Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 810
Filter
1.
Article in English | MEDLINE | ID: mdl-38865573

ABSTRACT

The group-specific antigen (gag) plays a crucial role in the assembly, release, and maturation of HIV. This study aimed to analyze the partial sequence of the HIV gag gene to classify HIV subtypes, identify recombination sites, and detect protease inhibitor (PI) resistance-associated mutations (RAMs). The cohort included 100 people living with HIV (PLH) who had experienced antiretroviral treatment failure with reverse transcriptase/protease inhibitors. Proviral HIV-DNA was successfully sequenced in 96 out of 100 samples for gag regions, specifically matrix (p17) and capsid (p24). Moreover, from these 96 sequences, 82 (85.42%) were classified as subtype B, six (6.25%) as subtype F1, one (1.04%) as subtype C, and seven (7.29%) exhibited a mosaic pattern between subtypes B and F1 (B/F1), with breakpoints at p24 protein. Insertions and deletions of amino acid at p17 were observed in 51 samples (53.13%). The prevalence of PI RAM in the partial gag gene was observed in 78 out of 96 PLH (81.25%). Among these cases, the most common mutations were R76K (53.13%), Y79F (31.25%), and H219Q (14.58%) at non-cleavage sites, as well as V128I (10.42%) and Y132F (11.46%) at cleavage sites. While B/F1 recombination was identified in the p24, the p17 coding region showed higher diversity, where insertions, deletions, and PI RAM, were observed at high prevalence. In PLH with virological failure, the analysis of the partial gag gene could contribute to more accurate predictions in genotypic resistance to PIs. This can aid guide more effective HIV treatment strategies.


Subject(s)
Genetic Variation , HIV Infections , HIV-1 , gag Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/genetics , HIV-1/drug effects , HIV Infections/drug therapy , HIV Infections/virology , Genetic Variation/genetics , Male , gag Gene Products, Human Immunodeficiency Virus/genetics , Female , Adult , Drug Resistance, Multiple, Viral/genetics , Mutation , Genotype , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , Middle Aged , Phylogeny , DNA, Viral/genetics
2.
Retrovirology ; 21(1): 13, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898526

ABSTRACT

Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.


Subject(s)
Gene Products, gag , HIV-1 , Humans , HIV-1/physiology , HIV-1/genetics , Gene Products, gag/metabolism , Gene Products, gag/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , Rous sarcoma virus/physiology , Rous sarcoma virus/genetics , Proteomics , Host-Pathogen Interactions , Virus Replication , Host Microbial Interactions , Mass Spectrometry
3.
Viruses ; 16(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38932164

ABSTRACT

The HIV-1 nucleocapsid protein (NC) is a multifunctional viral protein necessary for HIV-1 replication. Recent studies have demonstrated that reverse transcription (RT) completes in the intact viral capsid, and the timing of RT and uncoating are correlated. How the small viral core stably contains the ~10 kbp double stranded (ds) DNA product of RT, and the role of NC in this process, are not well understood. We showed previously that NC binds and saturates dsDNA in a non-specific electrostatic binding mode that triggers uniform DNA self-attraction, condensing dsDNA into a tight globule against extending forces up to 10 pN. In this study, we use optical tweezers and atomic force microscopy to characterize the role of NC's basic residues in dsDNA condensation. Basic residue mutations of NC lead to defective interaction with the dsDNA substrate, with the constant force plateau condensation observed with wild-type (WT) NC missing or diminished. These results suggest that NC's high positive charge is essential to its dsDNA condensing activity, and electrostatic interactions involving NC's basic residues are responsible in large part for the conformation, size, and stability of the dsDNA-protein complex inside the viral core. We observe DNA re-solubilization and charge reversal in the presence of excess NC, consistent with the electrostatic nature of NC-induced DNA condensation. Previous studies of HIV-1 replication in the presence of the same cationic residue mutations in NC showed significant defects in both single- and multiple-round viral infectivity. Although NC participates in many stages of viral replication, our results are consistent with the hypothesis that cationic residue mutations inhibit genomic DNA condensation, resulting in increased premature capsid uncoating and contributing to viral replication defects.


Subject(s)
DNA, Viral , HIV-1 , Reverse Transcription , HIV-1/genetics , HIV-1/physiology , HIV-1/chemistry , HIV-1/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , Humans , Cations/metabolism , Virus Replication , Microscopy, Atomic Force , Virion/metabolism , Virion/genetics , Virion/chemistry , Mutation
4.
Retrovirology ; 21(1): 10, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778414

ABSTRACT

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Subject(s)
HIV-1 , Immunity, Innate , Nucleotidyltransferases , gag Gene Products, Human Immunodeficiency Virus , HIV-1/immunology , HIV-1/genetics , HIV-1/physiology , Humans , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Antiviral Restriction Factors , Macrophages/immunology , Macrophages/virology , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , THP-1 Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/immunology , Immune Evasion , Capsid/metabolism , Capsid/immunology , Virus Replication , Virion/metabolism , Virion/genetics , Virion/immunology , Host-Pathogen Interactions/immunology , DNA, Viral/genetics , Cell Line
5.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38687324

ABSTRACT

HIV-1 matrix protein p17 variants (vp17s), characterized by amino acid insertions at the COOH-terminal region of the viral protein, have been recently identified and studied for their biological activity. Different from their wild-type counterpart (refp17), vp17s display a potent B cell growth and clonogenic activity. Recent data have highlighted the higher prevalence of vp17s in people living with HIV-1 (PLWH) with lymphoma compared with those without lymphoma, suggesting that vp17s may play a key role in lymphomagenesis. Molecular mechanisms involved in vp17 development are still unknown. Here we assessed the efficiency of HIV-1 Reverse Transcriptase (RT) in processing this genomic region and highlighted the existence of hot spots of mutation in Gag, at the end of the matrix protein and close to the matrix-capsid junction. This is possibly due to the presence of inverted repeats and palindromic sequences together with a high content of Adenine in the 322-342 nucleotide portion, which constrain HIV-1 RT to pause on the template. To define the recombinogenic properties of hot spots of mutation in the matrix gene, we developed plasmid vectors expressing Gag and a minimally modified Gag variant, and measured homologous recombination following cell co-nucleofection by next-generation sequencing. Data obtained allowed us to show that a wide range of recombination events occur in concomitance with the identified hot spots of mutation and that imperfect events may account for vp17s generation.


Subject(s)
HIV Antigens , HIV-1 , Oncogene Proteins , Recombination, Genetic , gag Gene Products, Human Immunodeficiency Virus , HIV Antigens/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , Oncogene Proteins/genetics , Mutation , Genetic Variation , HIV-1/genetics , Cell Line, Tumor , Humans , Sequence Alignment
6.
Vaccine ; 42(15): 3474-3485, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38641492

ABSTRACT

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) vaccines have been long overdue. Structure-based vaccine design created a new momentum in the last decade, and the first RSV vaccines have finally been approved in older adults and pregnant individuals. These vaccines are based on recombinant stabilized pre-fusion F glycoproteins administered as soluble proteins. Multimeric antigenic display could markedly improve immunogenicity and should be evaluated in the next generations of vaccines. Here we tested a new virus like particles-based vaccine platform which utilizes the direct fusion of an immunogen of interest to the structural human immunodeficient virus (HIV) protein Gag to increase its surface density and immunogenicity. We compared, in mice, the immunogenicity of RSV-F or hMPV-F based immunogens delivered either as soluble proteins or displayed on the surface of our VLPs. VLP associated F-proteins showed better immunogenicity and induced superior neutralizing responses. Moreover, when combining both VLP associated and soluble immunogens in a heterologous regimen, VLP-associated immunogens provided added benefits when administered as the prime immunization.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Metapneumovirus , Mice, Inbred BALB C , Vaccines, Virus-Like Particle , Viral Fusion Proteins , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Metapneumovirus/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Female , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , Respiratory Syncytial Virus, Human/immunology , Immunogenicity, Vaccine , Humans , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage
7.
J Biol Chem ; 300(3): 105687, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280430

ABSTRACT

HIV-1 Gag protein is synthesized in the cytosol and is transported to the plasma membrane, where viral particle assembly and budding occur. Endosomes are alternative sites of Gag accumulation. However, the intracellular transport pathways and carriers for Gag have not been clarified. We show here that Syntaxin6 (Syx6), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane fusion in post-Golgi networks, is a molecule responsible for Gag trafficking and also for tumor necrosis factor-α (TNFα) secretion and that Gag and TNFα are cotransported via Syx6-positive compartments/vesicles. Confocal and live-cell imaging revealed that Gag colocalized and cotrafficked with Syx6, a fraction of which localizes in early and recycling endosomes. Syx6 knockdown reduced HIV-1 particle production, with Gag distributed diffusely throughout the cytoplasm. Coimmunoprecipitation and pulldown show that Gag binds to Syx6, but not its SNARE partners or their assembly complexes, suggesting that Gag preferentially binds free Syx6. The Gag matrix domain and the Syx6 SNARE domain are responsible for the interaction and cotrafficking. In immune cells, Syx6 knockdown/knockout similarly impaired HIV-1 production. Interestingly, HIV-1 infection facilitated TNFα secretion, and this enhancement did not occur in Syx6-depleted cells. Confocal and live-cell imaging revealed that TNFα and Gag partially colocalized and were cotransported via Syx6-positive compartments/vesicles. Biochemical analyses indicate that TNFα directly binds the C-terminal domain of Syx6. Altogether, our data provide evidence that both Gag and TNFα make use of Syx6-mediated trafficking machinery and suggest that Gag expression does not inhibit but rather facilitates TNFα secretion in HIV-1 infection.


Subject(s)
HIV-1 , Qa-SNARE Proteins , Transport Vesicles , Tumor Necrosis Factor-alpha , gag Gene Products, Human Immunodeficiency Virus , Endosomes/metabolism , HIV-1/genetics , HIV-1/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Protein Transport/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , Protein Binding , Protein Domains , HIV Infections/metabolism , HIV Infections/virology , Humans , Cell Line , Transport Vesicles/metabolism , Virus Replication/genetics
8.
PLoS One ; 18(1): e0280568, 2023.
Article in English | MEDLINE | ID: mdl-36652466

ABSTRACT

GSK2838232 (GSK232) is a novel maturation inhibitor that blocks the proteolytic cleavage of HIV-1 Gag at the junction of capsid and spacer peptide 1 (CA/SP1), rendering newly-formed virions non-infectious. To our knowledge, GSK232 has not been tested against HIV-2, and there are limited data regarding the susceptibility of HIV-2 to other HIV-1 maturation inhibitors. To assess the potential utility of GSK232 as an option for HIV-2 treatment, we determined the activity of the compound against a panel of HIV-1, HIV-2, and SIV isolates in culture. GSK232 was highly active against HIV-1 isolates from group M subtypes A, B, C, D, F, and group O, with IC50 values ranging from 0.25-0.92 nM in spreading (multi-cycle) assays and 1.5-2.8 nM in a single cycle of infection. In contrast, HIV-2 isolates from groups A, B, and CRF01_AB, and SIV isolates SIVmac239, SIVmac251, and SIVagm.sab-2, were highly resistant to GSK232. To determine the role of CA/SP1 in the observed phenotypes, we constructed a mutant of HIV-2ROD9 in which the sequence of CA/SP1 was modified to match the corresponding sequence found in HIV-1. The resulting variant was fully susceptible to GSK232 in the single-cycle assay (IC50 = 1.8 nM). Collectively, our data indicate that the HIV-2 and SIV isolates tested in our study are intrinsically resistant to GSK232, and that the determinants of resistance map to CA/SP1. The molecular mechanism(s) responsible for the differential susceptibility of HIV-1 and HIV-2/SIV to GSK232 require further investigation.


Subject(s)
Anti-HIV Agents , HIV Seropositivity , Triterpenes , Humans , Virus Replication , HIV-2/genetics , Triterpenes/pharmacology , gag Gene Products, Human Immunodeficiency Virus/genetics , Capsid Proteins/genetics , Peptides/pharmacology , Anti-HIV Agents/pharmacology
9.
Virulence ; 13(1): 1713-1719, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36190143

ABSTRACT

Accumulation of mutations in epitopes of cytolytic-T-lymphocytes immune response (CTL) in HIV-reservoir seems to be one of the reasons for shock-and-kill strategy failure. Ten non-controller patients on successful cART (TX) and seven elite controllers (EC) were included. HIV-Gag gene from purified resting memory CD4+ T-cells was sequenced by Next-Generation-Sequencing. HLA class-I alleles were typed to predict optimal HIV-Gag CTL epitopes. For each subject, the frequency of mutated epitopes in the HIV-Gag gene, the proportion of them considered as CTL-escape variants as well as their effect on antigen recognition by HLA were assessed. The proportion (%) of mutated HIV-Gag CTL epitopes in the reservoir was high and similar in EC and TX (86%[50-100] and 57%[48-82] respectively, p=0.315). Many of them were predicted to negatively impact antigen recognition. Moreover, the proportion of mutated epitopes considered to be CTL-escape variants was also similar in TX and EC (77%[49-92] vs. 50%[33-75] respectively, p=0.117). Thus, the most relevant finding of our study was the high and similar proportions of HIV-Gag CTL-escape mutations in the reservoir of both HIV-noncontroller patients with cART (TX) and patients with spontaneous HIV-control (EC). Our findings suggest that escape mutations of CTL-response may be another obstacle to eliminate the HIV reservoir and constitute a proof of concept that challenges HIV cure strategies focused on the reactivation of reservoirs. Due to the small sample size that could impact the robustness of the study, further studies with larger cohorts of elite controller patients are needed to confirm these results.


Subject(s)
HIV Infections , HIV-1 , Elite Controllers , Epitopes , HIV-1/genetics , Humans , Mutation , T-Lymphocytes, Cytotoxic , gag Gene Products, Human Immunodeficiency Virus/genetics
10.
Viruses ; 14(8)2022 08 17.
Article in English | MEDLINE | ID: mdl-36016420

ABSTRACT

The Human Immunodeficiency Virus-1 (HIV-1) nucleocapsid protein (NC) as a mature protein or as a domain of the Gag precursor plays important roles in the early and late phases of the infection. To better understand its roles, we searched for new cellular partners and identified the RNA-binding protein Unr/CSDE1, Upstream of N-ras, whose interaction with Gag and NCp7 was confirmed by co-immunoprecipitation and FRET-FLIM. Unr interaction with Gag was found to be RNA-dependent and mediated by its NC domain. Using a dual luciferase assay, Unr was shown to act as an ITAF (IRES trans-acting factor), increasing the HIV-1 IRES-dependent translation. Point mutations of the HIV-1 IRES in a consensus Unr binding motif were found to alter both the IRES activity and its activation by Unr, suggesting a strong dependence of the IRES on Unr. Interestingly, Unr stimulatory effect is counteracted by NCp7, while Gag increases the Unr-promoted IRES activity, suggesting a differential Unr effect on the early and late phases of viral infection. Finally, knockdown of Unr in HeLa cells leads to a decrease in infection by a non-replicative lentivector, proving its functional implication in the early phase of viral infection.


Subject(s)
HIV-1 , DNA-Binding Proteins/metabolism , Genes, ras , HIV-1/genetics , HIV-1/metabolism , HeLa Cells , Humans , RNA-Binding Proteins/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
11.
J Mol Biol ; 434(19): 167753, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35868362

ABSTRACT

Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.


Subject(s)
Capsid Proteins , HIV-2 , gag Gene Products, Human Immunodeficiency Virus , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , HIV-1/genetics , HIV-2/genetics , Humans , Mutagenesis , Protein Conformation , Virus Assembly/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
12.
Proc Natl Acad Sci U S A ; 119(27): e2122050119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35763571

ABSTRACT

AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)-infected patients. In particular, non-Hodgkin's lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1-infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1-infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.


Subject(s)
B-Lymphocytes , HIV Antigens , HIV-1 , Lymphoma, AIDS-Related , gag Gene Products, Human Immunodeficiency Virus , B-Lymphocytes/virology , Genetic Variation , HIV Antigens/genetics , HIV-1/genetics , HIV-1/isolation & purification , Humans , Lymphoma, AIDS-Related/epidemiology , Lymphoma, AIDS-Related/virology , Prevalence , Retrospective Studies , gag Gene Products, Human Immunodeficiency Virus/genetics
13.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35458554

ABSTRACT

A designed repeat scaffold protein (AnkGAG1D4) recognizing the human immunodeficiency virus-1 (HIV-1) capsid (CA) was formerly established with antiviral assembly. Here, we investigated the molecular mechanism of AnkGAG1D4 function during the late stages of the HIV-1 replication cycle. By applying stimulated emission-depletion (STED) microscopy, Gag polymerisation was interrupted at the plasma membrane. Disturbance of Gag polymerisation triggered Gag accumulation inside producer cells and trapping of the CD81 tetraspanin on the plasma membrane. Moreover, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) experiments were performed to validate the packaging efficiency of RNAs. Our results advocated that AnkGAG1D4 interfered with the Gag precursor protein from selecting HIV-1 and cellular RNAs for encapsidation into viral particles. These findings convey additional information on the antiviral activity of AnkGAG1D4 at late stages of the HIV-1 life cycle, which is potential for an alternative anti-HIV molecule.


Subject(s)
Designed Ankyrin Repeat Proteins , HIV-1 , Antiviral Agents/pharmacology , Capsid/metabolism , Capsid Proteins/genetics , HIV-1/genetics , HIV-1/metabolism , Humans , RNA , RNA, Viral/metabolism , Tetraspanins , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
14.
Front Immunol ; 13: 850719, 2022.
Article in English | MEDLINE | ID: mdl-35450078

ABSTRACT

HIV-1 CRF07_BC-p6Δ7, a strain with a seven amino acid deletion in the p6 region of the Gag protein, is becoming the dominant strain of HIV transmission among men who have sex with men (MSM) in China. Previous studies demonstrated that HIV-1 patients infected by CRF07_BC-p6Δ7 strain had lower viral load and slower disease progression than those patients infected with CRF07_BC wild-type strain. However, the underlying mechanism for this observation is not fully clarified yet. In this study, we constructed the recombinant DNA plasmid and adenovirus type 2 (Ad2) vector-based constructs to express the HIV-1 CRF07_BC Gag antigen with or without p6Δ7 mutation and then investigated their immunogenicity in mice. Our results showed that HIV-1 CRF07_BC Gag antigen with p6Δ7 mutation induced a comparable level of Gag-specific antibodies but stronger CD4+ and CD8+ T-cell immune responses than that of CRF07_BC Gag (07_BC-wt). Furthermore, we identified a series of T-cell epitopes, which induced strong T-cell immune response and cross-immunity with CRF01_AE Gag. These findings implied that the p6Gag protein with a seven amino acid deletion might enhance the Gag immunogenicity in particular cellular immunity, which provides valuable information to clarify the pathogenic mechanism of HIV-1 CRF07_BC-p6Δ7 and to develop precise vaccine strategies against HIV-1 infection.


Subject(s)
Epitopes, T-Lymphocyte , HIV-1 , gag Gene Products, Human Immunodeficiency Virus , Amino Acids , Animals , Antigens, Viral , HIV Infections/virology , HIV-1/genetics , Homosexuality, Male , Humans , Male , Mice , Sexual and Gender Minorities , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
15.
Viruses ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35215933

ABSTRACT

The viral polyprotein Gag plays a central role for HIV-1 assembly, release and maturation. Proteolytic processing of Gag by the viral protease is essential for the structural rearrangements that mark the transition from immature to mature, infectious viruses. The timing and kinetics of Gag processing are not fully understood. Here, fluorescence lifetime imaging microscopy and single virus tracking are used to follow Gag processing in nascent HIV-1 particles in situ. Using a Gag polyprotein labelled internally with eCFP, we show that proteolytic release of the fluorophore from Gag is accompanied by an increase in its fluorescence lifetime. By tracking nascent virus particles in situ and analyzing the intensity and fluorescence lifetime of individual traces, we detect proteolytic cleavage of eCFP from Gag in a subset (6.5%) of viral particles. This suggests that for the majority of VLPs, Gag processing occurs with a delay after particle assembly.


Subject(s)
HIV Infections/virology , HIV-1/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , Fluorescence , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HIV-1/chemistry , HIV-1/genetics , HIV-1/growth & development , Humans , Kinetics , Microscopy, Fluorescence , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
16.
Front Immunol ; 13: 822210, 2022.
Article in English | MEDLINE | ID: mdl-35173732

ABSTRACT

In HIV infection, some closely associated human leukocyte antigen (HLA) alleles are correlated with distinct clinical outcomes although presenting the same HIV epitopes. The mechanism that underpins this observation is still unknown, but may be due to the essential features of HLA alleles or T cell receptors (TCR). In this study, we investigate how T18A TCR, which is beneficial for a long-term control of HIV in clinic, recognizes immunodominant Gag epitope TL9 (TPQDLTML180-188) from HIV in the context of the antigen presenting molecule HLA-B*81:01. We found that T18A TCR exhibits differential recognition for TL9 restricted by HLA-B*81:01. Furthermore, via structural and biophysical approaches, we observed that TL9 complexes with HLA-B*81:01 undergoes no conformational change after TCR engagement. Remarkably, the CDR3ß in T18A complexes does not contact with TL9 at all but with intensive contacts to HLA-B*81:01. The binding kinetic data of T18A TCR revealed that this TCR can recognize TL9 epitope and several mutant versions, which might explain the correlation of T18A TCR with better clinic outcomes despite the relative high mutation rate of HIV. Collectively, we provided a portrait of how CD8+ T cells engage in HIV-mediated T cell response.


Subject(s)
HIV-1/metabolism , HLA-B Antigens/immunology , Mutation/genetics , Receptors, Antigen, T-Cell/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , CD8-Positive T-Lymphocytes/immunology , Humans , Immunodominant Epitopes/immunology , gag Gene Products, Human Immunodeficiency Virus/chemistry
17.
STAR Protoc ; 3(1): 101056, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35005638

ABSTRACT

Host tRNAs specifically interact with the matrix domain (MA) of HIV-1 major structural polyprotein, Gag, to control its membrane localization and virion assembly. In this protocol, we describe the purification and engineering of HIV-1 MA and tRNA, and the co-crystallization and structure determination of the complex using X-ray crystallography. Rational engineering of the tRNA surface created tRNA-tRNA packing contacts that drove the formation of diffraction-quality co-crystals. This protocol can be adapted to solve other ribonucleoprotein complex structures containing structured RNAs. For complete details on the use and execution of this protocol, please refer to Bou-Nader et al. (2021).


Subject(s)
HIV-1 , Crystallization , HIV-1/genetics , RNA, Transfer/genetics , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/genetics
18.
Sci Rep ; 12(1): 1374, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082353

ABSTRACT

Response to ritonavir-boosted-protease inhibitors (PI/r)-based regimen is associated with some Gag mutations among HIV-1 B-clade. There is limited data on Gag mutations and their covariation with mutations in protease among HIV-1 non-B-clades at PI/r-based treatment failure. Thus, we characterized Gag mutations present in isolates from HIV-1 infected individuals treated with a PI/r-regimen (n = 143) and compared them with those obtained from individuals not treated with PI/r (ART-naïve [n = 101] or reverse transcriptase inhibitors (RTI) treated [n = 118]). The most frequent HIV-1 subtypes were CRF02_AG (54.69%), A (13.53%), D (6.35%) and G (4.69%). Eighteen Gag mutations showed a significantly higher prevalence in PI/r-treated isolates compared to ART-naïve (p < 0.05): Group 1 (prevalence < 1% in drug-naïve): L449F, D480N, L483Q, Y484P, T487V; group 2 (prevalence 1-5% in drug-naïve): S462L, I479G, I479K, D480E; group 3 (prevalence ≥ 5% in drug-naïve): P453L, E460A, R464G, S465F, V467E, Q474P, I479R, E482G, T487A. Five Gag mutations (L449F, P453L, D480E, S465F, Y484P) positively correlated (Phi ≥ 0.2, p < 0.05) with protease-resistance mutations. At PI/r-failure, no significant difference was observed between patients with and without these associated Gag mutations in term of viremia or CD4 count. This analysis suggests that some Gag mutations show an increased frequency in patients failing PIs among HIV-1 non-B clades.


Subject(s)
Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Protease Inhibitors/therapeutic use , HIV-1/classification , HIV-1/genetics , Mutation , Reverse Transcriptase Inhibitors/therapeutic use , Ritonavir/therapeutic use , gag Gene Products, Human Immunodeficiency Virus/genetics , Adult , CD4 Lymphocyte Count , Cameroon/epidemiology , Female , Genotype , HIV Infections/blood , HIV Infections/virology , HIV Protease/genetics , HIV Protease Inhibitors/pharmacology , Humans , Male , Middle Aged , Mutation/drug effects , Phylogeny , Prevalence , Reverse Transcriptase Inhibitors/pharmacology , Ritonavir/pharmacology , Treatment Failure
19.
Nucleic Acids Res ; 50(8): e44, 2022 05 06.
Article in English | MEDLINE | ID: mdl-34967412

ABSTRACT

Many pathological processes are driven by RNA-protein interactions, making such interactions promising targets for molecular interventions. HIV-1 assembly is one such process, in which the viral genomic RNA interacts with the viral Gag protein and serves as a scaffold to drive Gag multimerization that ultimately leads to formation of a virus particle. Here, we develop self-assembled RNA nanostructures that can inhibit HIV-1 virus assembly, achieved through hybridization of multiple artificial small RNAs with a stem-loop structure (STL) that we identify as a prominent ligand of Gag that can inhibit virus particle production via STL-Gag interactions. The resulting STL-decorated nanostructures (double and triple stem-loop structures denoted as Dumbbell and Tribell, respectively) can elicit more pronounced viral blockade than their building blocks, with the inhibition arising as a result of nanostructures interfering with Gag multimerization. These findings could open up new avenues for RNA-based therapy.


Subject(s)
HIV-1 , Nanostructures , HIV-1/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Virion/metabolism , Virus Assembly/physiology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
20.
J Virol ; 96(1): e0149921, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34668779

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) viremic nonprogressors (VNPs) represent a very rare HIV-1 extreme phenotype. VNPs are characterized by persistent high plasma viremia and maintenance of CD4+ T-cell counts in the absence of treatment. However, the causes of nonpathogenic HIV-1 infection in VNPs remain elusive. Here, we identified for the first time two VNPs who experienced the loss of CD4+ homeostasis (LoH) after more than 13 years. We characterized in deep detail viral and host factors associated with the LoH and compared with standard VNPs and healthy controls. The viral factors determined included HIV-1 coreceptor usage and replicative capacity. Changes in CD4+ and CD8+ T-cell activation, maturational phenotype, and expression of CCR5 and CXCR6 in CD4+ T-cells were also evaluated as host-related factors. Consistently, we determined a switch in HIV-1 coreceptor use to CXCR4 concomitant with an increase in replicative capacity at the LoH for the two VNPs. Moreover, we delineated an increase in the frequency of HLA-DR+CD38+ CD4+ and CD8+ T cells and traced the augment of naive T-cells upon polyclonal activation with LoH. Remarkably, very low and stable levels of CCR5 and CXCR6 expression in CD4+ T-cells were measured over time. Overall, our results demonstrated HIV-1 evolution toward highly pathogenic CXCR4 strains in the context of very limited and stable expression of CCR5 and CXCR6 in CD4+ T cells as potential drivers of LoH in VNPs. These data bring novel insights into the correlates of nonpathogenic HIV-1 infection. IMPORTANCE The mechanism behind nonpathogenic human immunodeficiency virus type 1 (HIV-1) infection remains poorly understood, mainly because of the very low frequency of viremic nonprogressors (VNPs). Here, we report two cases of VNPs who experienced the loss of CD4+ T-cell homeostasis (LoH) after more than 13 years of HIV-1 infection. The deep characterization of viral and host factors supports the contribution of viral and host factors to the LoH in VNPs. Thus, HIV-1 evolution toward highly replicative CXCR4 strains together with changes in T-cell activation and maturational phenotypes were found. Moreover, we measured very low and stable levels of CCR5 and CXCR6 in CD4+ T-cells over time. These findings support viral evolution toward X4 strains limited by coreceptor expression to control HIV-1 pathogenesis and demonstrate the potential of host-dependent factors, yet to be fully elucidated in VNPs, to control HIV-1 pathogenesis.


Subject(s)
CD4 Lymphocyte Count , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Viral Load , Viremia/virology , Female , HIV Infections/immunology , HIV-1/classification , Host-Pathogen Interactions/immunology , Humans , Lymphocyte Activation , Male , Phylogeny , Receptors, CCR5/metabolism , Receptors, CCR6/metabolism , Receptors, CXCR4/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL