ABSTRACT
Mesenchymal stem cell (MSC)-based therapy is being increasingly considered a powerful opportunity for several disorders based on MSC immunoregulatory properties. Nonetheless, MSC are versatile and plastic cells that require an efficient control of their features and functions for their optimal use in clinic. Recently, we have shown that PPARß/δ is pivotal for MSC immunoregulatory and therapeutic functions. However, the role of PPARß/δ on MSC metabolic activity and the relevance of PPARß/δ metabolic control on MSC immunosuppressive properties have never been addressed. Here, we demonstrate that PPARß/δ deficiency forces MSC metabolic adaptation increasing their glycolytic activity required for their immunoregulatory functions on Th1 and Th17 cells. Additionally, we show that the inhibition of the mitochondrial production of ATP in MSC expressing PPARß/δ, promotes their metabolic switch towards aerobic glycolysis to stably enhance their immunosuppressive capacities significantly. Altogether, these data demonstrate that PPARß/δ governs the immunoregulatory potential of MSC by dictating their metabolic reprogramming and pave the way for enhancing MSC immunoregulatory properties and counteracting their versatility.
Subject(s)
Mesenchymal Stem Cells/metabolism , PPAR-beta/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/cytology , Cell Proliferation , Gene Silencing , Glycolysis , Immunosuppression Therapy , Mice , Oligomycins/chemistry , Th1 Cells/cytology , Th17 Cells/cytologyABSTRACT
Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to immunomodulate cells from both the innate and the adaptive immune systems promoting an anti-inflammatory environment. During the last decade, MSCs have been intensively studied in vitro and in vivo in experimental animal model of autoimmune and inflammatory disorders. Based on these studies, MSCs are currently widely used for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) characterized by complex deregulation of the immune systems. However, the therapeutic properties of MSCs in arthritis are still controverted. These controversies might be due to the diversity of MSC sources and isolation protocols used, the time, the route and dose of MSC administration, the variety of the mechanisms involved in the MSCs suppressive effects, and the complexity of arthritis pathogenesis. In this review, we discuss the role of the interactions between MSCs and the different immune cells associated with arthritis pathogenesis and the possible means described in the literature that could enhance MSCs therapeutic potential counteracting arthritis development and progression.