacillus and Streptomyces) as biomarkers for ARG accumulation. Thus we cultured 509 isolates belonging to these three genera from the rhizosphere and tested their antimicrobial susceptibility, and found that multi-resistance was frequently observed among Pseudomonas isolates. Assembly-based tracking explained that ARGs and four class I integrons (LR134330, LS998783, CP065848, LT883143) were co-occurred among contigs from Pseudomonas sp. Chemical fertilizers may shape the resistomes of maize rhizosphere, highlighting that rhizosphere carried multidrug-resistant Pseudomonas isolates, which may pose a risk to animal and human health. This study adds knowledge of long-term chemical fertilization on ARG dissemination in farmland systems and provides information for decision-making in agricultural production and monitoring.


Subject(s)
Agriculture , Fertilizers , Rhizosphere , Soil Microbiology , Zea mays , Zea mays/microbiology , Agriculture/methods , Bacteria , Drug Resistance, Microbial/genetics , Soil/chemistry , Genes, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...