Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.683
1.
Sci Rep ; 14(1): 10012, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693138

Beta-glucosidases catalyze the hydrolysis of the glycosidic bonds of cellobiose, producing glucose, which is a rate-limiting step in cellulose biomass degradation. In industrial processes, ß-glucosidases that are tolerant to glucose and stable under harsh industrial reaction conditions are required for efficient cellulose hydrolysis. In this study, we report the molecular cloning, Escherichia coli expression, and functional characterization of a ß-glucosidase from the gene, CelGH3_f17, identified from metagenomics libraries of an Ethiopian soda lake. The CelGH3_f17 gene sequence contains a glycoside hydrolase family 3 catalytic domain (GH3). The heterologous expressed and purified enzyme exhibited optimal activity at 50 °C and pH 8.5. In addition, supplementation of 1 M salt and 300 mM glucose enhanced the ß-glucosidase activity. Most of the metal ions and organic solvents tested did not affect the ß-glucosidase activity. However, Cu2+ and Mn2+ ions, Mercaptoethanol and Triton X-100 reduce the activity of the enzyme. The studied ß-glucosidase enzyme has multiple industrially desirable properties including thermostability, and alkaline, salt, and glucose tolerance.


Biomass , Lakes , beta-Glucosidase , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Lakes/microbiology , Metagenomics/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Metagenome , Cloning, Molecular , Enzyme Stability , Hydrolysis , Hydrogen-Ion Concentration , Cellulose/metabolism , Temperature , Glucose/metabolism
2.
Appl Microbiol Biotechnol ; 108(1): 349, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809317

Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by ß-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many ß-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable ß-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the ß-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly ß(1 → 3) and ß(1 → 6) elongating activity, but also some ß(1 → 4) elongation was observed. The ß-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • ß-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima ß-glucosidase has high activity and high thermostability. • Thermotoga maritima ß-glucosidase GOS contains mainly (ß1-3) and (ß1-6) linkages.


Cellobiose , Lactose , Oligosaccharides , Thermotoga maritima , beta-Glucosidase , Thermotoga maritima/enzymology , Thermotoga maritima/genetics , Lactose/metabolism , Cellobiose/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/genetics , beta-Glucosidase/chemistry , Kinetics , Oligosaccharides/metabolism , Glycosylation , Hydrolysis , Temperature , Enzyme Stability
3.
Food Chem ; 452: 139600, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38744138

A naringinase complex was chemically aminated prior to its immobilization on glyoxyl-agarose to develop a robust biocatalyst for juice debittering. The effects of amination on the optimal pH and temperature, thermal stability, and debittering performance were analyzed. Concentration of amino groups on catalysts surface increased in 36 %. Amination reduced the ß-glucosidase activity of naringinase complex; however, did not affect optimal pH and temperature of the enzyme and it favored immobilization, obtaining α-l-rhamnosidase and ß-d-glucosidase activities of 1.7 and 4.2 times the values obtained when the unmodified enzymes were immobilized. Amination favored the stability of the immobilized biocatalyst, retaining 100 % of both activities after 190 h at 30 °C and pH 3, while its non-aminated counterpart retained 80 and 52 % of α-rhamnosidase and ß-glucosidase activities, respectively. The immobilized catalyst showed a better performance in grapefruit juice debittering, obtaining a naringin conversion of 7 times the value obtained with the non-aminated catalyst.


Enzymes, Immobilized , Fruit and Vegetable Juices , Glyoxylates , Sepharose , Fruit and Vegetable Juices/analysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Amination , Hydrogen-Ion Concentration , Sepharose/chemistry , Glyoxylates/chemistry , Citrus/chemistry , Citrus/enzymology , Enzyme Stability , Biocatalysis , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Temperature , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Flavanones/chemistry , Flavanones/metabolism , Catalysis
4.
Food Chem ; 453: 139637, 2024 Sep 30.
Article En | MEDLINE | ID: mdl-38781897

Herein, a novel multifunctional enzyme ß-glucosidase/xylanase/feruloyl esterase (GXF) was constructed by fusion of ß-glucosidase and bifunctional xylanase/feruloyl esterase. The activities of ß-glucosidase, xylanase, feruloyl esterase and acetyl xylan esterase displayed by GXF were 67.18 %, 49.54 %, 38.92 % and 23.54 %, respectively, higher than that of the corresponding single functional enzymes. Moreover, the GXF performed better in enhancing aroma and quality of Longjing tea than the single functional enzymes and their mixtures. After treatment with GXF, the grassy and floral odors of tea infusion were significantly improved. Moreover, GXF treatment could improve concentrations of flavonoid aglycones of myricetin, kaempferol and quercetin by 68.1-, 81.42- and 77.39-fold, respectively. In addition, GXF could accelerate the release of reducing sugars, ferulic acid and xylo-oligosaccharides by 9.48-, 8.25- and 4.11-fold, respectively. This multifunctional enzyme may have potential applications in other fields such as food production and biomass degradation.


Camellia sinensis , Carboxylic Ester Hydrolases , Tea , beta-Glucosidase , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Camellia sinensis/chemistry , Camellia sinensis/enzymology , Tea/chemistry , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Odorants/analysis
5.
J Microbiol Biotechnol ; 34(5): 1017-1028, 2024 May 28.
Article En | MEDLINE | ID: mdl-38803105

Lignocellulolytic enzymes play a crucial role in efficiently converting lignocellulose into valuable platform molecules in various industries. However, they are limited by their production yields, costs, and stability. Consequently, their production by producers adapted to local environments and the choice of low-cost raw materials can address these limitations. Due to the large amounts of olive stones (OS) generated in Morocco which are still undervalued, Penicillium crustosum, Fusarium nygamai, Trichoderma capillare, and Aspergillus calidoustus, are cultivated under different fermentation techniques using this by-product as a local lignocellulosic substrate. Based on a multilevel factorial design, their potential to produce lignocellulolytic enzymes during 15 days of dark incubation was evaluated. The results revealed that P. crustosum expressed a maximum total cellulase activity of 10.9 IU/ml under sequential fermentation (SF) and 3.6 IU/ml of ß-glucosidase activity under submerged fermentation (SmF). F. nygamai recorded the best laccase activity of 9 IU/ml under solid-state fermentation (SSF). Unlike T. capillare, SF was the inducive culture for the former activity with 7.6 IU/ml. A. calidoustus produced, respectively, 1,009 µg/ml of proteins and 11.5 IU/ml of endoglucanase activity as the best results achieved. Optimum cellulase production took place after the 5th day under SF, while ligninases occurred between the 9th and the 11th days under SSF. This study reports for the first time the lignocellulolytic activities of F. nygamai and A. calidoustus. Furthermore, it underlines the potential of the four fungi as biomass decomposers for environmentally-friendly applications, emphasizing the efficiency of OS as an inducing substrate for enzyme production.


Fermentation , Lignin , Olea , Lignin/metabolism , Olea/microbiology , Aspergillus/enzymology , Aspergillus/metabolism , Cellulase/metabolism , Cellulase/biosynthesis , Laccase/metabolism , Laccase/biosynthesis , Penicillium/enzymology , Penicillium/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/biosynthesis , Fusarium/enzymology , Fusarium/metabolism , Trichoderma/enzymology , Trichoderma/metabolism , Fungi/enzymology , Fungi/metabolism , Morocco , Fungal Proteins/metabolism
6.
ACS Appl Mater Interfaces ; 16(22): 28222-28229, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38779815

ß-Glucosidase (EC 3.2.1.21) from sweet almond was encapsulated into pH-responsive alginate-polyethylenimine (alginate-PEI) hydrogel. Then, electrochemically controlled cyclic local pH changes resulting from ascorbate oxidation (acidification) and oxygen reduction (basification) were used for the pulsatile release of the enzyme from the composite hydrogel. Activation of the enzyme was controlled by the very same pH changes used for ß-glucosidase release, separating these two processes in time. Importantly, the activity of the enzyme, which had not been released yet, was inhibited due to the buffering effect of PEI present in the gel. Thus, only a portion of the released enzyme was activated. Both enzymatic activity and release were monitored by confocal fluorescence microscopy and regular fluorescent spectroscopy. Namely, commercially available very little or nonfluorescent substrate 4-methylumbelliferyl-ß-d-glucopyranoside was hydrolyzed by ß-glucosidase to produce a highly fluorescent product 4-methylumbelliferone during the activation phase. At the same time, labeling of the enzyme with rhodamine B isothiocyanate was used for release observation. The proposed work represents an interesting smart release-activation system with potential applications in biomedical field.


Alginates , Hydrogels , Polyethyleneimine , beta-Glucosidase , Alginates/chemistry , Hydrogels/chemistry , Polyethyleneimine/chemistry , Hydrogen-Ion Concentration , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Rhodamines/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hymecromone/chemistry , Enzyme Activation/drug effects , Prunus/enzymology , Prunus/chemistry , Glucuronic Acid/chemistry , Electrochemical Techniques
7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646750

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Carbon , Cunninghamia , Fagaceae , Nitrogen , Phosphorus , Soil Microbiology , Soil , Soil/chemistry , Cunninghamia/growth & development , Cunninghamia/metabolism , Carbon/metabolism , Carbon/analysis , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/metabolism , Phosphorus/analysis , Fagaceae/growth & development , Fagaceae/metabolism , Leucyl Aminopeptidase/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Ecosystem , Plant Leaves/metabolism , Plant Leaves/chemistry , Acetylglucosaminidase/metabolism , Acid Phosphatase/metabolism , beta-Glucosidase/metabolism , China
8.
Curr Microbiol ; 81(6): 140, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622481

Environmental problems are caused by the disposal of agrowastes in developing countries. It is imperative to convert such wastes into useful products, which require enzymes such as ß-glucosidase. ß-Glucosidase has variety of applications in biotechnology including food, textile, detergents, pulp and paper, pharmaceutical and biofuel industries. ß-Glucosidase production was performed using the locally isolated Aspergillus protuberus using best growth circumstances on rice husk in solid-state fermentation (SSF). Leaching of ß-glucosidase from fermented rice husk with number of solvents to evaluate their extraction efficacy. Among the different solvents examined, acetate buffer (0.02 M, pH 5.0) proved to be the best solvent. The subsequent parameters were optimized with acetate buffer. Two washes with acetate buffer each by shaking (30 min) in a ratio of 1 g of rice husk: 5 ml of acetate buffer together attained maximum recovery of ß-glucosidase with 41.95 U/g of rice husk.


Aspergillus , Oryza , beta-Glucosidase , Fermentation , Solvents , Acetates
9.
Int J Pharm ; 657: 124139, 2024 May 25.
Article En | MEDLINE | ID: mdl-38677396

Mesenchymal stem cell (MSC) therapy shows promise in regenerative medicine. For osteoarthritis (OA), MSCs delivered to the joint have a temporal window in which they can secrete growth factors and extracellular matrix molecules, contributing to cartilage regeneration and cell proliferation. However, upon injection in the non-vascularized joint, MSCs lacking energy supply, starve and die too quickly to efficiently deliver enough of these factors. To feed injected MSCs, we developed a hyaluronic acid (HA) derivative, where glucose is covalently bound to hyaluronic acid. To achieve this, the glucose moiety in 4-aminophenyl-ß-D-glucopyranoside was linked to the HA backbone through amidation. The hydrogel was able to deliver glucose in a controlled manner using a trigger system based on hydrolysis catalyzed by endogenous ß-glucosidase. This led to glucose release from the hyaluronic acid backbone inside the cell. Indeed, our hydrogel proved to rescue starvation and cell mortality in a glucose-free medium. Our approach of adding a nutrient to the polymer backbone in hydrogels opens new avenues to deliver stem cells in poorly vascularized, nutrient-deficient environments, such as osteoarthritic joints, and for other regenerative therapies.


Glucose , Hyaluronic Acid , Hydrogels , Mesenchymal Stem Cells , Osteoarthritis , Hyaluronic Acid/chemistry , Glucose/metabolism , Osteoarthritis/therapy , Hydrogels/chemistry , Humans , Mesenchymal Stem Cell Transplantation/methods , Cell Survival/drug effects , Cells, Cultured , beta-Glucosidase/metabolism , Animals
10.
Int J Biol Macromol ; 265(Pt 2): 131131, 2024 Apr.
Article En | MEDLINE | ID: mdl-38527679

Glycoside hydrolases (GHs) are industrially important enzymes that hydrolyze glycosidic bonds in glycoconjugates. In this study, we found a GH3 ß-glucosidase (CcBgl3B) from Cellulosimicrobium cellulans sp. 21 was able to selectively hydrolyze the ß-1,6-glucosidic bond linked glucose of ginsenosides. X-ray crystallographic studies of the ligand complex ginsenoside-specific ß-glucosidase provided a novel finding that support the catalytic mechanism of GH3. The substrate was clearly identified within the catalytic center of wild-type CcBgl3B, revealing that the C1 atom of the glucose was covalently bound to the Oδ1 group of the conserved catalytic nucleophile Asp264 as an enzyme-glycosyl intermediate. The glycosylated Asp264 could be identified by mass spectrometry. Through site-directed mutagenesis studies with Asp264, it was found that the covalent intermediate state formed by Asp264 and the substrate was critical for catalysis. In addition, Glu525 variants (E525A, E525Q and E525D) showed no or marginal activity against pNPßGlc; thus, this residue could supply a proton for the reaction. Overall, our study provides an insight into the catalytic mechanism of the GH3 enzyme CcBgl3B.


Glycoside Hydrolases , beta-Glucosidase , X-Rays , Hydrolysis , Models, Molecular , beta-Glucosidase/chemistry , Glycoside Hydrolases/chemistry , Glucose/metabolism , Catalysis , Crystallography, X-Ray , Substrate Specificity
11.
Arch Microbiol ; 206(4): 174, 2024 Mar 17.
Article En | MEDLINE | ID: mdl-38493436

The present study focuses on investigating 60 strains of yeast isolated from the natural fermentation broth of Vitis labruscana Baily × Vitis vinifera L. These strains underwent screening using lysine culture medium and esculin culture medium, resulting in the identification of 27 local non-Saccharomyces yeast strains exhibiting high ß-glucosidase production. Subsequent analysis of their fermentation characteristics led to the selection of four superior strains (Z-6, Z-11, Z-25, and Z-58) with excellent ß-glucosidase production and fermentation performance. Notably, these selected strains displayed a dark coloration on esculin medium and exhibited robust gas production during Duchenne tubules' fermentation test. Furthermore, all four non-Saccharomyces yeast strains demonstrated normal growth under specific conditions including SO2 mass concentration ranging from 0.1 to 0.3 g/L, temperature between 25 and 30 °C, glucose mass concentration ranging from 200 to 400 g/L, and ethanol concentration at approximately 4%. Molecular biology identification confirmed that all selected strains belonged to Pichia kudriavzevii species which holds great potential for wine production.


Vitis , Wine , Saccharomyces cerevisiae/metabolism , Fermentation , beta-Glucosidase/metabolism , Esculin/analysis , Yeasts/metabolism , Wine/analysis , Pichia/metabolism
12.
Bioprocess Biosyst Eng ; 47(4): 567-582, 2024 Apr.
Article En | MEDLINE | ID: mdl-38470501

The present study reports a highly thermostable ß-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular ß-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified ß-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of ß-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of ß-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal ß-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant ß-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted ß-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.


Eurotiales , beta-Glucosidase , Hydrolysis , beta-Glucosidase/chemistry , Biomass
13.
Molecules ; 29(5)2024 Feb 26.
Article En | MEDLINE | ID: mdl-38474529

As a crucial enzyme for cellulose degradation, ß-glucosidase finds extensive applications in food, feed, and bioethanol production; however, its potential is often limited by inadequate thermal stability and glucose tolerance. In this study, a functional gene (lq-bg5) for a GH1 family ß-glucosidase was obtained from the metagenomic DNA of a hot spring sediment sample and heterologously expressed in E. coli and the recombinant enzyme was purified and characterized. The optimal temperature and pH of LQ-BG5 were 55 °C and 4.6, respectively. The relative residual activity of LQ-BG5 exceeded 90% at 55 °C for 9 h and 60 °C for 6 h and remained above 100% after incubation at pH 5.0-10.0 for 12 h. More importantly, LQ-BG5 demonstrated exceptional glucose tolerance with more than 40% activity remaining even at high glucose concentrations of 3000 mM. Thus, LQ-BG5 represents a thermophilic ß-glucosidase exhibiting excellent thermal stability and remarkable glucose tolerance, making it highly promising for lignocellulose development and utilization.


Glucose , Hot Springs , Glucose/metabolism , beta-Glucosidase/metabolism , Escherichia coli/metabolism , Temperature , Hydrogen-Ion Concentration , Enzyme Stability , Substrate Specificity
14.
Biochem Biophys Res Commun ; 700: 149608, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38306932

ß-glucosidases (Bgls) are glycosyl hydrolases that catalyze the conversion of cellobiose or glucosyl-polysaccharide into glucose. Bgls are widely used in industry to produce bioethanol, wine and juice, and feed. Tris (tris(hydroxymethyl)aminomethane) is an organic compound that can inhibit the hydrolase activity of some Bgls, but the inhibition state and selectivity have not been fully elucidated. Here, three crystal structures of Thermoanaerobacterium saccharolyticum Bgl complexed with the Tris molecule were determined at 1.55-1.95 Å. The configuration of Tris binding to TsaBgl remained consistent across three crystal structures, and the amino acids interacting with the Tris molecule were conserved across Bgl enzymes. The positions O1 and O3 atoms of Tris exhibit the same binding moiety as the hydroxyl group of the glucose molecule. Tris molecules are stably positioned at the glycone site and coordinate with surrounding water molecules. The Tris-binding configuration of TsaBgl is similar to that of HjeBgl, HgaBgl, ManBgl, and KflBgl, but the arrangement of the water molecule coordinating Tris at the aglycone site differs. Meanwhile, both the arrangement of Tris and the water molecules in ubBgl, NkoBgl, and SfrBgl differ from those in TsaBgl. The binding configuration and affinity of the Tris molecule for Bgl may be affected by the residues on the aglycone and gatekeeper regions. This result will extend our knowledge of the inhibitory effect of Tris molecules on TsaBgl.


Cellobiose , beta-Glucosidase , beta-Glucosidase/metabolism , Cellobiose/metabolism , Glucose/metabolism , Catalysis , Water
15.
Nat Commun ; 15(1): 602, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38238334

Plants usually produce defence metabolites in non-active forms to minimize the risk of harm to themselves and spatiotemporally activate these defence metabolites upon pathogen attack. This so-called two-component system plays a decisive role in the chemical defence of various plants. Here, we discovered that Panax notoginseng, a valuable medicinal plant, has evolved a two-component chemical defence system composed of a chloroplast-localized ß-glucosidase, denominated PnGH1, and its substrates 20(S)-protopanaxadiol ginsenosides. The ß-glucosidase and its substrates are spatially separated in cells under physiological conditions, and ginsenoside hydrolysis is therefore activated only upon chloroplast disruption, which is caused by the induced exoenzymes of pathogenic fungi upon exposure to plant leaves. This activation of PnGH1-mediated hydrolysis results in the production of a series of less-polar ginsenosides by selective hydrolysis of an outer glucose at the C-3 site, with a broader spectrum and more potent antifungal activity in vitro and in vivo than the precursor molecules. Furthermore, such ß-glucosidase-mediated hydrolysis upon fungal infection was also found in the congeneric species P. quinquefolium and P. ginseng. Our findings reveal a two-component chemical defence system in Panax species and offer insights for developing botanical pesticides for disease management in Panax species.


Ginsenosides , Panax , Plants, Medicinal , Ginsenosides/pharmacology , Ginsenosides/chemistry , Panax/chemistry , Panax/metabolism , beta-Glucosidase/metabolism , Plants, Medicinal/metabolism , Plant Extracts/chemistry
16.
BMC Genomics ; 25(1): 118, 2024 Jan 27.
Article En | MEDLINE | ID: mdl-38281030

Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and ßglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of ßglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of ßglu-1 and Ugt5 genes. We observed very large copy numbers of ßglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of ßglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.


Picea , Humans , Picea/genetics , Picea/metabolism , DNA Copy Number Variations , beta-Glucosidase/genetics , Genomics , Transcriptome
17.
Appl Microbiol Biotechnol ; 108(1): 80, 2024 Dec.
Article En | MEDLINE | ID: mdl-38189949

This study describes the characterization of the recombinant GH3 aryl-ß-glucosidase "GluLm" from Limosilactobacillus mucosae INIA P508, followed by its immobilization on an agarose support with the aim of developing an efficient application to increase the availability and concentration of flavonoid and lignan aglycones in a vegetal beverage. In previous studies, heterologous GluLm-producing strains demonstrated a great capacity to deglycosylate flavonoids. Nevertheless, the physicochemical properties and substrate spectrum of the enzyme remained unknown up to now. A high production of purified GluLm was achieved (14 mg L-1). GluLm exhibited optimal activity at broad ranges of pH (5.0-8.0) and temperature (25-60°C), as well as high affinity (Km of 0.10 mmol L-1) and specific constant (86554.0 mmol L-1 s-1) against p-nitrophenyl-ß-D-glucopyranoside. Similar to other GH3 ß-glucosidases described in lactic acid bacteria, GluLm exhibited ß-xylosidase, ß-galactosidase, and ß-fucosidase activities. However, this study has revealed for the first time that a GH3 ß-glucosidase is capable to hydrolyze different families of glycosylated phenolics such as flavonoids and secoiridoids. Although it exhibited low thermal stability, immobilization of GluLm improved its thermostability and allowed the development of a beverage based on soybeans and flaxseed extract with high concentration of bioactive isoflavone (daidzein, genistein), lignan (secoisolariciresinol, pinoresinol, and matairesinol), and other flavonoid aglycones. KEY POINTS: • Limosilactobacillus mucosae INIA P508 GluLm was purified and biochemically characterized • Immobilized GluLm efficiently deglycosylated flavonoids and lignans from a vegetal beverage • A viable application to produce vegetal beverages with a high content of aglycones is described.


Lignans , beta-Glucosidase , Polyphenols , Flavonoids , Phenols
18.
Food Microbiol ; 119: 104458, 2024 May.
Article En | MEDLINE | ID: mdl-38225057

In this study, we conducted a comprehensive investigation into a GH3 family ß-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.


Oenococcus , Wine , Wine/analysis , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Odorants/analysis , Ethanol/metabolism , Oenococcus/genetics , Oenococcus/metabolism , Fermentation
19.
Prep Biochem Biotechnol ; 54(3): 317-327, 2024.
Article En | MEDLINE | ID: mdl-38178713

ß-glucosidase is an essential enzyme for the enzymatic hydrolysis of lignocellulosic biomass, as it catalyzes the final stage of cellulose breakdown, releasing glucose. This paper aims to produce ß-glucosidase from Saccharomyces cerevisiae and evaluate the enzymatic degradation of delignified sugarcane bagasse. S. cerevisiae was grown in yeast peptone dextrose medium. Partial purification of the enzyme was achieved through precipitating proteins with ethanol, and the optimal activity was measured by optimizing pH and temperature. The effects of ions, glucose tolerance, and heat treatment were evaluated. Delignified sugarcane bagasse was hydrolyzed by the enzyme. ß-glucosidase showed a specific activity of 14.0712 ± 0.0207 U mg-1. Partial purification showed 1.22-fold purification. The optimum pH and temperature were 6.24 and 54 °C, respectively. ß-glucosidase showed tolerance to glucose, with a relative activity of 71.27 ± 0.16%. Thermostability showed a relative activity of 58.84 ± 0.91% at 90 °C. The hydrolysis of delignified sugarcane bagasse showed a conversion rate of 87.97 ± 0.10% in the presence of Zn2+, an ion that promoted the highest increase in enzymatic activity. S. cerevisiae produced an extracellular ß-glucosidase with good stability at pH and temperatures conventionally applied in the hydrolysis of lignocellulosic biomass, showing viability for industrial application.


Saccharomyces cerevisiae , Saccharum , Cellulose , Hydrolysis , beta-Glucosidase , Glucose
20.
Theor Appl Genet ; 137(1): 14, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38165440

KEY MESSAGE: HvBGlu3, a ß-glucosidase enzyme gene, negatively influences ß-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. Barley grains are rich in ß-glucan, an important factor affecting end-use quality. Previously, we identified several stable marker-trait associations (MTAs) and novel candidate genes associated with ß-glucan content in barley grains using GWAS (Genome Wide Association Study) analysis. The gene HORVU3Hr1G096910, encoding ß-glucosidase 3, named HvBGlu3, is found to be associated with ß-glucan content in barley grains. In this study, conserved domain analysis suggested that HvBGlu3 belongs to glycoside hydrolase family 1 (GH1). Gene knockout assay revealed that HvBGlu3 negatively influenced ß-glucan content in barley grains. Transcriptome analysis of developing grains of hvbglu3 mutant and the wild type indicated that the knockout of the gene led to the increased expression level of genes involved in starch and sucrose metabolism. Glucose metabolism analysis showed that the contents of many sugars in developing grains were significantly changed in hvbglu3 mutants. In conclusion, HvBGlu3 modulates ß-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. The obtained results may be useful for breeders to breed elite barley cultivars for food use by screening barley lines with loss of function of HvBGlu3 in barley breeding.


Hordeum , beta-Glucans , beta-Glucosidase/genetics , Hordeum/genetics , Genome-Wide Association Study , Plant Breeding , Starch , Sucrose
...