Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
1.
Angew Chem Int Ed Engl ; 63(34): e202403941, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38853146

ABSTRACT

Rho GTPases, master spatial regulators of a wide range of cellular processes, are orchestrated by complex formation with guanine nucleotide dissociation inhibitors (RhoGDIs). These have been thought to possess an unstructured N-terminus that inhibits nucleotide exchange of their client upon binding/folding. Via NMR analyses, molecular dynamics simulations, and biochemical assays, we reveal instead pertinent structural properties transiently maintained both, in the presence and absence of the client, imposed onto the terminus context-specifically by modulating interactions with the surface of the folded C-terminal domain. These observations revise the long-standing textbook picture of the GTPases' mechanism of membrane extraction. Rather than by a disorder-to-order transition upon binding of an inhibitory peptide, the intricate and highly selective extraction process of RhoGTPases is orchestrated via a dynamic ensemble bearing preformed transient structural properties, suitably modulated by the specific surrounding along the multi-step process.


Subject(s)
Molecular Dynamics Simulation , Humans , rho-Specific Guanine Nucleotide Dissociation Inhibitors/chemistry , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Protein Conformation
2.
EMBO Rep ; 25(3): 1490-1512, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253689

ABSTRACT

How receptors juggle their interactions with multiple downstream effectors remains poorly understood. Here we show that the outcome of death receptor p75NTR signaling is determined through competition of effectors for interaction with its intracellular domain, in turn dictated by the nature of the ligand. While NGF induces release of RhoGDI through recruitment of RIP2, thus decreasing RhoA activity in favor of NFkB signaling, MAG induces PKC-mediated phosphorylation of the RhoGDI N-terminus, promoting its interaction with the juxtamembrane domain of p75NTR, disengaging RIP2, and enhancing RhoA activity in detriment of NF-kB. This results in stunted neurite outgrowth and apoptosis in cerebellar granule neurons. If presented simultaneously, MAG prevails over NGF. The NMR solution structure of the complex between the RhoGDI N-terminus and p75NTR juxtamembrane domain reveals previously unknown structures of these proteins and clarifies the mechanism of p75NTR activation. These results show how ligand-directed competition between RIP2 and RhoGDI for p75NTR engagement determine axon growth and neuron survival. Similar principles are likely at work in other receptors engaging multiple effectors and signaling pathways.


Subject(s)
NF-kappa B , Neurons , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Ligands , Phosphorylation , NF-kappa B/metabolism , Neurons/metabolism , Receptors, Death Domain/metabolism , Axons/metabolism , Receptor, Nerve Growth Factor/metabolism
3.
Biophys J ; 123(1): 57-67, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37978802

ABSTRACT

Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.


Subject(s)
Guanine Nucleotide Dissociation Inhibitors , rho Guanine Nucleotide Dissociation Inhibitor alpha , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Phosphorylation , Guanine Nucleotide Dissociation Inhibitors/chemistry , Guanine Nucleotide Dissociation Inhibitors/metabolism , rho Guanine Nucleotide Dissociation Inhibitor alpha/metabolism , Protein Binding , rhoA GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
4.
Hematology ; 28(1): 2244856, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37594290

ABSTRACT

OBJECTIVES: Chronic myeloid leukemia (CML) is an aggressive malignancy originating from hematopoietic stem cells. Imatinib (IM), the first-generation tyrosine kinase inhibitor, has greatly improved theliving quality of CML patients. However, owing to the recurrence and treatment failure coming from tyrosine kinase inhibitor (TKIs) resistance, some CML patients still bear poor prognosis. Therefore, we aimed to seek potential signaling pathways and specific biomarkers for imatinib resistance. METHODS: We performed mRNA and miRNA expression profiling in imatinib-sensitive K562 cells (IS-K562) and imatinib-resistant K562 cells (IR-K562). Differentially expressed genes (DEGs) were identified and pathway enrichment analyses were performed to explore the potential mechanism. The protein-protein interaction (PPI) network and miRNA-mRNA regulatory network were constructed to explore potential relationships among these genes. RT-qPCR, western blot and CCK8 were used for further experiments. RESULTS: A total of 623 DEGs and 61 differentially expressed miRNAs were identified. GO revealed that DEGs were mainly involved in cell adhesion, cell migration, differentiation, and inflammatory response. KEGG revealed that DEGs were typically enriched in the Rap1 signaling pathway, focal adhesion, proteoglycans and transcriptional misregulation in cancer, signaling pathways regulating pluripotency of stem cells and some immune-related pathways. The protein-protein interaction (PPI) network and miRNA-mRNA regulatory network revealed a web of diverse connections among genes. Finally, we proved that RHoGDI2 played a critical role in imatinib resistance. CONCLUSION: The dynamic interplay between genes and signaling pathways is associated with TKIs resistance and RHoGDI2 is identified as a biomarker in IR-K562.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , rho Guanine Nucleotide Dissociation Inhibitor beta , K562 Cells , MicroRNAs/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Biomarkers , Computational Biology
5.
J Sex Med ; 20(1): 1-13, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36897236

ABSTRACT

BACKGROUND: Sex steroids have been demonstrated as important modulators of vaginal function. The RhoA/ROCK calcium-sensitizing pathway plays a role in genital smooth muscle contractile mechanism, but its regulation has never been elucidated. AIM: This study investigated the sex steroid regulation of the vaginal smooth muscle RhoA/ROCK pathway using a validated animal model. METHODS: Ovariectomized (OVX) Sprague-Dawley rats were treated with 17ß-estradiol (E2), testosterone (T), and T with letrozole (T + L) and compared with intact animals. Contractility studies were performed to test the effect of the ROCK inhibitor Y-27632 and the nitric oxide (NO) synthase inhibitor L-NAME. In vaginal tissues, ROCK1 immunolocalization was investigated; mRNA expression was analyzed by semiquantitative reverse transcriptase-polymerase chain reaction; and RhoA membrane translocation was evaluated by Western blot. Finally, rat vaginal smooth muscle cells (rvSMCs) were isolated from the distal vagina of intact and OVX animals, and quantification of the RhoA inhibitory protein RhoGDI was performed after stimulation with NO donor sodium nitroprusside, with or without administration of the soluble guanylate cyclase inhibitor ODQ or PRKG1 inhibitor KT5823. OUTCOMES: Androgens are critical in inhibiting the RhoA/ROCK pathway of the smooth muscle compartment in the distal vagina. RESULTS: ROCK1 was immunolocalized in the smooth muscle bundles and blood vessel wall of the vagina, with weak positivity detected in the epithelium. Y-27632 induced a dose-dependent relaxation of noradrenaline precontracted vaginal strips, decreased by OVX and restored by E2, while T and T + L decreased it below the OVX level. In Western blot analysis, when compared with control, OVX significantly induced RhoA activation, as revealed by its membrane translocation, with T reverting it at a level significantly lower than in controls. This effect was not exerted by E2. Abolishing NO formation via L-NAME increased Y-27632 responsiveness in the OVX + T group; L-NAME had partial effects in controls while not modulating Y-27632 responsiveness in the OVX and OVX + E2 groups. Finally, stimulation of rvSMCs from control animals with sodium nitroprusside significantly increased RhoGDI protein expression, counteracted by ODQ and partially by KT5823 incubation; no effect was observed in rvSMCs from OVX rats. CLINICAL IMPLICATIONS: Androgens, by inhibiting the RhoA/ROCK pathway, could positively contribute to vaginal smooth muscle relaxation, favoring sexual intercourse. STRENGTHS AND LIMITATIONS: This study describes the role of androgens in maintaining vaginal well-being. The absence of a sham-operated animal group and the use of the only intact animal as control represented a limitation to the study.


Subject(s)
Androgens , Testosterone , Female , Rats , Animals , Humans , Rats, Sprague-Dawley , Nitroprusside , NG-Nitroarginine Methyl Ester , Estradiol/pharmacology , Letrozole , Vagina/physiology , Enzyme Inhibitors , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Ovariectomy , rhoA GTP-Binding Protein/metabolism
6.
Gen Physiol Biophys ; 41(6): 511-521, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36454112

ABSTRACT

This study serves to investigate the effects of the Smad pathway on TGFß1-mediated RhoGDI expression and its binding to RhoGTPases in myofibroblast transdifferentiation. Myofibroblast transdifferentiation was induced by TGFß1 in vitro. Cells were pretreated with different siRNAs or inhibitors. Myofibroblast transdifferentiation was detected by immunohistochemistry. Immunofluorescence was used to observe the nuclear translocation of Smad4, and PSR (Picrositius Red) staining was used to measure collagen concentration. TGFß1 induced the phosphorylation of Smad2/3 and the nuclear translocation of Smad4 in human aortic adventitial fibroblasts (HAAFs). Furthermore, TGFß1 increased the expression of RhoGDI and its binding to RhoGTPases. Nevertheless, inhibition of Smad2/3 phosphorylation decreased TGFß1-induced RhoGDI1/2 expressions and RhoGDI2-RhoGTPases interactions. These data suggested that the inhibition of Smad phosphorylation attenuates myofibroblast transdifferentiation by inhibiting TGFß1-induced RhoGDI1/2 expressions and RhoGDI-RhoGTPases signaling.


Subject(s)
Cell Transdifferentiation , Myofibroblasts , Humans , rho-Specific Guanine Nucleotide Dissociation Inhibitors , rho Guanine Nucleotide Dissociation Inhibitor alpha , Signal Transduction
7.
Sci Rep ; 12(1): 16493, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192543

ABSTRACT

Regulation of Rho GTPases remains a topic of active investigation as they are essential participants in cell biology and the pathophysiology of many human diseases. Non-degrading ubiquitination (NDU) is a critical regulator of the Ras superfamily, but its relevance to Rho proteins remains unknown. We show that RhoC, but not RhoA, is a target of NDU by E3 ubiquitin ligase, LNX1. Furthermore, LNX1 ubiquitination of RhoC is negatively regulated by LIS1 (aka, PAFAH1B1). Despite multiple reports of functional interaction between LIS1 and activity of Rho proteins, a robust mechanism linking the two has been lacking. Here, LIS1 inhibition of LNX1 effects on RhoGDI-RhoC interaction provides a molecular mechanism underpinning the enhanced activity of Rho proteins observed upon reduction in LIS1 protein levels. Since LNX1 and RhoC are only found in vertebrates, the LIS1-LNX1-RhoC module represents an evolutionarily acquired function of the highly conserved LIS1. While these nearly identical proteins have several distinct RhoA and RhoC downstream effectors, our data provide a rare example of Rho-isoform specific, upstream regulation that opens new therapeutic opportunities.


Subject(s)
rho GTP-Binding Proteins , rhoA GTP-Binding Protein , Animals , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , rhoA GTP-Binding Protein/metabolism , rhoC GTP-Binding Protein/metabolism
8.
Cells ; 11(18)2022 09 09.
Article in English | MEDLINE | ID: mdl-36139394

ABSTRACT

The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) is the physical contact site between the ER and the mitochondria and plays a vital role in the regulation of calcium signaling, bioenergetics, and inflammation. Disturbances in these processes and dysregulation of the ER and mitochondrial homeostasis contribute to the pathogenesis of diabetic retinopathy (DR). However, few studies have examined the impact of diabetes on the retinal MAM and its implication in DR pathogenesis. In the present study, we investigated the proteomic changes in retinal MAM from Long Evans rats with streptozotocin-induced long-term Type 1 diabetes. Furthermore, we performed in-depth bioinformatic analysis to identify key MAM proteins and pathways that are potentially implicated in retinal inflammation, angiogenesis, and neurodegeneration. A total of 2664 unique proteins were quantified using IonStar proteomics-pipeline in rat retinal MAM, among which 179 proteins showed significant changes in diabetes. Functional annotation revealed that the 179 proteins are involved in important biological processes such as cell survival, inflammatory response, and cellular maintenance, as well as multiple disease-relevant signaling pathways, e.g., integrin signaling, leukocyte extravasation, PPAR, PTEN, and RhoGDI signaling. Our study provides comprehensive information on MAM protein changes in diabetic retinas, which is helpful for understanding the mechanisms of metabolic dysfunction and retinal cell injury in DR.


Subject(s)
Diabetes Mellitus , Retinal Degeneration , Animals , Calcium Signaling , Diabetes Mellitus/metabolism , Endoplasmic Reticulum/metabolism , Inflammation/metabolism , Integrins/metabolism , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Proteomics , Rats , Rats, Long-Evans , Retinal Degeneration/metabolism , Streptozocin , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism
9.
IEEE J Biomed Health Inform ; 26(9): 4785-4793, 2022 09.
Article in English | MEDLINE | ID: mdl-35820010

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and a leading cause of cancer-related deaths worldwide. Using an integrative approach, we analyzed a publicly available merged NSCLC transcriptome dataset using machine learning, protein-protein interaction (PPI) networks and bayesian modeling to pinpoint key cellular factors and pathways likely to be involved with the onset and progression of NSCLC. First, we generated multiple prediction models using various machine learning classifiers to classify NSCLC and healthy cohorts. Our models achieved prediction accuracies ranging from 0.83 to 1.0, with XGBoost emerging as the best performer. Next, using functional enrichment analysis (and gene co-expression network analysis with WGCNA) of the machine learning feature-selected genes, we determined that genes involved in Rho GTPase signaling that modulate actin stability and cytoskeleton were likely to be crucial in NSCLC. We further assembled a PPI network for the feature-selected genes that was partitioned using Markov clustering to detect protein complexes functionally relevant to NSCLC. Finally, we modeled the perturbations in RhoGDI signaling using a bayesian network; our simulations suggest that aberrations in ARHGEF19 and/or RAC2 gene activities contributed to impaired MAPK signaling and disrupted actin and cytoskeleton organization and were arguably key contributors to the onset of tumorigenesis in NSCLC. We hypothesize that targeted measures to restore aberrant ARHGEF19 and/or RAC2 functions could conceivably rescue the cancerous phenotype in NSCLC. Our findings offer promising avenues for early predictive biomarker discovery, targeted therapeutic intervention and improved clinical outcomes in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Actins/metabolism , Bayes Theorem , Carcinoma, Non-Small-Cell Lung/genetics , Guanine Nucleotide Exchange Factors , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors
10.
Angew Chem Int Ed Engl ; 61(18): e202115193, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35170181

ABSTRACT

For the discovery of novel chemical matter generally endowed with bioactivity, strategies may be particularly efficient that combine previous insight about biological relevance, e.g., natural product (NP) structure, with methods that enable efficient coverage of chemical space, such as fragment-based design. We describe the de novo combination of different 5-membered NP-derived N-heteroatom fragments to structurally unprecedented "pseudo-natural products" in an efficient complexity-generating and enantioselective one-pot synthesis sequence. The pseudo-NPs inherit characteristic elements of NP structure but occupy areas of chemical space not covered by NP-derived chemotypes, and may have novel biological targets. Investigation of the pseudo-NPs in unbiased phenotypic assays and target identification led to the discovery of the first small-molecule ligand of the RHO GDP-dissociation inhibitor 1 (RHOGDI1), termed Rhonin. Rhonin inhibits the binding of the RHOGDI1 chaperone to GDP-bound RHO GTPases and alters the subcellular localization of RHO GTPases.


Subject(s)
Biological Products , Biological Products/chemistry , Ligands , rho GTP-Binding Proteins , rho Guanine Nucleotide Dissociation Inhibitor alpha , rho-Specific Guanine Nucleotide Dissociation Inhibitors
11.
Biochem Pharmacol ; 197: 114886, 2022 03.
Article in English | MEDLINE | ID: mdl-34968495

ABSTRACT

Rho subfamily of G proteins (e.g., Rac1) have been implicated in glucose-stimulated insulin secretion from the pancreatic ß-cell. Interestingly, metabolic stress (e.g., chronic exposure to high glucose) results in sustained activation of Rac1 leading to increased oxidative stress, impaired insulin secretion and ß-cell dysfunction. Activation-deactivation of Rho G proteins is mediated by three classes of regulatory proteins, namely the guanine nucleotide exchange factors (GEFs), which facilitate the conversion of inactive G proteins to their active conformations; the GTPase-activating proteins (GAPs), which convert the active G proteins to their inactive forms); and the GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from G proteins. Contrary to a large number of GEFs (82 members) and GAPs (69 members), only three members of RhoGDIs (RhoGDIα, RhoGDIß and RhoGDIγ) are expressed in mammalian cells.Even though relatively smaller in number, the GDIs appear to play essential roles in G protein function (e.g., subcellular targeting) for effector activation and cell regulation. Emerging evidence also suggests that the GDIs are functionally regulated via post-translational modification (e.g., phosphorylation) and by lipid second messengers, lipid kinases and lipid phosphatases. We highlight the underappreciated regulatory roles of RhoGDI-Rho G protein signalome in islet ß-cell function in health and metabolic stress. Potential knowledge gaps in the field, and directions for future research for the identification of novel therapeutic targets to loss of functional ß-cell mass under the duress of metabolic stress are highlighted.


Subject(s)
Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Lipid Metabolism/physiology , rho GTP-Binding Proteins/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Animals , Humans , Insulin-Secreting Cells/drug effects , Islets of Langerhans/drug effects , Lipid Metabolism/drug effects , rho-Specific Guanine Nucleotide Dissociation Inhibitors/pharmacology
12.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34830380

ABSTRACT

Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.


Subject(s)
Prenylation/drug effects , rac1 GTP-Binding Protein/chemistry , rho GTP-Binding Proteins/chemistry , rho-Specific Guanine Nucleotide Dissociation Inhibitors/chemistry , Amino Acid Sequence/genetics , Guanine Nucleotide Dissociation Inhibitors/chemistry , Guanine Nucleotide Dissociation Inhibitors/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Kinetics , Static Electricity , rac1 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors/genetics
13.
PLoS One ; 16(8): e0256646, 2021.
Article in English | MEDLINE | ID: mdl-34437633

ABSTRACT

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


Subject(s)
Cell Cycle Proteins/genetics , Endothelial Cells/cytology , Peptide Hormones/genetics , rho Guanine Nucleotide Dissociation Inhibitor beta/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/deficiency , Cell Movement/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Endothelial Cells/metabolism , Gene Expression Regulation/genetics , Human Umbilical Vein Endothelial Cells , Humans , Protein Interaction Maps , Proto-Oncogene Proteins c-akt/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors/genetics
14.
PLoS One ; 16(7): e0254386, 2021.
Article in English | MEDLINE | ID: mdl-34252134

ABSTRACT

Signaling by the Rho GTPase Rac1 is key to the regulation of cytoskeletal dynamics, cell spreading and adhesion. It is widely accepted that the inactive form of Rac1 is bound by Rho GDI, which prevents Rac1 activation and Rac1-effector interactions. In addition, GDI-bound Rac1 is protected from proteasomal degradation, in line with data showing that Rac1 ubiquitination occurs exclusively when Rac1 is activated. We set out to investigate how Rac1 activity, GDI binding and ubiquitination are linked. We introduced single amino acid mutations in Rac1 which differentially altered Rac1 activity, and compared whether the level of Rac1 activity relates to Rac1 ubiquitination and GDI binding. Results show that Rac1 ubiquitination and the active Rac1 morphology is proportionally increased with Rac1 activity. Similarly, we introduced lysine-to-arginine mutations in constitutively active Rac1 to inhibit site-specific ubiquitination and analyze this effect on Rac1 signaling output and ubiquitination. These data show that the K16R mutation inhibits GTP binding, and consequently Rac1 activation, signaling and-ubiquitination, while the K147R mutation does not block Rac1 signaling, but does inhibits its ubiquitination. In both sets of mutants, no direct correlation was observed between GDI binding and Rac1 activity or -ubiquitination. Taken together, our data show that a strong, positive correlation exists between Rac1 activity and its level of ubiquitination, but also that GDI dissociation does not predispose Rac1 to ubiquitination.


Subject(s)
Cell Movement , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Ubiquitination , rac1 GTP-Binding Protein/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Amino Acid Sequence , Cell Shape , HEK293 Cells , Humans , Lysine/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Phenotype , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Ubiquitin/metabolism
15.
J Virol ; 95(17): e0039621, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34133221

ABSTRACT

Andes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs), causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every PMEC is infected; however, the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase RhoA in primary human PMECs, causing VE-cadherin internalization from adherens junctions and PMEC permeability. We found that ANDV N protein failed to bind RhoA but coprecipitates RhoGDI (Rho GDP dissociation inhibitor), the primary RhoA repressor that normally sequesters RhoA in an inactive state. ANDV N protein selectively binds the RhoGDI C terminus (residues 69 to 204) but fails to form ternary complexes with RhoA or inhibit RhoA binding to the RhoGDI N terminus (residues 1 to 69). However, we found that ANDV N protein uniquely inhibits RhoA binding to an S34D phosphomimetic RhoGDI mutant. Hypoxia and vascular endothelial growth factor (VEGF) increase RhoA-induced PMEC permeability by directing protein kinase Cα (PKCα) phosphorylation of S34 on RhoGDI. Collectively, ANDV N protein alone activates RhoA by sequestering and reducing RhoGDI available to suppress RhoA. In response to hypoxia and VEGF-activated PKCα, ANDV N protein additionally directs the release of RhoA from S34-phosphorylated RhoGDI, synergistically activating RhoA and PMEC permeability. These findings reveal a fundamental edemagenic mechanism that permits ANDV to amplify PMEC permeability in hypoxic HPS patients. Our results rationalize therapeutically targeting PKCα and opposing protein kinase A (PKA) pathways that control RhoGDI phosphorylation as a means of resolving ANDV-induced capillary permeability, edema, and HPS. IMPORTANCE HPS-causing hantaviruses infect pulmonary endothelial cells (ECs), causing vascular leakage, pulmonary edema, and a 35% fatal acute respiratory distress syndrome (ARDS). Hantaviruses do not lyse or disrupt the endothelium but dysregulate normal EC barrier functions and increase hypoxia-directed permeability. Our findings reveal a novel underlying mechanism of EC permeability resulting from ANDV N protein binding to RhoGDI, a regulatory protein that normally maintains edemagenic RhoA in an inactive state and inhibits EC permeability. ANDV N sequesters RhoGDI and enhances the release of RhoA from S34-phosphorylated RhoGDI. These findings indicate that ANDV N induces the release of RhoA from PKC-phosphorylated RhoGDI, synergistically enhancing hypoxia-directed RhoA activation and PMEC permeability. Our data suggest inhibiting PKC and activating PKA phosphorylation of RhoGDI as mechanisms of inhibiting ANDV-directed EC permeability and therapeutically restricting edema in HPS patients. These findings may be broadly applicable to other causes of ARDS.


Subject(s)
Capillary Permeability , Endothelium, Vascular/metabolism , Microvessels/metabolism , Nucleocapsid Proteins/metabolism , Orthohantavirus/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , rhoA GTP-Binding Protein/metabolism , Cells, Cultured , Humans , Hypoxia/physiopathology , Lung/blood supply , Nucleocapsid Proteins/genetics , Phosphorylation , Pulmonary Edema/metabolism , Pulmonary Edema/pathology , Vascular Endothelial Growth Factor A/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/genetics , rhoA GTP-Binding Protein/genetics
16.
Biochemistry ; 60(19): 1533-1551, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33913706

ABSTRACT

There are three RhoGDIs in mammalian cells, which were initially defined as negative regulators of Rho family small GTPases. However, it is now accepted that RhoGDIs not only maintain small GTPases in their inactive GDP-bound form but also act as chaperones for small GTPases, targeting them to specific intracellular membranes and protecting them from degradation. Studies to date with RhoGDIs have usually focused on the interactions between the "typical" or "classical" small GTPases, such as the Rho, Rac, and Cdc42 subfamily members, and either the widely expressed RhoGDI-1 or the hematopoietic-specific RhoGDI-2. Less is known about the third member of the family, RhoGDI-3 and its interacting partners. RhoGDI-3 has a unique N-terminal extension and is found to localize in both the cytoplasm and the Golgi. RhoGDI-3 has been shown to target RhoB and RhoG to endomembranes. In order to facilitate a more thorough understanding of RhoGDI function, we undertook a systematic study to determine all possible Rho family small GTPases that interact with the RhoGDIs. RhoGDI-1 and RhoGDI-2 were found to have relatively restricted activity, mainly binding members of the Rho and Rac subfamilies. RhoGDI-3 displayed wider specificity, interacting with the members of Rho, Rac, and Cdc42 subfamilies but also forming complexes with "atypical" small Rho GTPases such as Wrch2/RhoV, Rnd2, Miro2, and RhoH. Levels of RhoA, RhoB, RhoC, Rac1, RhoH, and Wrch2/RhoV bound to GTP were found to decrease following coexpression with RhoGDI-3, confirming its role as a negative regulator of these small Rho GTPases.


Subject(s)
rho Guanine Nucleotide Dissociation Inhibitor alpha/metabolism , rho Guanine Nucleotide Dissociation Inhibitor beta/metabolism , rho Guanine Nucleotide Dissociation Inhibitor gamma/metabolism , Amino Acid Sequence , Cell Membrane/metabolism , GTP-Binding Proteins/metabolism , Guanine Nucleotide Dissociation Inhibitors/chemistry , HEK293 Cells , Humans , Monomeric GTP-Binding Proteins/metabolism , Protein Binding , rho GTP-Binding Proteins/chemistry , rho Guanine Nucleotide Dissociation Inhibitor alpha/physiology , rho Guanine Nucleotide Dissociation Inhibitor beta/physiology , rho Guanine Nucleotide Dissociation Inhibitor gamma/physiology , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/physiology
17.
Stem Cell Reports ; 14(4): 703-716, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32220329

ABSTRACT

HIV-associated neurocognitive disorders (HAND) affect over half of HIV-infected individuals, despite antiretroviral therapy (ART). Therapeutically targetable mechanisms underlying HAND remain elusive, partly due to a lack of a representative model. We developed a human-induced pluripotent stem cell (hiPSC)-based model, independently differentiating hiPSCs into neurons, astrocytes, and microglia, and systematically combining to generate a tri-culture with or without HIV infection and ART. Single-cell RNA sequencing analysis on tri-cultures with HIV-infected microglia revealed inflammatory signatures in the microglia and EIF2 signaling in all three cell types. Treatment with the antiretroviral compound efavirenz (EFZ) mostly resolved these signatures. However, EFZ increased RhoGDI and CD40 signaling in the HIV-infected microglia. This activation was associated with a persistent increase in transforming growth factor α production by microglia. This work establishes a tri-culture that recapitulates key features of HIV infection in the CNS and provides a new model to examine the effects of infection, its treatment, and other co-morbid conditions.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , HIV Infections/metabolism , Induced Pluripotent Stem Cells/metabolism , Microglia/virology , Neurons/virology , Alkynes/pharmacology , Anti-HIV Agents/pharmacology , Antiretroviral Therapy, Highly Active , Astrocytes/metabolism , Astrocytes/virology , Benzoxazines/pharmacology , CD40 Antigens/metabolism , Cell Differentiation , Cells, Cultured , Cyclopropanes/pharmacology , Cytokines/metabolism , HIV Infections/complications , HIV Infections/virology , Humans , Induced Pluripotent Stem Cells/virology , Inflammation/metabolism , Inflammation/virology , Microglia/metabolism , Models, Biological , Neurons/metabolism , Signal Transduction , Single-Cell Analysis , Transforming Growth Factor alpha/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism
18.
Elife ; 82019 12 13.
Article in English | MEDLINE | ID: mdl-31833473

ABSTRACT

New methods to directly visualize Rho GTPases reveal how a protein called RhoGDI regulates the activity of these 'molecular switches' at the plasma membrane.


Subject(s)
Guanine Nucleotide Dissociation Inhibitors , rho GTP-Binding Proteins , Cell Membrane , rho-Specific Guanine Nucleotide Dissociation Inhibitors
19.
Elife ; 82019 10 24.
Article in English | MEDLINE | ID: mdl-31647414

ABSTRACT

The RhoGTPases are characterized as membrane-associated molecular switches that cycle between active, GTP-bound and inactive, GDP-bound states. However, 90-95% of RhoGTPases are maintained in a soluble form by RhoGDI, which is generally viewed as a passive shuttle for inactive RhoGTPases. Our current understanding of RhoGTPase:RhoGDI dynamics has been limited by two experimental challenges: direct visualization of the RhoGTPases in vivo and reconstitution of the cycle in vitro. We developed methods to directly image vertebrate RhoGTPases in vivo or on lipid bilayers in vitro. Using these methods, we identified pools of active and inactive RhoGTPase associated with the membrane, found that RhoGDI can extract both inactive and active RhoGTPases, and found that extraction of active RhoGTPase contributes to their spatial regulation around cell wounds. These results indicate that RhoGDI directly contributes to the spatiotemporal patterning of RhoGTPases by removing active RhoGTPases from the plasma membrane.


Subject(s)
Xenopus laevis/metabolism , rho GTP-Binding Proteins/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Animals , Cell Extracts , Cell Membrane/metabolism , Cytokinesis , Epithelial Cells/metabolism , Epithelial Cells/pathology , Exocytosis , Mutant Proteins/metabolism , Wound Healing , cdc42 GTP-Binding Protein/metabolism
20.
Cells ; 8(9)2019 09 05.
Article in English | MEDLINE | ID: mdl-31492019

ABSTRACT

Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.


Subject(s)
Neoplasms/metabolism , rho GTP-Binding Proteins/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Humans , Protein Binding , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL