Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(47): e2213432119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36378644

ABSTRACT

Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.


Subject(s)
Cytochromes c , Heme , Animals , Amino Acid Sequence , Antibodies, Monoclonal , Cytochromes c/chemistry , Heme/chemistry , Hybridomas , Oxidation-Reduction , Melanoma, Experimental , Mice
2.
J Exp Med ; 219(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35297953

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) remains a risk for epidemic emergence or use as an aerosolized bioweapon. To develop possible countermeasures, we isolated VEEV-specific neutralizing monoclonal antibodies (mAbs) from mice and a human immunized with attenuated VEEV strains. Functional assays and epitope mapping established that potently inhibitory anti-VEEV mAbs bind distinct antigenic sites in the A or B domains of the E2 glycoprotein and block multiple steps in the viral replication cycle including attachment, fusion, and egress. A 3.2-Å cryo-electron microscopy reconstruction of VEEV virus-like particles bound by a human Fab suggests that antibody engagement of the B domain may result in cross-linking of neighboring spikes to prevent conformational requirements for viral fusion. Prophylaxis or postexposure therapy with these mAbs protected mice against lethal aerosol challenge with VEEV. Our study defines functional and structural mechanisms of mAb protection and suggests that multiple antigenic determinants on VEEV can be targeted for vaccine or antibody-based therapeutic development.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Viral Vaccines , Aerosols , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Encephalomyelitis, Venezuelan Equine/prevention & control , Horses , Mice
3.
Cell Host Microbe ; 27(5): 710-724.e7, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32407709

ABSTRACT

The rational design of dengue virus (DENV) vaccines requires a detailed understanding of the molecular basis for antibody-mediated immunity. The durably protective antibody response to DENV after primary infection is serotype specific. However, there is an incomplete understanding of the antigenic determinants for DENV type-specific (TS) antibodies, especially for DENV serotype 3, which has only one well-studied, strongly neutralizing human monoclonal antibody (mAb). Here, we investigated the human B cell response in children after natural DENV infection in the endemic area of Nicaragua and isolated 15 DENV3 TS mAbs recognizing the envelope (E) glycoprotein. Functional epitope mapping of these mAbs and small animal prophylaxis studies revealed a complex landscape with protective epitopes clustering in at least 6-7 antigenic sites. Potently neutralizing TS mAbs recognized sites principally in E glycoprotein domains I and II, and patterns suggest frequent recognition of quaternary structures on the surface of viral particles.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue Virus/immunology , Dengue/immunology , Serogroup , Adolescent , Animals , Antibodies, Monoclonal/immunology , B-Lymphocytes/immunology , Child , Child, Preschool , Chlorocebus aethiops , Dengue Vaccines , Dengue Virus/genetics , Epitope Mapping , Epitopes/immunology , Humans , Mice , Models, Molecular , Nicaragua , Sequence Alignment , Vero Cells , Viral Envelope Proteins/immunology , Virion
SELECTION OF CITATIONS
SEARCH DETAIL