Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.078
Filter
1.
Nat Commun ; 15(1): 5547, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956047

ABSTRACT

The meninges are critical for the brain functions, but the diversity of meningeal cell types and intercellular interactions have yet to be thoroughly examined. Here we identify a population of meningeal lymphatic supporting cells (mLSCs) in the zebrafish leptomeninges, which are specifically labeled by ependymin. Morphologically, mLSCs form membranous structures that enwrap the majority of leptomeningeal blood vessels and all the mural lymphatic endothelial cells (muLECs). Based on its unique cellular morphologies and transcriptional profile, mLSC is characterized as a unique cell type different from all the currently known meningeal cell types. Because of the formation of supportive structures and production of pro-lymphangiogenic factors, mLSCs not only promote muLEC development and maintain the dispersed distributions of muLECs in the leptomeninges, but also are required for muLEC regeneration after ablation. This study characterizes a newly identified cell type in leptomeninges, mLSC, which is required for muLEC development, maintenance, and regeneration.


Subject(s)
Endothelial Cells , Meninges , Zebrafish , Animals , Meninges/cytology , Meninges/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Lymphatic Vessels/cytology , Lymphatic Vessels/metabolism , Animals, Genetically Modified , Lymphangiogenesis/physiology , Regeneration/physiology
2.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949024

ABSTRACT

Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.


Subject(s)
Cilia , Kidney Diseases, Cystic , Leigh Disease , Mitochondria , Zebrafish , Humans , Zebrafish/metabolism , Zebrafish/genetics , Leigh Disease/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Cilia/metabolism , Cilia/pathology , Cilia/genetics , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Retina/metabolism , Retina/pathology , Retina/abnormalities , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Abnormalities/metabolism , Mice , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Cerebellum/metabolism , Cerebellum/pathology , Cerebellum/abnormalities , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Male
4.
Sci Rep ; 14(1): 14454, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914633

ABSTRACT

Hydrogen peroxide is considered deleterious molecule that cause cellular damage integrity and function. Its key redox signaling molecule in oxidative stress and exerts toxicity on a wide range of organisms. Thus, to understand whether oxidative stress alters visual development, zebrafish embryos were exposed to H2O2 at concentration of 0.02 to 62.5 mM for 7 days. Eye to body length ratio (EBR) and apoptosis in retina at 48 hpf, and optomotor response (OMR) at 7 dpf were all measured. To investigate whether hydrogen peroxide-induced effects were mediated by oxidative stress, embryos were co-incubated with the antioxidant, glutathione (GSH) at 50 µM. Results revealed that concentrations of H2O2 at or above 0.1 mM induced developmental toxicity, leading to increased mortality and hatching delay. Furthermore, exposure to 0.1 mM H2O2 decreased EBR at 48 hpf and impaired OMR visual behavior at 7 dpf. Additionally, exposure increased the area of apoptotic cells in the retina at 48 hpf. The addition of GSH reversed the effects of H2O2, suggesting the involvement of oxidative stress. H2O2 decreased the expression of eye development-related genes, pax6α and pax6ß. The expression of apoptosis-related genes, tp53, casp3 and bax, significantly increased, while bcl2α expression decreased. Antioxidant-related genes sod1, cat and gpx1a showed decreased expression. Expression levels of estrogen receptors (ERs) (esr1, esr2α, and esr2ß) and ovarian and brain aromatase genes (cyp19a1a and cyp19a1b, respectively) were also significantly reduced. Interestingly, co-incubation of GSH effectivity reversed the impact of H2O2 on most parameters. Overall, these results demonstrate that H2O2 induces adverse effects on visual development via oxidative stress, which leads to alter apoptosis, diminished antioxidant defenses and reduced estrogen production.


Subject(s)
Antioxidants , Apoptosis , Hydrogen Peroxide , Oxidative Stress , Zebrafish , Animals , Oxidative Stress/drug effects , Apoptosis/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Glutathione/metabolism , Retina/drug effects , Retina/metabolism , Estrogens/pharmacology , Gene Expression Regulation, Developmental/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Vision, Ocular/drug effects
5.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38940292

ABSTRACT

During heart development, the embryonic ventricle becomes enveloped by the epicardium, which adheres to the outer apical surface of the heart. This is concomitant with onset of ventricular trabeculation, where a subset of cardiomyocytes lose apicobasal polarity and delaminate basally from the ventricular wall. Llgl1 regulates the formation of apical cell junctions and apicobasal polarity, and we investigated its role in ventricular wall maturation. We found that llgl1 mutant zebrafish embryos exhibit aberrant apical extrusion of ventricular cardiomyocytes. While investigating apical cardiomyocyte extrusion, we identified a basal-to-apical shift in laminin deposition from the internal to the external ventricular wall. We find that epicardial cells express several laminin subunits as they adhere to the ventricle, and that the epicardium is required for laminin deposition on the ventricular surface. In llgl1 mutants, timely establishment of the epicardial layer is disrupted due to delayed emergence of epicardial cells, resulting in delayed apical deposition of laminin on the ventricular surface. Together, our analyses reveal an unexpected role for Llgl1 in correct timing of epicardial development, supporting integrity of the ventricular myocardial wall.


Subject(s)
Heart Ventricles , Laminin , Pericardium , Zebrafish Proteins , Zebrafish , Animals , Laminin/metabolism , Laminin/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Pericardium/metabolism , Pericardium/embryology , Pericardium/cytology , Heart Ventricles/metabolism , Heart Ventricles/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Cell Polarity , Mutation/genetics
6.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38876797

ABSTRACT

Calcium is critical for regulating the waveform of motile cilia and flagella. Calaxin is currently the only known molecule involved in the calcium-dependent regulation in ascidians. We have recently shown that Calaxin stabilizes outer arm dynein (OAD), and the knockout of Calaxin results in primary ciliary dyskinesia phenotypes in vertebrates. However, from the knockout experiments, it was not clear which functions depend on calcium and how Calaxin regulates the waveform. To address this question, here, we generated transgenic zebrafish expressing a mutant E130A-Calaxin deficient in calcium binding. E130A-Calaxin restored the OAD reduction of calaxin -/- sperm and the abnormal movement of calaxin -/- left-right organizer cilia, showing that Calaxin's stabilization of OADs is calcium-independent. In contrast, our quantitative analysis of E130A-Calaxin sperms showed that the calcium-induced asymmetric beating was not restored, linking Calaxin's calcium-binding ability with an asymmetric flagellar beating for the first time. Our data show that Calaxin is a calcium-dependent regulator of the ciliary beating and a calcium-independent OAD stabilizer.


Subject(s)
Animals, Genetically Modified , Calcium , Dyneins , Spermatozoa , Zebrafish Proteins , Zebrafish , Animals , Male , Calcium/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Dyneins/metabolism , Dyneins/genetics , Cilia/metabolism , Flagella/metabolism , Flagella/physiology , Sperm Motility/genetics , Sperm Motility/physiology , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics
7.
PLoS Genet ; 20(6): e1011308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829886

ABSTRACT

Acute myeloid leukemia (AML) accounts for greater than twenty thousand new cases of leukemia annually in the United States. The average five-year survival rate is approximately 30%, pointing to the need for developing novel model systems for drug discovery. In particular, patients with chromosomal rearrangements in the mixed lineage leukemia (MLL) gene have higher relapse rates with poor outcomes. In this study we investigated the expression of human MLL-ENL and MLL-AF9 in the myeloid lineage of zebrafish embryos. We observed an expansion of MLL positive cells and determined these cells colocalized with the myeloid markers spi1b, mpx, and mpeg. In addition, expression of MLL-ENL and MLL-AF9 induced the expression of endogenous bcl2 and cdk9, genes that are often dysregulated in MLL-r-AML. Co-treatment of lyz: MLL-ENL or lyz:MLL-AF9 expressing embryos with the BCL2 inhibitor, Venetoclax, and the CDK9 inhibitor, Flavopiridol, significantly reduced the number of MLL positive cells compared to embryos treated with vehicle or either drug alone. In addition, cotreatment with Venetoclax and Flavopiridol significantly reduced the expression of endogenous mcl1a compared to vehicle, consistent with AML. This new model of MLL-r-AML provides a novel tool to understand the molecular mechanisms underlying disease progression and a platform for drug discovery.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Cyclin-Dependent Kinase 9 , Leukemia, Myeloid, Acute , Myeloid-Lymphoid Leukemia Protein , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-bcl-2 , Zebrafish , Zebrafish/genetics , Zebrafish/embryology , Animals , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Sulfonamides/pharmacology , Piperidines/pharmacology , Embryo, Nonmammalian , Flavonoids/pharmacology , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Stem Cell Res Ther ; 15(1): 172, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886858

ABSTRACT

BACKGROUND: Development of hematopoietic stem and progenitor cells (HSPC) is a multi-staged complex process that conserved between zebrafish and mammals. Understanding the mechanism underlying HSPC development is a holy grail of hematopoietic biology, which is helpful for HSPC clinical application. Chromatin conformation plays important roles in transcriptional regulation and cell fate decision; however, its dynamic and role in HSPC development is poorly investigated. METHODS: We performed chromatin structure and multi-omics dissection across different stages of HSPC developmental trajectory in zebrafish for the first time, including Hi-C, RNA-seq, ATAC-seq, H3K4me3 and H3K27ac ChIP-seq. RESULTS: The chromatin organization of zebrafish HSPC resemble mammalian cells with similar hierarchical structure. We revealed the multi-scale reorganization of chromatin structure and its influence on transcriptional regulation and transition of cell fate during HSPC development. Nascent HSPC is featured by loose conformation with obscure structure at all layers. Notably, PU.1 was identified as a potential factor mediating formation of promoter-involved loops and regulating gene expression of HSPC. CONCLUSIONS: Our results provided a global view of chromatin structure dynamics associated with development of zebrafish HSPC and discovered key transcription factors involved in HSPC chromatin interactions, which will provide new insights into the epigenetic regulatory mechanisms underlying vertebrate HSPC fate decision.


Subject(s)
Chromatin , Hematopoietic Stem Cells , Zebrafish , Zebrafish/genetics , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Chromatin/metabolism , Chromatin/genetics , Genome , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Expression Regulation, Developmental , Cell Differentiation , Proto-Oncogene Proteins , Trans-Activators
9.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891786

ABSTRACT

Inflammatory bowel disease (IBD) is a nonspecific chronic inflammatory disease resulting from an immune disorder in the intestine that is prone to relapse and incurable. The understanding of the pathogenesis of IBD remains unclear. In this study, we found that ace (angiotensin-converting enzyme), expressed abundantly in the intestine, plays an important role in IBD. The deletion of ace in zebrafish caused intestinal inflammation with increased expression of the inflammatory marker genes interleukin 1 beta (il1b), matrix metallopeptidase 9 (mmp9), myeloid-specific peroxidase (mpx), leukocyte cell-derived chemotaxin-2-like (lect2l), and chemokine (C-X-C motif) ligand 8b (cxcl8b). Moreover, the secretion of mucus in the ace-/- mutants was significantly higher than that in the wild-type zebrafish, validating the phenotype of intestinal inflammation. This was further confirmed by the IBD model constructed using dextran sodium sulfate (DSS), in which the mutant zebrafish had a higher susceptibility to enteritis. Our study reveals the role of ace in intestinal homeostasis, providing a new target for potential therapeutic interventions.


Subject(s)
Peptidyl-Dipeptidase A , Zebrafish , Animals , Zebrafish/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Disease Models, Animal , Dextran Sulfate , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Intestines/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
10.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891949

ABSTRACT

Childhood glaucoma encompasses congenital and juvenile primary glaucoma, which are heterogeneous, uncommon, and irreversible optic neuropathies leading to visual impairment with a poorly understood genetic basis. Our goal was to identify gene variants associated with these glaucoma types by assessing the mutational burden in 76 matrix metalloproteinase-related genes. We studied 101 childhood glaucoma patients with no identified monogenic alterations using next-generation sequencing. Gene expression was assessed through immunohistochemistry. Functional analysis of selected gene variants was conducted in cultured cells and in zebrafish. Patients presented a higher proportion of rare variants in four metalloproteinase-related genes, including CPAMD8 and ADAMTSL4, compared to controls. ADAMTSL4 protein expression was observed in the anterior segment of both the adult human and zebrafish larvae's eye, including tissues associated with glaucoma. In HEK-293T cells, expression of four ADAMTSL4 variants identified in this study showed that two variants (p.Arg774Trp and p.Arg98Trp) accumulated intracellularly, inducing endoplasmic reticulum stress. Additionally, overexpressing these ADAMTSL4 variants in zebrafish embryos confirmed partial loss-of-function effects for p.Ser719Leu and p.Arg1083His. Double heterozygous functional suppression of adamtsl4 and cpamd8 zebrafish orthologs resulted in reduced volume of both the anterior eye chamber and lens within the chamber, supporting a genetic interaction between these genes. Our findings suggest that accumulation of partial functional defects in matrix metalloproteinase-related genes may contribute to increased susceptibility to early-onset glaucoma and provide further evidence supporting the notion of a complex genetic inheritance pattern underlying the disease.


Subject(s)
Glaucoma , Zebrafish , Humans , Animals , Zebrafish/genetics , Glaucoma/genetics , Child , Male , Female , Child, Preschool , HEK293 Cells , Genetic Predisposition to Disease , Mutation , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism , Adolescent , Infant , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Endoplasmic Reticulum Stress/genetics
11.
Mol Neurodegener ; 19(1): 50, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902734

ABSTRACT

BACKGROUND: The key pathological signature of ALS/ FTLD is the mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm. However, TDP-43 gain of function in the cytoplasm is still poorly understood since TDP-43 animal models recapitulating mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm are missing. METHODS: CRISPR/Cas9 technology was used to generate a zebrafish line (called CytoTDP), that mis-locates endogenous TDP-43 from the nucleus to the cytoplasm. Phenotypic characterization of motor neurons and the neuromuscular junction was performed by immunostaining, microglia were immunohistochemically localized by whole-mount tissue clearing and muscle ultrastructure was analyzed by scanning electron microscopy. Behavior was investigated by video tracking and quantitative analysis of swimming parameters. RNA sequencing was used to identify mis-regulated pathways with validation by molecular analysis. RESULTS: CytoTDP fish have early larval phenotypes resembling clinical features of ALS such as progressive motor defects, neurodegeneration and muscle atrophy. Taking advantage of zebrafish's embryonic development that solely relys on yolk usage until 5 days post fertilization, we demonstrated that microglia proliferation and activation in the hypothalamus is independent from food intake. By comparing CytoTDP to a previously generated TDP-43 knockout line, transcriptomic analyses revealed that mis-localization of endogenous TDP-43, rather than TDP-43 nuclear loss of function, leads to early onset metabolic dysfunction. CONCLUSIONS: The new TDP-43 model mimics the ALS/FTLD hallmark of progressive motor dysfunction. Our results suggest that functional deficits of the hypothalamus, the metabolic regulatory center, might be the primary cause of weight loss in ALS patients. Cytoplasmic gain of function of endogenous TDP-43 leads to metabolic dysfunction in vivo that are reminiscent of early ALS clinical non-motor metabolic alterations. Thus, the CytoTDP zebrafish model offers a unique opportunity to identify mis-regulated targets for therapeutic intervention early in disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Disease Models, Animal , Motor Neurons , Zebrafish Proteins , Zebrafish , Animals , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Animals, Genetically Modified , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology
12.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38847494

ABSTRACT

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Subject(s)
Cadherins , Morphogenesis , Zebrafish Proteins , Zebrafish , beta Catenin , Animals , Zebrafish/embryology , Zebrafish/metabolism , beta Catenin/metabolism , Cadherins/metabolism , Cadherins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Adherens Junctions/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/cytology , Antigens, CD
13.
J Pineal Res ; 76(5): e12984, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874070

ABSTRACT

The antidepressant venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is commonly prescribed to treat major depressive disorder and is found at high concentrations in the aquatic environment. Concerns have been raised related to the health of aquatic organisms in response to this nontargeted pharmaceutical exposure. For instance, we previously demonstrated that exposure to venlafaxine perturbs neurodevelopment, leading to behavioural alterations in zebrafish (Danio rerio). We also observed disruption in serotonin expression in the pineal and raphe, regions critical in regulating circadian rhythms, leading us to hypothesize that zygotic exposure to venlafaxine disrupts the circadian locomotor rhythm in larval zebrafish. To test this, we microinjected zebrafish embryos with venlafaxine (1 or 10 ng) and recorded the locomotor activity in 5-day-old larvae over a 24-h period. Venlafaxine deposition reduced larval locomotor activity during the light phase, but not during the dark phase of the diurnal cycle. The melatonin levels were higher in the dark compared to during the light photoperiod and this was not affected by embryonic venlafaxine deposition. Venlafaxine exposure also did not affect the transcript abundance of clock genes, including clock1a, bmal2, cry1a and per2, which showed a clear day/night rhythmicity. A notable finding was that exposure to luzindole, a melatonin receptor antagonist, decreased the locomotor activity in the control group in light, whereas the activity was higher in larvae raised from the venlafaxine-deposited embryos. Overall, zygotic exposure to venlafaxine disrupts the locomotor activity of larval zebrafish fish during the day, demonstrating the capacity of antidepressants to disrupt the circadian rhythms in behaviour. Our results suggest that disruption in melatonin signalling may be playing a role in the venlafaxine impact on circadian behaviour, but further investigation is required to elucidate the possible mechanisms in larval zebrafish.


Subject(s)
Circadian Rhythm , Larva , Locomotion , Venlafaxine Hydrochloride , Zebrafish , Animals , Zebrafish/embryology , Venlafaxine Hydrochloride/pharmacology , Venlafaxine Hydrochloride/toxicity , Larva/drug effects , Locomotion/drug effects , Circadian Rhythm/drug effects , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Zygote/drug effects , Zygote/metabolism , Motor Activity/drug effects , Melatonin/pharmacology
14.
Gen Comp Endocrinol ; 355: 114563, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38830459

ABSTRACT

Investigating the principles of fish fat deposition and conducting related research are current focal points in fish nutrition. This study explores the endocrine regulation of LEAP2 and GHSR1a in zebrafish by constructing mutantmodels andexamining the effects of the endocrine factors LEAP2 and its receptor GHSR1a on zebrafish growth, feeding, and liver fat deposition. Compared to the wild type (WT), the mutation of LEAP2 results in increased feeding and decreased swimming in zebrafish. The impact is more pronounced in adult female zebrafish, characterized by increased weight, length, width, and accumulation of lipid droplets in the liver.Incontrast, deficiency in GHSR1a significantly reduces the growth of male zebrafish and markedly decreases liver fat deposition.These research findings indicate the crucial roles of LEAP2 and GHSR1a in zebrafish feeding, growth, and intracellular fat metabolism. This study, for the first time, investigated the endocrine metabolic regulation functions of LEAP2 and GHSR1a in the model organism zebrafish, providing initial insights into their effects and potential mechanisms on zebrafish fat metabolism.


Subject(s)
CRISPR-Cas Systems , Lipid Metabolism , Receptors, Ghrelin , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Lipid Metabolism/genetics , CRISPR-Cas Systems/genetics , Male , Female , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Mutation
15.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891085

ABSTRACT

PIKfyve is an endosomal lipid kinase that synthesizes phosphatidylinositol 3,5-biphosphate from phosphatidylinositol 3-phsphate. Inhibition of PIKfyve activity leads to lysosomal enlargement and cytoplasmic vacuolation, attributed to impaired lysosomal fission processes and homeostasis. However, the precise molecular mechanisms underlying these effects remain a topic of debate. In this study, we present findings from PIKfyve-deficient zebrafish embryos, revealing enlarged macrophages with giant vacuoles reminiscent of lysosomal storage disorders. Treatment with mTOR inhibitors or effective knockout of mTOR partially reverses these abnormalities and extend the lifespan of mutant larvae. Further in vivo and in vitro mechanistic investigations provide evidence that PIKfyve activity is essential for mTOR shutdown during early zebrafish development and in cells cultured under serum-deprived conditions. These findings underscore the critical role of PIKfyve activity in regulating mTOR signaling and suggest potential therapeutic applications of PIKfyve inhibitors for the treatment of lysosomal storage disorders.


Subject(s)
Lysosomal Storage Diseases , Lysosomes , Phosphatidylinositol 3-Kinases , Signal Transduction , TOR Serine-Threonine Kinases , Zebrafish , Animals , Humans , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Lysosomal Storage Diseases/genetics , Lysosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/antagonists & inhibitors
16.
Nat Commun ; 15(1): 5248, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898112

ABSTRACT

Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary biased. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.


Subject(s)
Oocytes , Oogenesis , RNA-Binding Proteins , Zebrafish Proteins , Zebrafish , Animals , Female , Male , Gene Expression Regulation, Developmental , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Nutrients/metabolism , Oocytes/metabolism , Oogenesis/genetics , Ovary/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Testis/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
17.
Cell Rep ; 43(6): 114271, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823013

ABSTRACT

The epithelial adaptations to mechanical stress are facilitated by molecular and tissue-scale changes that include the strengthening of junctions, cytoskeletal reorganization, and cell-proliferation-mediated changes in tissue rheology. However, the role of cell size in controlling these properties remains underexplored. Our experiments in the zebrafish embryonic epidermis, guided by theoretical estimations, reveal a link between epithelial mechanics and cell size, demonstrating that an increase in cell size compromises the tissue fracture strength and compliance. We show that an increase in E-cadherin levels in the proliferation-deficient epidermis restores epidermal compliance but not the fracture strength, which is largely regulated by Ezrin-an apical membrane-cytoskeleton crosslinker. We show that Ezrin fortifies the epithelium in a cell-size-dependent manner by countering non-muscle myosin-II-mediated contractility. This work uncovers the importance of cell size maintenance in regulating the mechanical properties of the epithelium and fostering protection against future mechanical stresses.


Subject(s)
Cell Size , Cytoskeletal Proteins , Myosin Type II , Zebrafish , Animals , Zebrafish/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Myosin Type II/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Stress, Mechanical , Epithelial Cells/metabolism , Cadherins/metabolism , Epidermis/metabolism , Epithelium/metabolism , Cell Proliferation
18.
Cell Rep ; 43(6): 114324, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850536

ABSTRACT

Trained immunity is classically characterized by long-term functional reprogramming of innate immune cells to combat infectious diseases. Infection-induced organ injury is a common clinical severity phenotype of sepsis. However, whether the induction of trained immunity plays a role in protecting septic organ injury remains largely unknown. Here, through establishing an in vivo ß-glucan training and lipopolysaccharide (LPS) challenge model in zebrafish larvae, we observe that induction of trained immunity could inhibit pyroptosis of hepatocytes to alleviate septic liver injury, with an elevated trimethyl-histone H3 lysine 4 (H3K4me3) modification that targets mitophagy-related genes. Moreover, we identify a C-type lectin domain receptor in zebrafish, named DrDectin-1, which is revealed as the orchestrator in gating H3K4me3 rewiring-mediated mitophagy activation and alleviating pyroptosis-engaged septic liver injury in vivo. Taken together, our results uncover tissue-resident trained immunity in maintaining liver homeostasis at the whole-animal level and offer an in vivo model to efficiently integrate trained immunity for immunotherapies.


Subject(s)
Hepatocytes , Pyroptosis , Sepsis , Zebrafish Proteins , Zebrafish , Animals , Hepatocytes/metabolism , Hepatocytes/immunology , Sepsis/immunology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Lipopolysaccharides , Liver/pathology , Liver/metabolism , Liver/immunology , Mitophagy , Lectins, C-Type/metabolism , Immunity, Innate , Histones/metabolism , beta-Glucans/pharmacology , Trained Immunity
19.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892048

ABSTRACT

The Roquin family is a recognized RNA-binding protein family that plays vital roles in regulating the expression of pro-inflammatory target gene mRNA during the immune process in mammals. However, the evolutionary status of the Roquin family across metazoans remains elusive, and limited studies are found in fish species. In this study, we discovered that the RC3H genes underwent a single round of gene duplication from a primitive ancestor during evolution from invertebrates to vertebrates. Furthermore, there were instances of species-specific gene loss events or teleost lineage-specific gene duplications throughout evolution. Domain/motif organization and selective pressure analysis revealed that Roquins exhibit high homology both within members of the family within the same species and across species. The three rc3h genes in zebrafish displayed similar expression patterns in early embryos and adult tissues, with rc3h1b showing the most prominent expression among them. Additionally, the promoter regions of the zebrafish rc3h genes contained numerous transcription factor binding sites similar to those of mammalian homologs. Moreover, the interaction protein network of Roquin and the potential binding motif in the 3'-UTR of putative target genes analysis both indicated that Roquins have the potential to degrade target mRNA through mechanisms similar to those of mammalian homologs. These findings shed light on the evolutionary history of Roquin among metazoans and hypothesized their role in the immune systems of zebrafish.


Subject(s)
Computational Biology , Evolution, Molecular , Phylogeny , Zebrafish , Animals , Zebrafish/genetics , Computational Biology/methods , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Immune System/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Duplication , Multigene Family , Promoter Regions, Genetic , Ubiquitin-Protein Ligases
20.
Biomed Khim ; 70(3): 176-179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38940207

ABSTRACT

The effect of a synthetic analog of kisspeptin 1, a peptide involved in the regulation of the hypothalamicpituitary- gonadal (HPG) stress axis, on the cortisol level of Danio rerio fish was investigated. Kisspeptin 1 was administered at doses of 2 µg/kg and 8 µg/kg followed by resting for 1 h and 4 h. We found that kisspeptin at doses of 2 µg/kg and 8 µg/kg increased cortisol levels, with a significant spike in cortisol levels at 1 h post-injection.


Subject(s)
Hydrocortisone , Kisspeptins , Zebrafish Proteins , Zebrafish , Animals , Kisspeptins/pharmacology , Kisspeptins/metabolism , Zebrafish Proteins/metabolism , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...