Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.550
Filter
1.
J Ethnopharmacol ; 336: 118711, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39181286

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of Qi and blood in Traditional Chinese Medicine (TCM), the combination of Qi-reinforcing herbs and blood-activating herbs has a synergistic effect in improving blood stasis syndrome, especially in tumor treatment. The classic "Radix Astragali - Salvia miltiorrhiza" duo exemplifies this principle, renowned for invigorating Qi and activating blood flow, employed widely in tumor therapies. Our prior research underscores the potent inhibition of pancreatic tumor xenografts by the combination of Formononetin (from Radix Astragali) and Salvianolic acid B (from Salvia miltiorrhiza) in vitro. However, it remains unclear whether this combination can inhibit the abnormal vascularization of pancreatic tumors to achieve its anti-cancer effect. AIM OF THE STUDY: Abnormal vasculature, known to facilitate tumor growth and metastasis. Strategies to normalize tumor-associated blood vessels provide a promising avenue for anti-tumor therapy. This study aimed to unravel the therapeutic potential of Formononetin combined with Salvianolic acid B (FcS) in modulating pancreatic cancer's impact on endothelial cells, illuminate the underlying mechanisms that govern this therapeutic interaction, thereby advancing strategies to normalize tumor vasculature and combat cancer progression. MATERIALS AND METHODS: A co-culture system involving Human Umbilical Vein Endothelial Cells (HUVECs) and PANC-1 cells was established to investigate the potential of targeting abnormal vasculature as a novel anti-tumor therapeutic strategy. We systematically compared HUVEC proliferation, migration, invasion, and lumenogenesis in both mono- and co-culture conditions with PANC-1 (H-P). Subsequently, FcS treatment of the H-P system was evaluated for its anti-angiogenic properties. Molecular docking was utilized to predict the interactions between Formononetin and Salvianolic acid B with RhoA, and the post-treatment expression of RhoA in HUVECs was assessed. Furthermore, we utilized shRhoA lentivirus to elucidate the role of RhoA in FcS-mediated effects on HUVECs. In vivo, a zebrafish xenograft tumor model was employed to assess FcS's anti-tumor potential, focusing on cancer cell proliferation, migration, apoptosis, and vascular development. RESULTS: FcS treatment demonstrated a significant, dose-dependent inhibition of PANC-1-induced alterations in HUVECs, including proliferation, migration, invasion, and tube formation capabilities. Molecular docking analyses indicated potential interactions between FcS and RhoA. Further, FcS treatment was found to downregulate RhoA expression and modulated the PI3K/AKT signaling pathway in PANC-1-induced HUVECs. Notably, the phenotypic inhibitory effects of FcS on HUVECs were attenuated by RhoA knockdown. In vivo zebrafish studies validated FcS's anti-tumor activity, inhibiting cancer cell proliferation, metastasis, and vascular sprouting, while promoting tumor cell apoptosis. CONCLUSIONS: This study underscores the promising potential of FcS in countering pancreatic cancer-induced endothelial alterations. FcS exhibits pronounced anti-abnormal vasculature effects, potentially achieved through downregulation of RhoA and inhibition of the PI3K/Akt signaling pathway, thereby presenting a novel therapeutic avenue for pancreatic cancer management.


Subject(s)
Benzofurans , Cell Movement , Human Umbilical Vein Endothelial Cells , Isoflavones , Pancreatic Neoplasms , rhoA GTP-Binding Protein , Isoflavones/pharmacology , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Animals , Benzofurans/pharmacology , rhoA GTP-Binding Protein/metabolism , Cell Line, Tumor , Human Umbilical Vein Endothelial Cells/drug effects , Cell Movement/drug effects , Neovascularization, Pathologic/drug therapy , Zebrafish , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Depsides
2.
Life Sci Alliance ; 7(12)2024 Dec.
Article in English | MEDLINE | ID: mdl-39389782

ABSTRACT

The human CTLH/GID (hGID) complex emerged as an important E3 ligase regulating multiple cellular processes, including cell cycle progression and metabolism. However, the range of biological functions controlled by hGID remains unexplored. Here, we used proximity-dependent biotinylation (BioID2) to identify proteins interacting with the hGID complex, among them, substrate candidates that bind GID4 in a pocket-dependent manner. Biochemical and cellular assays revealed that the hGIDGID4 E3 ligase binds and ubiquitinates ARHGAP11A, thereby targeting this RhoGAP for proteasomal degradation. Indeed, GID4 depletion or impeding the GID4 substrate binding pocket with the PFI-7 inhibitor stabilizes ARHGAP11A protein amounts, although it carries no functional N-terminal degron. Interestingly, GID4 inactivation impairs cell motility and directed cell movement by increasing ARHGAP11A levels at the cell periphery, where it inactivates RhoA. Together, we identified a wide range of hGIDGID4 E3 ligase substrates and uncovered a unique function of the hGIDGID4 E3 ligase regulating cell migration by targeting ARHGAP11A.


Subject(s)
Cell Movement , GTPase-Activating Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , GTPase-Activating Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Protein Binding , HEK293 Cells , Proteolysis , rhoA GTP-Binding Protein/metabolism
3.
CNS Neurosci Ther ; 30(10): e70075, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39390804

ABSTRACT

BACKGROUND: Glioblastoma represents the most frequently diagnosed malignant neoplasm within the central nervous system. Human glioblastoma cells can be phenotypically reprogrammed into neuron-like cells through the forced expression of NEUROG2 and SOXC factors. NEUROG2 serves as a pioneer factor, establishing an initial framework for this transformation. However, the specific role of SOXC factors has not been fully elucidated. METHODS: In this study, we used ChIP-seq to determine the potential target gene of NGN2. RNA-seq has been used to evaluate the transcriptional change during NGN2-SOX11-mediated neuron reprogramming. Immunofluorescence was used to determine the neuron reprogramming efficacy and cell proliferation ability. ChIP-qPCR, Co-IP, and Western Blot were performed to investigate the mechanism. RESULTS: Our findings reveal that SOXC factors, in contrast to their previously identified function as transcriptional activators, act as transcriptional repressors. They achieve this by recruiting TRIM28 to suppress the expression of ECT2, a RhoGEF. This suppression results in the differential regulation of RhoA, RAC1, and CDC42 activities throughout the reprogramming process. We further establish that small molecules targeting RhoA and its effectors can substitute for SOXC factors in facilitating the neuronal reprogramming of glioblastoma cells. CONCLUSION: These results underscore the pivotal role of SOXC factors' transcriptional repression and illuminate one of their specific downstream targets.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cellular Reprogramming , Glioblastoma , Nerve Tissue Proteins , Neurons , SOXC Transcription Factors , Signal Transduction , cdc42 GTP-Binding Protein , rac1 GTP-Binding Protein , rhoA GTP-Binding Protein , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Neurons/metabolism , Cellular Reprogramming/physiology , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Signal Transduction/physiology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism
4.
J Enzyme Inhib Med Chem ; 39(1): 2390911, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39258708

ABSTRACT

Rho family GTPases regulate cellular processes and promote tumour growth and metastasis; thus, RhoA is a potential target for tumour metastasis inhibition. However, limited progress has been made in the development of RhoA targeting anticancer drugs. Here, we synthesised benzo[b]thiophene-3-carboxylic acid 1,1-dioxide derivatives based on a covalent inhibitor of RhoA (DC-Rhoin), reported in our previous studies. The observed structure-activity relationship (contributed by carboxamide in C-3 and 1-methyl-1H-pyrazol in C-5) enhanced the anti-proliferative activity of the derivatives. Compound b19 significantly inhibited the proliferation, migration, and invasion of MDA-MB-231 cells and promoted their apoptosis. The suppression of myosin light chain phosphorylation and the formation of stress fibres confirmed the inhibitory activity of b19 via the RhoA/ROCK pathway. b19 exhibited a different binding pattern from DC-Rhoin, as observed in molecular docking analysis. This study provides a reference for the development of anticancer agents targeting the RhoA/ROCK pathway.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Thiophenes , rho-Associated Kinases , rhoA GTP-Binding Protein , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/antagonists & inhibitors , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Apoptosis/drug effects , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/chemical synthesis , Cell Movement/drug effects , Cell Line, Tumor , Molecular Docking Simulation
5.
Int J Mol Med ; 54(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39301627

ABSTRACT

The present study aimed to investigate the role and mechanism of inhibin ßA (INHBA) in thyroid cancer (TC), and to determine its potential impact on the aggressive behavior of TC cells. The present study employed a comprehensive approach, using public databases, such as the Gene Expression Omnibus and The Cancer Genome Atlas, to identify and analyze the expression of INHBA in TC. Cell transfection, reverse transcription­quantitative PCR, western blot analysis, immunohistochemistry and in vivo assays were conducted to investigate the functional effects of INHBA on TC. In addition, the present study explored the molecular mechanisms underlying the effects of INHBA, focusing on the potential impact on the RhoA signaling pathway and associated molecular cascades. Bioinformatics analysis revealed a significant association between INHBA expression and TC, and INHBA expression was markedly upregulated in TC tissues compared with in healthy control tissues. The results of functional studies demonstrated that INHBA overexpression increased the migration and invasion of TC cells, and the opposite result was observed following INHBA knockdown. Mechanistic investigations indicated that INHBA modulated the RhoA pathway, leading to alterations in the phosphorylation status of LIM kinase 1 (LIMK) and cofilin, key regulators of cytoskeletal dynamics and cell motility. Following the introduction of transfected TC cells into zebrafish and nude mouse models, the results of the present study demonstrated that INHBA knockdown attenuated the metastatic potential of TC cells. In conclusion, INHBA may serve a pivotal role in promoting the aggressive phenotype of TC cells through modulating the RhoA/LIMK/cofilin signaling axis. These findings highlight INHBA as a potential biomarker and therapeutic target for the management of aggressive TC.


Subject(s)
Cell Movement , Gene Expression Regulation, Neoplastic , Inhibin-beta Subunits , Thyroid Neoplasms , rhoA GTP-Binding Protein , Humans , Animals , Inhibin-beta Subunits/metabolism , Inhibin-beta Subunits/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Cell Line, Tumor , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Cell Movement/genetics , Mice , Neoplasm Metastasis , Signal Transduction , Mice, Nude , Female , Male , Zebrafish , Lim Kinases/metabolism , Lim Kinases/genetics , Middle Aged , Actin Depolymerizing Factors/metabolism , Actin Depolymerizing Factors/genetics
6.
J Cell Sci ; 137(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39258310

ABSTRACT

Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear. Here, we identified that ARHGAP32, a Rho GTPase-activating protein, is located in desmosomes through its interaction with desmoplakin (DSP) via its GAB2-interacting domain (GAB2-ID). We confirmed that ARHGAP32 is required for desmosomal organization, maturation and length regulation. Notably, loss of ARHGAP32 increased formation of F-actin stress fibers and phosphorylation of the regulatory myosin light chain Myl9 at T18/S19. Inhibition of ROCK activity in ARHGAP32-knockout (KO) cells effectively restored desmosomal organization and the integrity of epithelial cell sheets. Moreover, loss of DSP impaired desmosomal ARHGAP32 location and led to decreased actomyosin contractility. ARHGAP32 with a deletion of the GAB2-ID domain showed enhanced association with RhoA in the cytosol and failed to rescue the desmosomal organization in ARHGAP32-KO cells. Collectively, our study unveils that ARHGAP32 associates with and regulates desmosomes by interacting with DSP. This interaction potentially facilitates the crosstalk between desmosomes and F-actin.


Subject(s)
Desmoplakins , Desmosomes , GTPase-Activating Proteins , Desmosomes/metabolism , Humans , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Desmoplakins/metabolism , Desmoplakins/genetics , Animals , Actins/metabolism , Protein Binding , rhoA GTP-Binding Protein/metabolism , Dogs , Phosphorylation , Madin Darby Canine Kidney Cells , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Myosin Light Chains/metabolism , Myosin Light Chains/genetics
7.
Int Immunopharmacol ; 142(Pt A): 113074, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39244903

ABSTRACT

BACKGROUND: Posterior capsular opacification is a major complication following cataract surgery, marked by proliferation, migration, epithelial-mesenchymal transition, and fibrosis of residual epithelial cells. Various inflammatory cytokines are upregulated and contribute to the development of posterior capsular opacification. The effect of interleukin-8 on residual epithelial cells has not been fully determined. METHODS: Aqueous humor and anterior capsules samples were collected from cataract surgery. Capsular bags from rats and pigs were cultured in DMEM media. Protein and mRNA expressions were measured using immunoblot and qPCR. Cell migration was assessed using the transwell assay. RESULTS: Interleukin-8 is an early inflammatory factor secreted by residual lens epithelial cells. Migration of lens epithelial cells in aqueous humor positively correlates with interleukin-8 levels, and this effect is inhibited by the receptors of interleukin-8 CXCR1/2 blocker Reparaxin. The expression of tight-junction protein ZO-1 and cell-adhesion protein E-cadherin were down-regulated by administrating interleukin-8, and cell migration of both SRA01/04 cell line in vitro and capsular residual epithelial cells ex vivo were up-regulated via activating RhoA expression and RhoA/GTPase activity. The loss-of- function studies demonstrate that interleukin-8 binding to its receptor CXCR1/2 activates NF-κB/p65, which then turns on the RhoA's expression and RhoA/GTPase activity, and RhoA-modulated the downexpression of E-cadherin and ZO-1 and the increase of cell migration. CONCLUSIONS: The upregulation in interleukin-8 occurs early in posterior capsular opacification and contributes to down-regulating tight-junctions among epithelial cells and elevates cell migration via the CXCR1/2-NF-κB-RhoA signaling pathway. These demonstrated that interleukin-8 could be a potential target for preventing posterior capsular opacification.


Subject(s)
Cadherins , Cell Movement , Interleukin-8 , NF-kappa B , Receptors, Interleukin-8A , Receptors, Interleukin-8B , Signal Transduction , Zonula Occludens-1 Protein , rhoA GTP-Binding Protein , Animals , Interleukin-8/metabolism , Interleukin-8/genetics , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Cadherins/metabolism , Cadherins/genetics , NF-kappa B/metabolism , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Rats , Swine , rhoA GTP-Binding Protein/metabolism , Down-Regulation , Epithelial Cells/metabolism , Cell Line , Male , Capsule Opacification/metabolism , Capsule Opacification/pathology , Humans , Rats, Sprague-Dawley , Sulfonamides
8.
Sci Rep ; 14(1): 22233, 2024 09 27.
Article in English | MEDLINE | ID: mdl-39333200

ABSTRACT

Esophageal fibrosis can develop due to caustic or radiation injuries. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are known to mitigate fibrosis in various organs. However, the potential effects of UC-MSCs on human esophageal fibrosis remain underexplored. This study investigated the anti-fibrogenic properties and mechanisms of UC-MSC-derived conditioned media (UC-MSC-CM) on human esophageal fibroblasts (HEFs). HEFs were treated with TGF-ß1 and then cultured with UC-MSC-CM, and the expression levels of extracellular matrix (ECM) components, RhoA, myocardin related transcription factor A (MRTF-A), serum response factor (SRF), Yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ) were measured. UC-MSC-CM suppressed TGF-ß1-induced fibrogenic activation in HEFs, as evidenced by the downregulation of ECM. UC-MSC-CM diminished the expression of RhoA, MRTF-A, and SRF triggered by TGF-ß1. In TGF-ß1-stimulated HEFs, UC-MSC-CM decreased the nuclear localization of MRTF-A and YAP. Additionally, UC-MSC-CM diminished the TGF-ß1-induced nuclear expressions of YAP and TAZ, while concurrently enhancing the cytoplasmic presence of phosphorylated YAP. Furthermore, UC-MSC-CM reduced TGF-ß1-induced phosphorylation of Smad2. These findings suggest that UC-MSC-CM may inhibit TGF-ß1-induced fibrogenic activation in HEFs by targeting the Rho-mediated MRTF/SRF and YAP/TAZ pathways, as well as the Smad2 pathway. This indicates its potential as a stem cell therapy for esophageal fibrosis.


Subject(s)
Esophagus , Fibroblasts , Fibrosis , Mesenchymal Stem Cells , Trans-Activators , Transcription Factors , Transforming Growth Factor beta1 , rhoA GTP-Binding Protein , Humans , Mesenchymal Stem Cells/metabolism , Culture Media, Conditioned/pharmacology , Transforming Growth Factor beta1/metabolism , rhoA GTP-Binding Protein/metabolism , Esophagus/metabolism , Esophagus/cytology , Fibroblasts/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Umbilical Cord/cytology , YAP-Signaling Proteins/metabolism , Serum Response Factor/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Cells, Cultured , Extracellular Matrix/metabolism , Smad2 Protein/metabolism
9.
Sci Signal ; 17(853): eado9852, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39255336

ABSTRACT

Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca2+-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning. Large-scale phosphoproteomic analyses of protein kinase targets in mouse striatal/accumbal slices revealed that NMDAR activation resulted in the phosphorylation of 194 proteins, including RhoA regulators such as ARHGEF2 and ARHGAP21. Phosphorylation of ARHGEF2 by the Ca2+-dependent protein kinase CaMKII enhanced its RhoGEF activity, thereby activating RhoA and its downstream effector Rho-associated kinase (ROCK/Rho-kinase). Further phosphoproteomic analysis identified 221 ROCK targets, including the postsynaptic scaffolding protein SHANK3, which is crucial for its interaction with NMDARs and other postsynaptic scaffolding proteins. ROCK-mediated phosphorylation of SHANK3 in the NAc was essential for spine growth and aversive learning. These findings demonstrate that NMDAR activation initiates a phosphorylation cascade crucial for learning and memory.


Subject(s)
Nerve Tissue Proteins , Neuronal Plasticity , Proteome , Receptors, N-Methyl-D-Aspartate , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Neuronal Plasticity/physiology , Mice , Phosphorylation , Proteome/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Male , Signal Transduction , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Mice, Inbred C57BL , Phosphoproteins/metabolism , Phosphoproteins/genetics , Learning/physiology , Avoidance Learning/physiology , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Synapses/metabolism , rhoA GTP-Binding Protein/metabolism , Dendritic Spines/metabolism
10.
Development ; 151(19)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39258889

ABSTRACT

Pharyngeal endoderm cells undergo convergence and extension (C&E), which is essential for endoderm pouch formation and craniofacial development. Our previous work implicates Gα13/RhoA-mediated signaling in regulating this process, but the underlying mechanisms remain unclear. Here, we have used endoderm-specific transgenic and Gα13 mutant zebrafish to demonstrate that Gα13 plays a crucial role in pharyngeal endoderm C&E by regulating RhoA activation and E-cadherin expression. We showed that during C&E, endodermal cells gradually establish stable cell-cell contacts, acquire apical-basal polarity and undergo actomyosin-driven apical constriction, which are processes that require Gα13. Additionally, we found that Gα13-deficient embryos exhibit reduced E-cadherin expression, partially contributing to endoderm C&E defects. Notably, interfering with RhoA function disrupts spatial actomyosin activation without affecting E-cadherin expression. Collectively, our findings identify crucial cellular processes for pharyngeal endoderm C&E and reveal that Gα13 controls this through two independent pathways - modulating RhoA activation and regulating E-cadherin expression - thus unveiling intricate mechanisms governing pharyngeal endoderm morphogenesis.


Subject(s)
Cadherins , Endoderm , GTP-Binding Protein alpha Subunits, G12-G13 , Gene Expression Regulation, Developmental , Pharynx , Zebrafish Proteins , Zebrafish , rhoA GTP-Binding Protein , Animals , Endoderm/metabolism , Endoderm/embryology , Endoderm/cytology , Cadherins/metabolism , Cadherins/genetics , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Pharynx/embryology , Pharynx/metabolism , Actomyosin/metabolism , Signal Transduction , Morphogenesis/genetics , Cell Polarity , Animals, Genetically Modified , Embryo, Nonmammalian/metabolism
11.
J Cancer Res Clin Oncol ; 150(9): 424, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297944

ABSTRACT

PURPOSE: This study aimed to investigate the effect of MYO3B on endometrial cancer (EC) proliferation and invasion. METHODS: The expression of MYO3B in EC tissues and cells was analyzed using TCGA database, immunohistochemical staining, real-time PCR, and western blot (WB). Cell proliferation was detected by CCK8, Annexin V-APC/PI flow cytometry was used to detect apoptosis, intracellular calcium ion (Ca2+) was detected by flow cytometry with Fluo-4 AM fluorescent probe, cell migration by scratch assay, and cell invasion by Transwell assay, and the expression of proteins related to Ca2+ homeostasis and RhoA/ROCK1 signaling pathway was detected by WB and immunofluorescence staining. RESULTS: The expression of MYO3B was an influential factor in EC recurrence, and the expression of MYO3B was significantly up-regulated in EC tissues and cells, but down-regulated in KLE cells, and MYO3B knockdown inhibited the proliferation, migration, and invasion ability of EC cells and promoted apoptosis, suggesting that MYO3B plays a tumor-promoting role in EC. Furthermore, MYO3B knockdown decreased Ca2+ concentration in EC cells and the RhoA/ROCK1 signaling pathway was inhibited, and the effect of MYO3B knockdown on RhoA/ROCK1 signaling was reversed by treatment with the Calmodulin agonist CALP-2, and the effects of MYO3B knockdown on cell proliferation, migration, and invasion were reversed after treatment with the RhoA agonist U-46,619. CONCLUSION: MYO3B promotes the proliferation and migration of endometrial cancer cells via Ca2+-RhoA/ROCK1 signaling pathway. High expression of MYO3B may be a biomarker for EC metastasis.


Subject(s)
Calcium , Cell Proliferation , Disease Progression , Endometrial Neoplasms , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Humans , Female , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/genetics , rhoA GTP-Binding Protein/metabolism , Calcium/metabolism , Cell Movement , Apoptosis , Cell Line, Tumor , Neoplasm Invasiveness
12.
Mol Biol Rep ; 51(1): 950, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222158

ABSTRACT

BACKGROUND: Hepatic fibrosis, a prevalent chronic liver condition, involves excessive extracellular matrix production associated with aberrant wound healing. Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis, activated by inflammatory factors such as sphingosine 1-phosphate (S1P). Despite S1P's involvement in fibrosis, its specific role and downstream pathway in HSCs remain controversial. METHODS: In this study, we investigated the regulatory role of S1P/S1P receptor (S1PR) in Hippo-YAP activation in both LX-2 cell lines and primary HSCs. Real-time PCR, western blot, pharmacological inhibitors, siRNAs, and Rho activity assays were adopted to address the molecular mechanisms of S1P mediated YAP activation. RESULTS: Serum and exogenous S1P significantly increased the expression of YAP target genes in HSCs. Pharmacologic inhibitors and siRNA-mediated knockdowns of S1P receptors showed S1P receptor 2 (S1PR2) as the primary mediator for S1P-induced CTGF expression in HSCs. Results using siRNA-mediated knockdown, Verteporfin, and Phospho-Tag immunoblots showed that S1P-S1PR2 signaling effectively suppressed the Hippo kinases cascade, thereby activating YAP. Furthermore, S1P increased RhoA activities in cells and ROCK inhibitors effectively blocked CTGF induction. Cytoskeletal-perturbing reagents were shown to greatly modulate CTGF induction, suggesting the important role of actin cytoskeleton in S1P-induced YAP activation. Exogeneous S1P treatment was enough to increase the expression of COL1A1 and α-SMA, that were blocked by YAP specific inhibitor. CONCLUSIONS: Our data demonstrate that S1P/S1PR2-Src-RhoA-ROCK axis leads to Hippo-YAP activation, resulting in the up-regulation of CTGF, COL1A1 and α-SMA expression in HSCs. Therefore, S1PR2 may represent a potential therapeutic target for hepatic fibrosis.


Subject(s)
Connective Tissue Growth Factor , Hepatic Stellate Cells , Lysophospholipids , Signal Transduction , Sphingosine , Transcription Factors , YAP-Signaling Proteins , rho-Associated Kinases , rhoA GTP-Binding Protein , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Humans , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Sphingosine/analogs & derivatives , Sphingosine/metabolism , YAP-Signaling Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Cell Line , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , src-Family Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Hippo Signaling Pathway
13.
Proc Natl Acad Sci U S A ; 121(35): e2406787121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39163337

ABSTRACT

Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.


Subject(s)
Biocompatible Materials , Hydrogels , Muscle, Skeletal , Animals , Hydrogels/chemistry , Biocompatible Materials/chemistry , Muscle, Skeletal/metabolism , Mice , Mechanotransduction, Cellular , Stem Cells/metabolism , Stem Cells/cytology , rhoA GTP-Binding Protein/metabolism , Cells, Cultured
14.
Cancer Biol Med ; 21(9)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119774

ABSTRACT

Genome sequencing has revealed frequent mutations in Ras homolog family member A (RHOA) among various cancers with unique aberrant profiles and pathogenic effects, especially in peripheral T-cell lymphoma (PTCL). The discrete positional distribution and types of RHOA amino acid substitutions vary according to the tumor type, thereby leading to different functional and biological properties, which provide new insight into the molecular pathogenesis and potential targeted therapies for various tumors. However, the similarities and discrepancies in characteristics of RHOA mutations among various histologic subtypes of PTCL have not been fully elucidated. Herein we highlight the inconsistencies and complexities of the type and location of RHOA mutations and demonstrate the contribution of RHOA variants to the pathogenesis of PTCL by combining epigenetic abnormalities and activating multiple downstream pathways. The promising potential of targeting RHOA as a therapeutic modality is also outlined. This review provides new insight in the field of personalized medicine to improve the clinical outcomes for patients.


Subject(s)
Lymphoma, T-Cell, Peripheral , Mutation , Precision Medicine , rhoA GTP-Binding Protein , Humans , Lymphoma, T-Cell, Peripheral/genetics , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/pathology , Lymphoma, T-Cell, Peripheral/therapy , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Epigenesis, Genetic
15.
Int J Mol Med ; 54(4)2024 10.
Article in English | MEDLINE | ID: mdl-39129277

ABSTRACT

Abnormal angiogenesis and increased vascular permeability of subchondral bone are key mechanisms related to osteoarthritis (OA). However, the precise mechanisms responsible for heightened vascular permeability in OA remain unclear. The present study used proteomics to identify protein expression in damaged subchondral bone compared with normal subchondral bone. The results suggest that Ras homolog family member A (RhoA) may be associated with the vascular permeability of subchondral bone and ferroptosis in OA. The results of analysis of clinical samples indicated a significant increase in expression of RhoA in the subchondral bone of OA. This were consistent with the proteomics findings. We found through western blotting, RT­PCR, and immunofluorescence that RhoA significantly increased the permeability of endothelial cells (ECs) by inhibiting inter­EC adhesion proteins (zona occludens­1, connexin 43 and Vascular endothelial­Cadherin) and actin filaments. Furthermore, RhoA induced ferroptosis core proteins (glutathione peroxidase 4,  solute carrier family 7 member 11 and acyl­CoA synthase long­chain family member 4, ACSL4) by influencing lipid peroxidation and mitochondrial function, leading to ferroptosis of ECs. This suggested an association between RhoA, ferroptosis and vascular permeability. Ferroptosis significantly increased permeability of ECs by inhibiting inter­EC adhesion proteins. RhoA increased vascular permeability by inducing ferroptosis of ECs. In vivo, inhibition of RhoA and ferroptosis significantly mitigated progression of OA by alleviating cartilage degeneration and subchondral bone remodeling in mice with destabilization of the medial meniscus. In conclusion, the present findings indicated that RhoA enhanced vascular permeability in OA by inducing ferroptosis. This may serve as a novel strategy for the early prevention and treatment of OA.


Subject(s)
Capillary Permeability , Ferroptosis , Osteoarthritis , rhoA GTP-Binding Protein , rhoA GTP-Binding Protein/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Animals , Humans , Mice , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice, Inbred C57BL
16.
Toxicology ; 508: 153925, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39151608

ABSTRACT

Prenatal exposure to dibutyl phthalate (DBP) has been reported to cause erectile dysfunction (ED) in adult offspring rats. However, its underlying mechanisms are not fully understood. Previously, we found that DBP activates the RhoA/ROCK pathway in the male reproductive system. This study investigated how prenatal exposure to DBP activates the RhoA/ROCK signalling pathway, leading to ED in male rat offspring. Pregnant rats were stratified into DBP-exposed and NC groups, with the exposed group receiving 750 milligrams per kilogram per day (mg/kg/day) of DBP through gavage from days 14-18 of gestation. DBP exposure activated the RhoA/ROCK pathway in the penile corpus cavernosum (CC) of descendants, causing smooth muscle cell contraction, fibrosis, and apoptosis, all of which contribute to ED. In vitro experiments confirmed that DBP induces apoptosis and RhoA/ROCK pathway activation in CC smooth muscle cells. Treatment of DBP-exposed offspring with the ROCK inhibitor Y-27632 for 8 weeks significantly improved smooth muscle cell condition, erectile function, and reduced fibrosis. Thus, prenatal DBP exposure induces ED in offspring through RhoA/ROCK pathway activation, and the ROCK inhibitor Y-27632 shows potential as an effective treatment for DBP-induced ED.


Subject(s)
Apoptosis , Dibutyl Phthalate , Erectile Dysfunction , Prenatal Exposure Delayed Effects , Rats, Sprague-Dawley , Signal Transduction , rho-Associated Kinases , Animals , Dibutyl Phthalate/toxicity , Male , rho-Associated Kinases/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Pregnancy , Female , Signal Transduction/drug effects , Erectile Dysfunction/chemically induced , Erectile Dysfunction/metabolism , Rats , Apoptosis/drug effects , rhoA GTP-Binding Protein/metabolism , Penis/drug effects , Penis/metabolism , Fibrosis , Pyridines/pharmacology , Pyridines/toxicity , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Amides , rho GTP-Binding Proteins
17.
Cell ; 187(18): 5048-5063.e25, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39106863

ABSTRACT

It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.


Subject(s)
Actomyosin , RNA, Messenger , RNA-Binding Proteins , Signal Transduction , rhoA GTP-Binding Protein , Humans , Actomyosin/metabolism , Cytoplasm/metabolism , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , rhoA GTP-Binding Protein/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism
18.
Neurochem Res ; 49(11): 3105-3117, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39167346

ABSTRACT

Cerebral ischemia reperfusion injury is a severe neurological impairment that occurs after blood flow reconstruction in stroke, and microglia cell pyroptosis is one of its important mechanisms. Electroacupuncture has been shown to be effective in mitigating and alleviating cerebral ischemia reperfusion injury by inhibiting neuroinflammation, reducing cellular pyroptosis, and improving neurological function. In this experiment, we divided the rats into three groups, including the sham operation (Sham) group, the middle cerebral artery occlusion/reperfusion (MCAO/R) group, and the pre-electroacupuncture (EAC) group. Pre-electroacupuncture group was stimulated with electroacupuncture of a certain intensity on the Baihui (GV 20) and Dazhui (GV 14) of the rat once a day from the 7th day to the 1st day before the MCAO/R operation. The extent of cerebral infarction was detected by TTC staining. A modified Zea-Longa five-point scale scoring system was used to determine neurologic function in MCAO rats. The number of neurons and morphological changes were accessed by Nissl staining and HE staining. The cellular damage was detected by TUNEL staining. In addition, the expression levels of RhoA, pyrin, GSDMD, Caspase1, cleaved-Caspase1, Iba-1, CD206, and ROCK2 were examined by western blotting and immunofluorescence. The results found that pre-electroacupuncture significantly attenuated neurological impairment and cerebral infarction compared to the post-MCAO/R rats. In addition, pre-electroacupuncture therapy promoted polarization of microglia to the neuroprotective (M2) phenotype. In addition, pre-electroacupuncture inhibited microglia pyroptosis by inhibiting RhoA/pyrin/GSDMD signaling pathway, thereby reducing neuronal injury and increasing neuronal survival in the MCAO/R rats. Taken together, these results demonstrated that pre-acupuncture could attenuate cerebral ischemia-reperfusion injury by inhibiting microglial pyroptosis. Therefore, pre-electroacupuncture might be a potential preventive strategy for ischemic stroke patients.


Subject(s)
Electroacupuncture , Microglia , Reperfusion Injury , Signal Transduction , Animals , Male , Rats , Brain Ischemia/metabolism , Brain Ischemia/therapy , Electroacupuncture/methods , Gasdermins , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/physiology , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Reperfusion Injury/prevention & control , rho GTP-Binding Proteins , rhoA GTP-Binding Protein/metabolism , Signal Transduction/physiology
19.
Nat Commun ; 15(1): 7176, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169042

ABSTRACT

RHOA mutations are found at diverse residues in various cancer types, implying mutation- and cell-specific mechanisms of tumorigenesis. Here, we focus on the underlying mechanisms of two gain-of-function RHOA mutations, A161P and A161V, identified in adult T-cell leukemia/lymphoma. We find that RHOAA161P and RHOAA161V are both fast-cycling mutants with increased guanine nucleotide dissociation/association rates compared with RHOAWT and show reduced GTP-hydrolysis activity. Crystal structures reveal an altered nucleotide association in RHOAA161P and an open nucleotide pocket in RHOAA161V. Both mutations perturb the dynamic properties of RHOA switch regions and shift the conformational landscape important for RHOA activity, as shown by 31P NMR and molecular dynamics simulations. Interestingly, RHOAA161P and RHOAA161V can interact with effectors in the GDP-bound state. 1H-15N HSQC NMR spectra support the existence of an active population in RHOAA161V-GDP. The distinct interaction mechanisms resulting from the mutations likely favor an RHOAWT-like "ON" conformation, endowing GDP-bound state effector binding activity.


Subject(s)
Guanosine Diphosphate , Molecular Dynamics Simulation , rhoA GTP-Binding Protein , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Guanosine Diphosphate/metabolism , Humans , Mutation , Crystallography, X-Ray , Protein Binding , Guanosine Triphosphate/metabolism , Protein Conformation , Gain of Function Mutation
20.
Tissue Cell ; 90: 102518, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173456

ABSTRACT

BACKGROUND AND AIMS: Aberrant expression of B7 homolog 3 protein (B7-H3) has been detected in various cancers including colorectal cancer (CRC) and implicated in modulating multiple biological functions of CRC cells. However, its role in CRC metastasis has not yet been determined. This study aims to explore and unravel the underlying mechanisms through which B7-H3 contributes to migration, invasion and actin cytoskeleton in CRC. METHODS: The expression of B7-H3 and LIMK1 in CRC tumor samples was determined by IHC staining. Transwell and F-actin immunofluorescence staining assays were performed to explore the role of B7-H3 in migration, invasion and actin filament accumulating of CRC cells. RNA-seq and Western blot assays were used to investigate the molecular mechanisms. RESULTS: B7-H3 was highly expressed in CRC tissues and positively associated with poor prognosis of CRC patients by immunohistochemistry. Migration and invasion assays showed that B7-H3 knockdown significantly inhibited the migration and invasion of CRC cells. B7-H3 overexpression had the opposite effect. Moreover, we determined that B7-H3 could regulate actin cytoskeleton and the RhoA/ROCK1/LIMK1 pathway by F-actin immunofluorescence staining and Western blot. Importantly, the BDP5290, an inhibitor of the RhoA/ROCK1/(LIM domain kinase 1) LIMK1 axis, reversed the effects of B7-H3 overexpression on actin filament accumulating, migration, and invasion of CRC cells. CONCLUSIONS: Our study concluded that B7-H3 facilitated CRC cell actin filament accumulating, migration, and invasion through the RhoA/ROCK1/LIMK1 axis.


Subject(s)
Actin Cytoskeleton , Cell Movement , Colorectal Neoplasms , Lim Kinases , Neoplasm Invasiveness , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Female , Humans , Male , Actin Cytoskeleton/metabolism , Cell Line, Tumor , Cell Movement/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Lim Kinases/metabolism , Lim Kinases/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/metabolism , B7 Antigens/genetics , B7 Antigens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL