Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.976
Filter
1.
PeerJ ; 12: e17637, 2024.
Article in English | MEDLINE | ID: mdl-38966207

ABSTRACT

Background: Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods: Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results: EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion: The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.


Subject(s)
Apoptosis , Caspase 3 , Diospyros , Plant Extracts , Prostatic Neoplasms , Proto-Oncogene Proteins c-bcl-2 , bcl-2-Associated X Protein , Humans , Male , Apoptosis/drug effects , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Diospyros/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
2.
Braz J Med Biol Res ; 57: e13306, 2024.
Article in English | MEDLINE | ID: mdl-38958363

ABSTRACT

Arbutin is utilized in traditional remedies to cure numerous syndromes because of its anti-microbial, antioxidant, and anti-inflammatory properties. This study aimed to evaluate chemopreventive effects of arbutin on azoxymethane (AOM)-induced colon aberrant crypt foci (ACF) in rats. Five groups of rats were used: normal control group (rats injected hypodermically with sterile phosphate-buffered saline once per week for two weeks) and groups 2-5, which were subcutaneously inoculated with 15 mg/kg AOM once a week for two weeks. AOM control and 5-fluorouracil (5-FU) control groups were fed 10% Tween orally daily for 8 weeks using a feeding tube. The treated groups were fed 30 and 60 mg/kg arbutin every day for 2 months. ACF from the AOM control group had aberrant nuclei in addition to multilayered cells and an absence of goblet cells. The negative control group displayed spherical cells and nuclei in basal positions. Histological examination revealed a reduced number of AFC cells from colon tissues of the 5-FU reference group. Arbutin-fed animals showed down-regulation of proliferating cell nuclear antigen (PCNA) and up-regulation of Bax protein compared to AOM control. Rats fed with arbutin displayed a significant increase of superoxide dismutase (SOD) and catalase (CAT) activities in colon tissue homogenates compared to the AOM control group. In conclusion, arbutin showed therapeutic effects against colorectal cancer, explained by its ability to significantly decrease ACF, down-regulate PCNA protein, and up-regulate Bax protein. In addition, arbutin significantly increased SOD and CAT, and decreased malondialdehyde (MDA) levels, which might be due to its anti-proliferative and antioxidant properties.


Subject(s)
Aberrant Crypt Foci , Arbutin , Azoxymethane , Proliferating Cell Nuclear Antigen , bcl-2-Associated X Protein , Animals , Aberrant Crypt Foci/chemically induced , Aberrant Crypt Foci/pathology , Aberrant Crypt Foci/prevention & control , Aberrant Crypt Foci/drug therapy , Proliferating Cell Nuclear Antigen/metabolism , Male , Arbutin/pharmacology , Rats , bcl-2-Associated X Protein/metabolism , Colon/drug effects , Colon/pathology , Rats, Wistar , Fluorouracil , Carcinogens
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1126-1134, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977342

ABSTRACT

OBJECTIVE: To investigate the protective effect of recombinant Schistosoma japonicum cystatin (rSj-Cys) against acute liver injury induced by lipopolysaccharide (LPS) and D-GalN in mice. METHODS: Adult male C57BL/6J mice with or without LPS/D-GaIN-induced acute liver injury were given intraperitoneal injections of rSj-Cys or PBS 30 min after modeling (n=18), and serum and liver tissues samples were collected from 8 mice in each group 6 h after modeling. The survival of the remaining 10 mice in each group within 24 h was observed. Serum levels of ALT, AST, TNF-α and IL-6 of the mice were measured, and liver pathologies was observed with HE staining. The hepatic expressions of macrophage marker CD68, Bax, Bcl-2 and endoplasmic reticulum stress (ERS)-related proteins were detected using immunohistochemistry or immunoblotting, and TUNEL staining was used to detect hepatocyte apoptosis. RESULTS: The survival rates of PBS- and rSj-Cys-treated mouse models of acute liver injury were 30% and 80% at 12 h and were 10% and 60% at 24 h after modeling, respectively; no death occurred in the two control groups within 24 h. The mouse models showed significantly increased serum levels of AST, ALT, IL-6 and TNF-α and serious liver pathologies with increased hepatic expressions of CD68 and Bax, lowered expression of Bcl-2, increased hepatocyte apoptosis, and up-regulated expressions of ERS-related signaling pathway proteins GRP78, CHOP and NF-κB p-p65. Treatment of the mouse models significantly lowered the levels of AST, ALT, IL-6 and TNF-α, alleviated liver pathologies, reduced hepatic expressions of CD68, Bax, GRP78, CHOP and NF-κB p-p65, and enhanced the expression of Bcl-2. In the normal control mice, rSj-Cys injection did not produce any significant changes in these parameters compared with PBS. CONCLUSION: rSj-Cys alleviates LPS/D-GalN-induced acute liver injury in mice by suppressing ERS, attenuating inflammation and inhibiting hepatocyte apoptosis.


Subject(s)
Apoptosis , Cystatins , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Hepatocytes , Inflammation , Mice, Inbred C57BL , Schistosoma japonicum , Animals , Mice , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Male , Hepatocytes/metabolism , Hepatocytes/drug effects , Cystatins/pharmacology , Liver/pathology , Liver/metabolism , Lipopolysaccharides , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Recombinant Proteins/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Galactosamine , Antigens, CD/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , CD68 Molecule
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1109-1116, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977340

ABSTRACT

OBJECTIVE: To investigate the effect of solasonine, an active component of Solanum nigrum, on proliferation and apoptosis of non-small cell lung cancer PC9 cells. METHODS: PC9 cells were treated with 2, 5, 10, 15, 20, or 25 µmol/L solasonine, and the changes in cell proliferation were examined using CCK-8 assay. Tetramethyl rhodamine ethyl ester (TMRE) was used to detect the changes in mitochondrial membrane potential, and caspase-3/7 detection kit and GreenNucTM caspase-3/Annexin V-mCherry kit for live cell were used to analyze the changes in caspase-3 of the cells. Annexin V-FITC/PI double staining was employed to analyze the apoptosis rate of the cells. The effect of PTEN inhibitors on solasonine-induced cell apoptosis was examined by detecting apoptosis-related protein expressions using Western blotting. RESULTS: Solasonine treatment for 24, 48, and 72 h significantly lowered the viability of PC9 cells. The cells treated with solasonine for 24 h showed significantly decreased mitochondrial membrane potential and increased cell apoptosis with enhanced caspase-3/7 and caspase-3 activities and expression of cleaved caspase-3. Solasonine treatment significantly decreased phosphorylation levels of PI3K and Akt, increased the protein expressions of PTEN and Bax, and lowered the expression of Bcl-2 protein in the cells. CONCLUSION: Solasonine inhibits proliferation and induces apoptosis of PC9 cells by regulating the Bcl-2/Bax/caspase-3 pathway and its upstream proteins.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Caspase 3 , Cell Proliferation , Lung Neoplasms , Membrane Potential, Mitochondrial , Proto-Oncogene Proteins c-bcl-2 , bcl-2-Associated X Protein , Humans , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cell Proliferation/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Membrane Potential, Mitochondrial/drug effects , Solanaceous Alkaloids/pharmacology , Signal Transduction/drug effects , PTEN Phosphohydrolase/metabolism
5.
Biomed Res Int ; 2024: 6231095, 2024.
Article in English | MEDLINE | ID: mdl-39015603

ABSTRACT

Background: Studies have concentrated on the therapeutic potential of thymoquinone (TQ), a natural polyphenol, in diverse malignancies, such as colorectal cancer. Nevertheless, the precise mechanisms of TQ-mediated anticancer properties are not yet fully elucidated. Objective: The present study has been designed to scrutinize the impact of TQ on 5-fluorouracil (5-FU)-mediated apoptosis in SW-480 cells. Materials and Methods: SW-480 cells were treated with TQ, 5-FU, and a combination of TQ + 5-FU. MTT assay was employed to assess cell viability. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to evaluate apoptotic markers comprising Bcl-2, Bax, and caspase-9 expression levels. The γ-H2AX protein expression was assessed by western blotting, and Annexin V flow cytometry was implemented to determine the apoptosis rate. Results: 5-FU significantly reversed the cell proliferation in a dose-dependent circumstance. The concurrent administration of TQ and 5-FU led to a substantial inhibition of cell growth in comparison to single treatments (p < 0.05). TQ also facilitated apoptosis via upregulating Bax and caspase-9 proapoptotic markers and suppressing antiapoptotic mediators, like Bcl-2. In addition, TQ augmented 5-FU-induced apoptosis in SW-480 cells. 5-FU, combined with TQ, increased the protein expression of γ-H2AX in SW-480 cells compared with groups treated with TQ and 5-FU alone. Conclusion: The present study's findings unveil the significance of TQ as a potential therapeutic substance in colorectal cancer, particularly through enhancing 5-FU-induced apoptosis.


Subject(s)
Apoptosis , Benzoquinones , Cell Proliferation , Colonic Neoplasms , Fluorouracil , Humans , Fluorouracil/pharmacology , Benzoquinones/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cell Proliferation/drug effects , bcl-2-Associated X Protein/metabolism , Cell Survival/drug effects , Caspase 9/metabolism , Caspase 9/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Histones/metabolism
6.
Biochem Biophys Res Commun ; 725: 150258, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38897041

ABSTRACT

OBJECTIVE: Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes. METHODS: The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method. RESULTS: The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress. CONCLUSIONS: Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.


Subject(s)
Arsenites , Chemical and Drug Induced Liver Injury , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Signal Transduction , Sodium Compounds , Tumor Necrosis Factor-alpha , Animals , Male , Signal Transduction/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Arsenites/toxicity , Sodium Compounds/toxicity , Rats , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Caspase 3/metabolism , Caspase 3/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Oxidative Stress/drug effects , Apoptosis/drug effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , Endoplasmic Reticulum Chaperone BiP , Endoribonucleases , Multienzyme Complexes , Protein Serine-Threonine Kinases
7.
Mol Biol (Mosk) ; 58(1): 141-153, 2024.
Article in Russian | MEDLINE | ID: mdl-38943585

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine, MEL) is a hormone synthesized by the pineal gland. Due to its oncostatic effect, it can be considered as an antitumor agent and used for combination therapy. ABT-737, a Bcl-2 inhibitor, promotes cell death after treatment with agents that induce pro-apoptotic signals. In the present study, the combined effect of MEL and ABT-737 on changes in proliferative and mitotic activity, mitochondrial membrane potential, intracellular production of reactive oxygen species (ROS), and cytosolic Ca^(2+) was studied. Moreover, changes in the expression of anti- and pro-apoptotic proteins (Bcl-2 and Bax), autophagy markers (LC3A/B (I, II)), endoplasmic reticulum stress markers (chaperones BIP and PDI, CHOP) were studied under these conditions. The effect of MEL together with ABT-737 led to an increase in the level of cytosolic Ca^(2+), intracellular production of ROS and a decrease in the membrane potential of mitochondria. The content of Bcl-2 increased, while the level of Bax decreased. Activation of CHOP stimulated autophagy and led to a decrease in the synthesis of chaperones BIP and PDI. It is assumed that melatonin can enhance the effect of other chemotherapeutic agents and can be used in the treatment of tumors.


Subject(s)
Apoptosis , Biphenyl Compounds , Melatonin , Membrane Potential, Mitochondrial , Nitrophenols , Piperazines , Proto-Oncogene Proteins c-bcl-2 , Reactive Oxygen Species , Sulfonamides , Humans , Sulfonamides/pharmacology , Melatonin/pharmacology , Nitrophenols/pharmacology , Piperazines/pharmacology , Biphenyl Compounds/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , THP-1 Cells , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Drug Synergism , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Chaperone BiP , Cell Proliferation/drug effects , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Calcium/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/biosynthesis , Transcription Factor CHOP
8.
Ecotoxicol Environ Saf ; 281: 116660, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944012

ABSTRACT

Environmental accumulation of nano- and microplastics pose serious risks to human health. Polystyrene (PS) is a polymer commonly used in the production of plastics. However, PS can adsorb cadmium (Cd), thereby influencing bioavailability and toxicity in vivo. Moreover, PS and Cd can accumulate in the mammalian kidney. Therefore, the aim of the present study was to assess the effects of combined exposure to PS and Cd in the kidney. Kidney damage was evaluated in male mice gavaged with PS (diameter, 100 nm and/or 1 µm) and Cd for 25 days.The results showed that PS at 100 nm caused more severe oxidative damage and cell apoptosis than PS at 1 µm. Combined exposure to PS at both 100 nm and 1 µm caused more severe kidney damage than the single administration groups. The extent of kidney toxicity caused by Cd differed with the combination of PS particles at 100 nm vs. 1 µm. The degree of damage to kidney function, pathological changes, and cell apoptosis induced by Cd+100 nm PS+1µm PS was the most severe. An increase in the Bax/Bcl2 ratio and overexpression of p53 and caspase-3 revealed that renal cell apoptosis might be induced via the mitochondrial pathway. Collectively, these findings demonstrate that the size of PS particles dictates the combined effects of PS and Cd in kidney tissues. Kidney damage caused by the combination of different sizes of PS particle and Cd is more complicated under actual environmental conditions.


Subject(s)
Apoptosis , Cadmium , Kidney , Particle Size , Polystyrenes , Animals , Polystyrenes/toxicity , Male , Kidney/drug effects , Kidney/pathology , Mice , Apoptosis/drug effects , Cadmium/toxicity , Caspase 3/metabolism , Oxidative Stress/drug effects , bcl-2-Associated X Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Environmental Pollutants/toxicity
9.
J Photochem Photobiol B ; 257: 112963, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908147

ABSTRACT

The therapeutic potential of blue light photobiomodulation in cancer treatment, particularly in inhibiting cell proliferation and promoting cell death, has attracted significant interest. Oral squamous cell carcinoma (OSCC) is a prevalent form of oral cancer, necessitating innovative treatment approaches to improve patient outcomes. In this study, we investigated the effects of 420 nm blue LED light on OSCC and explored the underlying mechanisms. Our results demonstrated that 420 nm blue light effectively reduced OSCC cell viability and migration, and induced G2/M arrest. Moreover, we observed that 420 nm blue light triggered endoplasmic reticulum (ER) stress and mitochondrial dysfunction in OSCC cells, leading to activation of the CHOP signal pathway and alterations in the levels of Bcl-2 and Bax proteins, ultimately promoting cell apoptosis. Additionally, blue light suppressed mitochondrial gene expression, likely due to its damage to mitochondrial DNA. This study highlights the distinct impact of 420 nm blue light on OSCC cells, providing valuable insights into its potential application as a clinical treatment for oral cancer.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Survival , Endoplasmic Reticulum Stress , Light , Mitochondria , Mouth Neoplasms , Humans , Endoplasmic Reticulum Stress/radiation effects , Mitochondria/radiation effects , Mitochondria/metabolism , Mouth Neoplasms/radiotherapy , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Apoptosis/radiation effects , Cell Survival/radiation effects , Cell Proliferation/radiation effects , Cell Movement/radiation effects , Signal Transduction/radiation effects , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Blue Light
10.
Drug Des Devel Ther ; 18: 2461-2474, 2024.
Article in English | MEDLINE | ID: mdl-38915866

ABSTRACT

Objective: Insulin attaches insulin receptor to activate the PI3-kinase/Akt signaling to maintain glucose homeostasis and inhibit apoptosis. This study determined whether preconditioning with insulin and glucose protects the kidney against ischemia-reperfusion injury (IRI). Methods: Kidney IRI was performed in C57BL/6 mice by clamping the renal vessels for 30 min, followed by reperfusion for 24 h. A total subcutaneous 0.1 unit of insulin along with 10% glucose in drinking water was treated on the mice for 24 h before kidney IRI. The kidney function and injuries were investigated through the determination of BUN and Cr in blood plasma, as well as the apoptosis and the expression of P-AKT, BAX, and caspase-3 in the kidneys. The role of P-AKT in insulin-treated IRI kidneys was tested using an AKT inhibitor. The effects of the preconditional duration of insulin and glucose on IRI kidneys were investigated by expanding the treatment duration to 1, 3, and 6 days. Results: Preconditioning with insulin and glucose protected the kidney against IRI as manifested by a decrease in creatinine and BUN and a reduction of kidney tubular injury. The protection effect was mediated by P-AKT-BAX-caspase-3 signaling pathway resulting in suppression of apoptotic cell death. An AKT inhibitor partially reversed the protective effects of preconditional insulin. The preconditional duration for 1, 3, and 6 days had no differences in improving kidney functions and pathology. Conclusion: A short-term preconditioning with insulin and glucose protected the kidney from IRI through the activation of p-AKT and subsequent reduction of BAX-caspase-3-induced apoptosis. The short-term precondition provides a practicable strategy for protecting the kidney against predictable IRI, such as kidney transplant and major surgical operations with high risk of hypotension.


Subject(s)
Caspase 3 , Glucose , Insulin , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , Reperfusion Injury , Signal Transduction , bcl-2-Associated X Protein , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Signal Transduction/drug effects , Insulin/pharmacology , Male , Caspase 3/metabolism , Glucose/metabolism , bcl-2-Associated X Protein/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Apoptosis/drug effects
11.
Mol Biol Rep ; 51(1): 732, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872006

ABSTRACT

BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.


Subject(s)
Apoptosis , Colonic Neoplasms , Glycogen Synthase Kinase 3 beta , Harmine , Peganum , Seeds , Humans , Peganum/chemistry , HCT116 Cells , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Seeds/chemistry , Harmine/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alkaloids/pharmacology , Harmaline/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Proliferation/drug effects
12.
Sci Rep ; 14(1): 13430, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862696

ABSTRACT

Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.


Subject(s)
Apigenin , Apoptosis , Glucuronates , Janus Kinase 2 , Microglia , STAT3 Transcription Factor , Signal Transduction , Animals , Apigenin/pharmacology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Glucuronates/pharmacology , PC12 Cells , Apoptosis/drug effects , Microglia/drug effects , Microglia/metabolism , Signal Transduction/drug effects , Rats , Mice , Caspase 3/metabolism , Glucose/metabolism , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , bcl-2-Associated X Protein/metabolism , Tyrphostins/pharmacology
13.
Nat Commun ; 15(1): 4700, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830851

ABSTRACT

BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.


Subject(s)
Apoptosis , Mitochondrial Membranes , bcl-2 Homologous Antagonist-Killer Protein , bcl-2-Associated X Protein , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/metabolism , Humans , Mitochondrial Membranes/metabolism , Molecular Dynamics Simulation , Mitochondria/metabolism , Cell Line, Tumor , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Animals
14.
J Microbiol Biotechnol ; 34(6): 1307-1313, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38881175

ABSTRACT

This study investigates whether red pine (Pinus densiflora Sieb. et Zucc.) bark extract (PBE) can alleviate diabetes and abnormal apoptosis signaling pathways in the hippocampus of streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats. Two dosages of PBE (15 and 30 mg/kg of body weight/day) were administered orally to STZ-induced diabetic SD rats for 20 days. Blood glucose level and body weight were measured once per week. After 20 days of oral administration of PBE, the rat hippocampus was collected, and the production of Akt, p-Akt, GSK-3ß, p-GSK-3ß, tau, p-tau, Bax, and Bcl-2 proteins were determined by western blot analysis. A decrease in blood glucose level and recovery of body weight were observed in PBE-treated diabetic rats. In the Akt/GSK-3ß/tau signaling pathway, PBE inhibited diabetes-induced Akt inactivation, GSK-3ß inactivation, and tau hyperphosphorylation. The protein production ratio of Bax/Bcl-2 was restored to the control group level. These results suggest that PBE, rich in phenolic compounds, can be used as a functional food ingredient to ameliorate neuronal apoptosis in diabetes mellitus.


Subject(s)
Apoptosis , Blood Glucose , Diabetes Mellitus, Experimental , Glycogen Synthase Kinase 3 beta , Hippocampus , Pinus , Plant Bark , Plant Extracts , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Plant Bark/chemistry , Rats , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Pinus/chemistry , Apoptosis/drug effects , Streptozocin , tau Proteins/metabolism , Body Weight/drug effects , Phosphorylation/drug effects , bcl-2-Associated X Protein/metabolism
15.
BMC Oral Health ; 24(1): 715, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907185

ABSTRACT

BACKGROUND: Dental pathogens play a crucial role in oral health issues, including tooth decay, gum disease, and oral infections, and recent research suggests a link between these pathogens and oral cancer initiation and progression. Innovative therapeutic approaches are needed due to antibiotic resistance concerns and treatment limitations. METHODS: We synthesized and analyzed piperine-coated zinc oxide nanoparticles (ZnO-PIP NPs) using UV spectroscopy, SEM, XRD, FTIR, and EDAX. Antioxidant and antimicrobial effectiveness were evaluated through DPPH, ABTS, and MIC assays, while the anticancer properties were assessed on KB oral squamous carcinoma cells. RESULTS: ZnO-PIP NPs exhibited significant antioxidant activity and a MIC of 50 µg/mL against dental pathogens, indicating strong antimicrobial properties. Interaction analysis revealed high binding affinity with dental pathogens. ZnO-PIP NPs showed dose-dependent anticancer activity on KB cells, upregulating apoptotic genes BCL2, BAX, and P53. CONCLUSIONS: This approach offers a multifaceted solution to combatting both oral infections and cancer, showcasing their potential for significant advancement in oral healthcare. It is essential to acknowledge potential limitations and challenges associated with the use of ZnO NPs in clinical applications. These may include concerns regarding nanoparticle toxicity, biocompatibility, and long-term safety. Further research and rigorous testing are warranted to address these issues and ensure the safe and effective translation of ZnO-PIP NPs into clinical practice.


Subject(s)
Alkaloids , Apoptosis , Benzodioxoles , Biofilms , Mouth Neoplasms , Piperidines , Polyunsaturated Alkamides , Zinc Oxide , bcl-2-Associated X Protein , Humans , Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/drug effects , Benzodioxoles/pharmacology , Biofilms/drug effects , Cell Line, Tumor , KB Cells , Metal Nanoparticles/therapeutic use , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Nanoparticles , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/drug effects , X-Ray Diffraction , Zinc Oxide/pharmacology
16.
Biomed Pharmacother ; 176: 116744, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810399

ABSTRACT

Cancer is one of the major leading causes of mortality globally and chemo-drug-resistant cancers pose significant challenges to cancer treatment by reducing patient survival rates and increasing treatment costs. Although the mechanisms of chemoresistance vary among different types of cancer, cancer cells are known to share several hallmarks, such as their resistance to apoptosis as well as the ability of cancer stem cells to produce metastatic daughter cells that are resistant to chemotherapy. To address the issue of chemo-drug resistance in cancer cells, a tetracistronic expression construct, Ad-MBR-GFP, encoding adenovirus-mediated expression of MOAP-1, Bax, RASSSF1A, and GFP, was generated to investigate its potential activity in reducing or inhibiting the chemo-drug resistant activity of the human breast cancer cells, MCF-7-CR and MDA-MB-231. When infected by Ad-MBR-GFP, the cancer cells exhibited round cell morphology and nuclei condensation with positive staining for annexin-V. Furthermore, our results showed that both MCF-7-CR and MDA-MB-231 cells stained positively for CD 44 and negatively for CD 24 (CD44+/CD24-) with high levels of endogenous ALDH activity whereas SNU-1581 breast cancer cells were identified as CD 44-/CD 24- cells with relatively low levels of endogenous ALDH activity and high sensitivity toward chemo-drugs, suggesting that both CD 44 and ALDH activity contribute to chemo-drug resistance. Moreover, both MCF-7-CR and MDA-MB-231 cells showed strong chemo-drug sensitivity to cisplatin when the cells were infected by Ad-MBR-GFP, leading to 9-fold and 2-fold reduction in the IC 50 values when compared to cisplatin treatment alone, respectively. The data were further supported by 3D (soft agar) and spheroid cell models of MCF-7-CR and MDA-MB-231 cells which showed a 2-fold reduction of a number of cell colonies and spheroid size when treated with both Ad-MBR-GFP and cisplatin, and compared to control. Other than chemo-sensitivity, Ad-MBR-GFP-infected cancer cells retarded cell migration. Flow cytometry analysis showed that the mechanism of action of Ad-MBR-GFP involved cell cycle arrest at the G1 phase and inhibition of cellular DNA synthesis. Taken together, our investigation showed that Ad-MBR-GFP mediated chemo-drug sensitization in the infected cancer cells involved the activation of apoptosis signaling, cell cycle arrest, and inhibition of DNA synthesis, suggesting that Ad-MBR-GFP is potentially efficacious for the treatment of chemo-drug resistant cancers.


Subject(s)
Adenoviridae , Breast Neoplasms , Drug Resistance, Neoplasm , Neoplastic Stem Cells , Tumor Suppressor Proteins , bcl-2-Associated X Protein , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Adenoviridae/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Female , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , MCF-7 Cells , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology
17.
Reprod Toxicol ; 127: 108611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782144

ABSTRACT

The current study aimed to investigate the sensitivity of male testis parenchyma cells to chemotherapy agents and the protective effects and mechanisms of Morinda citrifolia (Noni) administration against structural and functional changes before and after chemotherapy (Paclitaxel (PTX)). For this purpose, rats were randomly assigned into four groups (Control = G1, PTX 5 mg/kg = G2; PTX + Noni 10 mg/kg = G3, PTX + Noni 20 mg/kg = G4). PTX was injected intraperitoneally for 4 consecutive weeks, at a dose of 5 mg/kg to all groups except the control group. Then noni was administrated in 10 (G3) and 20 (G4) mg/kg groups orally (gavage) for 14 days. Biochemical analyses, Real-Time Polymerase Chain Reaction (PCR), and immunohistochemical analyses were performed. According to our results, Total Oxidative Stress (TOS) and Malondialdehyde (MDA) were significantly increased in the PTX group (P < 0.01). Superoxide Dismutase (SOD) enzyme activity and Total Antioxidant Capacity (TAC) levels were decreased (P < 0.01). The changes in the rats treated with PTX + Noni 20 mg/kg were noteworthy. The increased levels of IL1-ß (Interleukin 1 beta) and TNFα (tumor necrosis factor-alpha) with PTX were down-regulated after treatment with PTX + Noni 20 mg/kg (P < 0.01) (9 % and 5 % respectively). In addition, Noni restored the testicular histopathological structure by reducing caspase-3 expression and significantly (61 %) suppressed oxidative DNA damage and apoptosis (by regulating the Bax (bcl-2-like protein 4)/Bcl-2 (B-cell lymphoma gene-2) ratio). In conclusion, Noni reduced cellular apoptosis and drastically changed Caspase 8 and Bax/Bcl-2 levels. Furthermore, it considerably decreases oxidative damage and can be used in testicular degeneration.


Subject(s)
Antineoplastic Agents, Phytogenic , Morinda , Oxidative Stress , Paclitaxel , Plant Extracts , Testis , Animals , Male , Morinda/chemistry , Paclitaxel/toxicity , Testis/drug effects , Testis/pathology , Testis/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/toxicity , Antineoplastic Agents, Phytogenic/pharmacology , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Antioxidants/pharmacology , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Rats, Wistar , Caspase 3/metabolism , Interleukin-1beta/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Protective Agents/pharmacology , Rats
18.
Med Oncol ; 41(6): 162, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767753

ABSTRACT

Dermaseptin B2 (DrsB2) is an antimicrobial peptide with anticancer and angiostatic properties. We aimed to assess the in vitro inhibitory effect of pDNA/DrsB2 on the growth of breast cancer cells and its impact on the expression of genes involved in the BAX/BBC3/AKT pathway. The nucleic acid sequence of DrsB2 was artificially synthesized and inserted into the pcDNA3.1( +) Mammalian Expression Plasmid. PCR testing and enzyme digesting procedures evaluated the accuracy of cloning. The vectors were introduced into cells using LipofectamineTM2000 transfection reagent. The breast cancer cells were assessed by flow cytometry, MTT assessment, soft agar colony method, and wound healing investigation. The gene's transcription was evaluated using real-time PCR with a significance level of P < 0.05. The recombinant plasmid harboring the pDNA/DrsB2 vector was effectively produced, and the gene sequence showed absolute homogeneity (100% similarity) with the DrsB2 gene. The transfection effectiveness of MCF-7 and MCF-10A cells was 79% and 68%, respectively. The findings are measured using the growth inhibition 50% (GI50) metric, which indicates the concentration of pDNA/DrsB2 that stops 50% of cell growth. The proportions of early apoptosis, late apoptosis, necrosis, and viable MCF-7 cells in the pDNA/DrsB2 group were 40.50%, 2.31%, 1.69%, and 55.50%, respectively. The results showed a 100% increase in gene expression in programmed cell death following treatment with pDNA/DrsB2 (**P < 0.01). To summarize, the results described in this work offer new possibilities for treating cancer by targeting malignancies via pDNA/DrsB2 and activating the BAX/BBC3/AKT signaling pathways.


Subject(s)
Breast Neoplasms , Cell Proliferation , Proto-Oncogene Proteins c-akt , Signal Transduction , bcl-2-Associated X Protein , Humans , Proto-Oncogene Proteins c-akt/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Apoptosis , MCF-7 Cells , Amphibian Proteins/genetics , Amphibian Proteins/pharmacology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Transfection
19.
Med Oncol ; 41(6): 148, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733486

ABSTRACT

Numerous herbal products have been the subject of research regarding their potential role in cancer prevention or adjuvant therapy. Pistacia atlantica and its main phytochemicals have garnered significant attention for their potential anti-cancer effects. The study aimed to assess the growth inhibitory effects of P. atlantica essential oil (PAEO) on MKN-45 and AGS cells. This study quantified the volatile compounds in PAEO using Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, MKN-45 and AGS cells were treated with varying concentrations of PAEO (5%, 2.5%, 1.25%, 0.625%, 0.3125%, 0.156%, 0.0781%, 0.0391%, 0.0195%) for 24 h. Cell viability was evaluated through the MTT assay. The impact of PAEO on gene expression was investigated by quantifying the mRNA levels of Bax and Bcl2 in the various experimental groups using quantitative Real-Time PCR (qRT-PCR) analysis. Additionally, flow cytometry was utilized to evaluate apoptosis in the treated cells. The analysis of PAEO revealed that α-pinene was the predominant monoterpene, constituting 87.9% of the oil composition. The cytotoxic effects of PAEO were evaluated, and it was found that the oil significantly reduced the viability of MKN-45 and AGS cells. The IC50 for MKN-45 cells was determined to be 1.94 × 10-3% after 24 h of treatment, while for AGS cells the IC50 was 2.8 × 10-3% after 24 h. Additionally, the research revealed that PAEO triggered a notable rise in apoptotic cells in both AGS and MKN-45 cell lines. Moreover, at the molecular level, the findings indicated an increase in Bax expression and a decrease in Bcl2 mRNA expression, providing further evidence of the induction of apoptosis in both MKN-45 and AGS cell lines following PAEO treatment. The findings of this study offer evidence supporting the cytotoxic effects of PAEO on gastric cancer cell lines by promoting apoptosis. The findings suggest that PAEO may offer potential as a therapeutic candidate in managing and treating gastric cancer.


Subject(s)
Apoptosis , Cell Survival , Oils, Volatile , Pistacia , Stomach Neoplasms , Humans , Oils, Volatile/pharmacology , Pistacia/chemistry , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Gas Chromatography-Mass Spectrometry
20.
Cell Signal ; 120: 111238, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810862

ABSTRACT

Abnormal Krüppel-like factor 11 (KLF11) expression is frequently found in tumor tissues and is associated with cancer prognosis, but its biological functions and corresponding mechanisms remain elusive. Here, we demonstrated that KLF11 functions as an oncoprotein to promote tumor proliferation in breast cancer cells. Mechanistically, at the transcription level, KLF11 decreased TP53 mRNA expression. Notably, KLF11 also interacted with and stabilized MDM2 through inhibiting MDM2 ubiquitination and subsequent degradation. This increase in MDM2 in turn accelerated the ubiquitin-mediated proteolysis of p53, leading to the reduced expression of p53 and its target genes, including CDKN1A, BAX, and NOXA1. Accordingly, data from animals further confirmed that KLF11 significantly upregulated the growth of breast cancer cells and was inversely correlated with p53 expression. Taken together, our findings reveal a novel mechanism for breast cancer progression in which the function of the tumor suppressor p53 is dramatically weakened.


Subject(s)
Breast Neoplasms , Cell Proliferation , Proto-Oncogene Proteins c-mdm2 , Signal Transduction , Tumor Suppressor Protein p53 , Ubiquitination , Humans , Tumor Suppressor Protein p53/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Female , Animals , Cell Line, Tumor , Mice, Nude , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Gene Expression Regulation, Neoplastic , bcl-2-Associated X Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Mice , Proteolysis , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...