ABSTRACT
BACKGROUND: The objective of this research was to investigate how the combination of semen coicis extract and PD-1 inhibitors can potentially work together to enhance the anti-tumor effects, with a focus on understanding the underlying mechanism. METHODS: We obtained the active components and specific targets of semen coicis in the treatment of NSCLC from various databases, namely TCMSP, GeneCard, and OMIM. By utilizing the STRING database and Cytoscape software, we established a protein interaction network (PPI) for the active ingredient of semen coicis and the target genes related to NSCLC. To explore the potential pathways involved, we conducted gene ontology (GO) and biological pathway (KEGG) enrichment analyses, which were further supported by molecular docking technology. Additionally, we conducted cyto-inhibition experiments to verify the inhibitory effects of semen coicis alone or in combination with a PD-1 inhibitor on A549 cells, along with examining the associated pathways. Furthermore, we investigated the synergistic mechanism of these two drugs through cytokine release experiments and the PD-L1 expression study on A549 cells. RESULTS: Semen coicis contains two main active components, Omaine and (S)-4-Nonanolide. Its primary targets include PIK3R1, PIK3CD, PIK3CA, AKT2, and mTOR. Molecular docking experiments confirmed that these ingredients and targets form stable bonds. In vitro experiments showed that semen coicis demonstrates inhibitory effects against A549 cells, and this effect was further enhanced when combined with PD-1 inhibitors. PCR and WB analysis confirmed that the inhibition of the PI3K-AKT-mTOR pathway may contribute to this effect. Additionally, semen coicis was observed to decrease the levels of IFN-γ, IL-6, and TNF-α, promoting the recovery of the human anti-tumor immune response. And semen coicis could inhibit the induced expression of PDL1 of A549 cells stimulated by IFNγ as well. CONCLUSION: Semen coicis not only has the ability to kill tumor cells directly but also alleviates the immunosuppression found in the tumor microenvironment. Additionally, it collaboratively enhances the effectiveness of PD-1 inhibitors against tumors by blocking the activation of PI3K-AKT-mTOR.
Subject(s)
Antineoplastic Agents , Coix , Lung Neoplasms , Programmed Cell Death 1 Receptor , Signal Transduction , Humans , A549 Cells , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Drug Synergism , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Coix/chemistry , Antineoplastic Agents/pharmacologyABSTRACT
PURPOSE: This study investigated the effects of oral administration of Clostridium butyricum (C. butyricum) on inflammation, oxidative stress, and gut flora in rats with hepatic ischemia reperfusion injury (HIRI). METHODS: The rats from C. butyricum group were given C. butyricum for 5 days. Then, hepatic ischemia for 30 min and reperfusion for 6 h were performed in all the rats. After the animals were sacrificed, alanine transaminase (ALT), aspartate aminotransferase (AST), lipopolysaccharide (LPS) in serum, short-chain fatty acids (SCFAs), and gut microbiota composition in feces, and malondialdehyde (MDA), glutathione (GSH), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), Toll-like receptor 4 (TLR4), nuclear factor-kappa Bp65 (NF-κBp65) and histological analysis in the liver were performed. RESULTS: The rats given C. butyricum showed decreased ALT, AST, LPS, and MDA; improved GSH and histological damage; changes in SCFAs; declined TNF-α, IL-6, TLR4, and pNF-κBp65/NF-κBp65; and changes in the gut microbial composition, which decreased the Firmicutes/Bacteroidetes ratio and increased the relative abundance (RA) of probiotics. CONCLUSIONS: C. butyricum supplementation protected against HIRI by regulating gut microbial composition, which contributed to the decreased LPS and attenuation of inflammation and oxidative stress. These indicate C. butyricum may be a potent clinical preoperative dietary supplement for HIRI.
Subject(s)
Clostridium butyricum , Probiotics , Reperfusion Injury , Rats , Animals , Clostridium butyricum/physiology , Toll-Like Receptor 4 , Lipopolysaccharides , Tumor Necrosis Factor-alpha , Interleukin-6 , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Liver/pathology , Aspartate Aminotransferases , Alanine Transaminase , Glutathione , Probiotics/pharmacology , Inflammation/pathologyABSTRACT
BACKGROUND: The internal NAD(P)H dehydrogenase (NDA) gene family was a member of the NAD(P)H dehydrogenase (ND) gene family, mainly involved in the non-phosphorylated respiratory pathways in mitochondria and played crucial roles in response to abiotic stress. METHODS: The whole genome identification, structure analysis and expression pattern of NDA gene family were conducted to analyze the NDA gene family. RESULTS: There were 51, 52, 26, and 24 NDA genes identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. According to the structural characteristics of genes and traits of phylogenetic tree, we divided the NDA gene family into 8 clades. Gene structure analysis showed that the NDA gene family was relatively conservative. The four Gossypium species had good collinearity, and segmental duplication played an important role in the evolution of the NDA gene family. Analysis of cis-elements showed that most GhNDA genes contained cis-elements related to light response and plant hormones (ABA, MeJA and GA). The analysis of the expression patterns of GhNDA genes under different alkaline stress showed that GhNDA genes were actively involved in the response to alkaline stress, possibly through different molecular mechanisms. By analyzing the existing RNA-Seq data after alkaline stress, it was found that an NDA family gene GhNDA32 was expressed, and then theGhNDA32 was silenced by virus-induced gene silencing (VIGS). By observing the phenotype, we found that the wilting degree of silenced plants was much higher than that of the control plant after alkaline treatment, suggesting that GhNDA32 gene was involved in the response to alkaline stress. CONCLUSIONS: In this study, GhNDAs participated in response to alkaline stress, especially NaHCO3 stress. It was of great significance for the future research on the molecular mechanism of NDA gene family in responding to abiotic stresses.
Subject(s)
Gene Expression Regulation, Plant , Gossypium , Genome, Plant , Gossypium/genetics , Molecular Structure , Multigene Family/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/geneticsABSTRACT
BACKGROUND: This study aimed to evaluate the impact of Infiltration between the Popliteal Artery and Capsule of the posterior Knee (IPACK) combined with an adductor canal block under the guidance of ultrasound on early motor function after Total Knee Arthroplasty (TKA). METHODS: A sample of 60 cases who were scheduled for elective unilateral TKA were divided into two groups using random number table method: a group with IPACK combined with an adductor canal block (I group, n = 30), and a group with femoral nerve block combined with superior popliteal sciatic nerve block (FS group, n = 30). Before anesthesia induction was completed, the patients in I group received an ultrasound-guided adductor canal block with 15 mL of 0.375% ropivacaine and an IPACK block with 25 mL of ropivacaine, and the patients in FS group received a femoral nerve block and a superior popliteal sciatic nerve block with 20 mL of 0.375% ropivacaine under ultrasound guidance. Post-operation, all the patients received patient-controlled intravenous analgesia combined with an oral celecoxib capsule to relieve pain and maintain a visual analogue scale score of ≤ 3. RESULTS: The quadriceps femoris muscle strength score was significantly higher in â group than in FS group (p = 0.001), while the modified Bromage score were significantly lower and walking distance results were significantly higher in â group than in FS group (both p = 0.000). CONCLUSION: Compared with femoral nerve block combined with superior popliteal sciatic nerve block, IPACK combined with adductor canal block had a mild impact on early motor functions after TKA.
Subject(s)
Arthroplasty, Replacement, Knee , Nerve Block , Analgesia, Patient-Controlled , Analgesics, Opioid , Anesthetics, Local , Arthroplasty, Replacement, Knee/methods , Femoral Nerve/diagnostic imaging , Humans , Nerve Block/methods , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control , Prospective Studies , RopivacaineABSTRACT
BACKGROUND: The internal NAD(P)H dehydrogenase (NDA) gene family was a member of the NAD(P)H dehydrogenase (ND) gene family, mainly involved in the non-phosphorylated respiratory pathways in mitochondria and played crucial roles in response to abiotic stress. METHODS: The whole genome identification, structure analysis and expression pattern of NDA gene family were conducted to analyze the NDA gene family. RESULTS: There were 51, 52, 26, and 24 NDA genes identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. According to the structural characteristics of genes and traits of phylogenetic tree, we divided the NDA gene family into 8 clades. Gene structure analysis showed that the NDA gene family was relatively conservative. The four Gossypium species had good collinearity, and segmental duplication played an important role in the evolution of the NDA gene family. Analysis of cis-elements showed that most GhNDA genes contained cis-elements related to light response and plant hormones (ABA, MeJA and GA). The analysis of the expression patterns of GhNDA genes under different alkaline stress showed that GhNDA genes were actively involved in the response to alkaline stress, possibly through different molecular mechanisms. By analyzing the existing RNA-Seq data after alkaline stress, it was found that an NDA family gene GhNDA32 was expressed, and then theGhNDA32 was silenced by virus-induced gene silencing (VIGS). By observing the phenotype, we found that the wilting degree of silenced plants was much higher than that of the control plant after alkaline treatment, suggesting that GhNDA32 gene was involved in the response to alkaline stress. CONCLUSIONS: In this study, GhNDAs participated in response to alkaline stress, especially NaHCO3 stress. It was of great significance for the future research on the molecular mechanism of NDA gene family in responding to abiotic stresses.
Subject(s)
Gene Expression Regulation, Plant , Gossypium/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Molecular Structure , Multigene Family/genetics , Genome, PlantABSTRACT
Purpose: This study investigated the effects of oral administration of Clostridium butyricum (C. butyricum) on inflammation, oxidative stress, and gut flora in rats with hepatic ischemia reperfusion injury (HIRI). Methods: The rats from C. butyricum group were given C. butyricum for 5 days. Then, hepatic ischemia for 30 min and reperfusion for 6 h were performed in all the rats. After the animals were sacrificed, alanine transaminase (ALT), aspartate aminotransferase (AST), lipopolysaccharide (LPS) in serum, short-chain fatty acids (SCFAs), and gut microbiota composition in feces, and malondialdehyde (MDA), glutathione (GSH), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), Toll-like receptor 4 (TLR4), nuclear factor-kappa Bp65 (NF-κBp65) and histological analysis in the liver were performed. Results: The rats given C. butyricum showed decreased ALT, AST, LPS, and MDA; improved GSH and histological damage; changes in SCFAs; declined TNF-α, IL-6, TLR4, and pNF-κBp65/NF-κBp65; and changes in the gut microbial composition, which decreased the Firmicutes/Bacteroidetes ratio and increased the relative abundance (RA) of probiotics. Conclusions: C. butyricum supplementation protected against HIRI by regulating gut microbial composition, which contributed to the decreased LPS and attenuation of inflammation and oxidative stress. These indicate C. butyricum may be a potent clinical preoperative dietary supplement for HIRI.
Subject(s)
Animals , Rats , Reperfusion Injury/veterinary , Protective Agents/administration & dosage , Clostridium butyricum , Fatty Acids, Volatile , Oxidative Stress , Liver Diseases/therapyABSTRACT
Pain is a significant problem worldwide that affects the quality of life of patients. Dezocine is a non-addictive analgesic drug with kappa-opioid antagonist activity and has been successfully used to alleviate of postoperative pain. In addition, dezocine has an analgesic effect similar to that of morphine, alleviating moderate to severe pain. Rap guanine nucleotide exchange factor 3 (RAPGEF3) is a guanine nucleotide exchange factor for GTPases Rap1 and Rap2, which could enhance the activity of Rap1 to promote cell adhesion and axon regeneration, as well as promote neurite extension by interacting with nerve growth factors. Here, we first observed that overexpression of RAPGEF3 increased cell viability, as shown by a CCK-8 assay, and recovered brain function in rats. The expression of inflammation-related factors at the mRNA level was detected using qPCR, and the concentration of these factors in a cultured cell medium and rat serum samples were decreased as shown by ELISA after RAPGEF3 overexpression. Through western blotting, we further found that pro-inflammatory proteins were decreased, and these effects might be mediated by inhibition of the Ras/p-38 MAPK signaling pathway. Taken together, we speculated that RAPGEF3overexpression enhances the therapeutic effect of dezocine on neuropathic pain by inhibiting the inflammatory response through inhibition of the Ras/p-38 MAPK signaling pathway.
ABSTRACT
INTRODUCTION AND OBJECTIVES: Liver cirrhosis is characterized by increased intrahepatic resistance, splanchnic vasodilation/angiogenesis, and formation of portosystemic collateral vessels. Collaterals can cause lethal complications such as gastroesophageal variceal hemorrhage. Homocysteine is linked to vascular dysfunction and angiogenesis and higher levels have been reported in cirrhotic patients. It is also known that folic acid supplementation reverses the effects of homocysteine. However, the treatment effect in cirrhosis has yet to be investigated. MATERIAL AND METHODS: Liver cirrhosis was induced in Sprague-Dawley rats with common bile duct ligation (CBDL). The CBDL rats randomly received (1) vehicle; (2) dl-homocysteine thiolactone (1g/kg/day); (3) dl-homocysteine thiolactone plus folic acid (100mg/kg/day); or (4) folic acid. On the 29th day, hemodynamic parameters, liver and renal biochemistry, protein expressions of proangiogenic factors, mesenteric vascular density and portosystemic shunting were evaluated. RESULTS: In the cirrhotic rats, homocysteine increased mesenteric vascular density and the severity of shunting. It also up-regulated the protein expressions of mesenteric vascular endothelial growth factor (VEGF) and phosphorylated-endothelial nitric oxide synthase (p-eNOS). These effects were reversed by folic acid treatment (P<0.05). CONCLUSION: Folic acid ameliorated the adverse effects of homocysteine in the cirrhotic rats, which may be related to down-regulation of the VEGF-NO signaling pathway.
Subject(s)
Collateral Circulation/drug effects , Folic Acid/pharmacology , Homocysteine/analogs & derivatives , Liver Cirrhosis/physiopathology , Neovascularization, Pathologic/chemically induced , Portal System/drug effects , Splanchnic Circulation/drug effects , Vitamin B Complex/pharmacology , Animals , Common Bile Duct , Hemodynamics/drug effects , Homocysteine/pharmacology , Ligation , Liver Cirrhosis/complications , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Portal System/pathology , Rats , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Few studies have examined the socio-cultural determinants of alcohol and drug misuse trajectories among adult Latinas. To assess the associations between socio-cultural determinants and alcohol and drug misuse, we used a longitudinal design to follow a sample of adult Latina mother-daughter-dyads (N = 267) for ten years, and collected four waves of data. They were adult Latinas of Caribbean, South and Central American descent. Specifically, this study investigated the effects of the following factors: (1) Individual Determinants (e.g., socioeconomic conditions, mental health, and medical status); (2) Cultural Determinants (e.g., acculturation to US culture); (3) Interpersonal Determinants (e.g., interpersonal support, relationship stress, mother-daughter attachment, intimate partner violence); (4) Community Determinants (e.g., neighborhood related stress); and (5) Institutional Determinants (e.g., religious involvement, involvement with the criminal justice system). Using hierarchical modeling, we found that taking prescribed medication on a regular basis for a physical problem, religious involvement, and mother-daughter attachment were negatively associated with drug misuse, while involvement in criminal activity was positively associated with drug misuse. Regarding alcohol misuse, results showed that age at arrival in the United States, number of years in the United States, and religious involvement were negatively associated with alcohol misuse, while involvement in criminal activity was positively associated with alcohol misuse. Based on our findings, explicit implications are provided for culturally relevant interventions.
Subject(s)
Hispanic or Latino/statistics & numerical data , Mother-Child Relations/ethnology , Religion and Psychology , Socioeconomic Factors , Substance-Related Disorders/ethnology , Adolescent , Adult , Aged , Alcoholism/ethnology , Caribbean Region/ethnology , Central America/ethnology , Female , Humans , Longitudinal Studies , Middle Aged , South America/ethnology , United States/ethnology , Young AdultABSTRACT
PURPOSE: To investigate whether intracavernosal injection of short hairpin RNA for IGFBP-3 could improve erectile function in streptozotocin-induced diabetic rats. MATERIALS AND METHODS: After 12 weeks of IGFBP-3 short hairpin RNA injection treatment, intracavernous pressure responses to electrical stimulation of cavernous nerves were evaluated. The expression of IGFBP-3 and IGF-1 at mRNA and protein levels were detected by quantitative real-time PCR analysis and Western blot, respectively. The concentration of cavernous cyclic guanosine monophosphate was detected by enzyme-linked immunosorbent assay. RESULTS: At 12 weeks after intracavernous administration of IGFBP-3 shRNA, the cavernosal pressure was significantly increased in response to the cavernous nerves stimulation compared to the diabetic group (P<0.05). Cavernous IGFBP-3 expression at both mRNA and protein levels was significantly inhibited. At the same time, cavernous IGF-1 expression was significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic group (P<0.01). Cavernous cyclic guanosine monophosphate concentration was significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic group (P<0.01). CONCLUSIONS: Gene transfer of IGFBP-3 shRNA could improve erectile function via the restoration of cavernous IGF-1 bioavailability and an increase of cavernous cGMP concentration in the pathogenesis of erectile dysfunction in streptozotocin-induced diabetic rats.
Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Erectile Dysfunction/drug therapy , Erectile Dysfunction/physiopathology , Insulin-Like Growth Factor Binding Protein 3/pharmacokinetics , Insulin-Like Growth Factor I/drug effects , Penis/drug effects , RNA, Small Interfering/pharmacokinetics , Animals , Biological Availability , Blotting, Western , Diabetes Mellitus, Experimental/complications , Enzyme-Linked Immunosorbent Assay , Erectile Dysfunction/etiology , Injections , Insulin-Like Growth Factor I/analysis , Male , Random Allocation , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reproducibility of Results , StreptozocinABSTRACT
ABSTRACT Purpose To investigate whether intracavernosal injection of short hairpin RNA for IGFBP-3 could improve erectile function in streptozotocin-induced diabetic rats. Materials and methods After 12 weeks of IGFBP-3 short hairpin RNA injection treatment, intracavernous pressure responses to electrical stimulation of cavernous nerves were evaluated. The expression of IGFBP-3 and IGF-1 at mRNA and protein levels were detected by quantitative real-time PCR analysis and Western blot, respectively. The concentration of cavernous cyclic guanosine monophosphate was detected by enzyme-linked immunosorbent assay. Results At 12 weeks after intracavernous administration of IGFBP-3 shRNA, the cavernosal pressure was significantly increased in response to the cavernous nerves stimulation compared to the diabetic group (P<0.05). Cavernous IGFBP-3 expression at both mRNA and protein levels was significantly inhibited. At the same time, cavernous IGF-1 expression was significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic group (P<0.01). Cavernous cyclic guanosine monophosphate concentration was significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic group (P<0.01). Conclusions Gene transfer of IGFBP-3 shRNA could improve erectile function via the restoration of cavernous IGF-1 bioavailability and an increase of cavernous cGMP concentration in the pathogenesis of erectile dysfunction in streptozotocin-induced diabetic rats.
Subject(s)
Animals , Male , Penis/drug effects , Insulin-Like Growth Factor Binding Protein 3/pharmacokinetics , RNA, Small Interfering/pharmacokinetics , Diabetes Mellitus, Experimental/physiopathology , Erectile Dysfunction/physiopathology , Erectile Dysfunction/drug therapy , Insulin-Like Growth Factor I/analysis , Insulin-Like Growth Factor I/drug effects , Enzyme-Linked Immunosorbent Assay , Biological Availability , Random Allocation , Blotting, Western , Reproducibility of Results , Rats, Wistar , Streptozocin , Diabetes Mellitus, Experimental/complications , Real-Time Polymerase Chain Reaction , Erectile Dysfunction/etiology , InjectionsABSTRACT
BACKGROUND AND RATIONALE: The control of Endothelin-1 (ET-1)-mediated intrahepatic vasoconstriction in cirrhosis is beneficial for the alleviation of relevant complications. Cirrhosis is accompanied by hypogonadism and altered sex hormone status. Besides, sex hormones have vasoactive effects, but it is unknown if they influence vascular function in cirrhosis. This study aimed to investigate the roles of sex hormones in hepatic vascular reactions to ET-1 in cirrhosis. Liver cirrhosis was induced in Spraque-Dawley male and female rats with common bile duct ligation (BDL). Sham-operated (Sham) rats were controls. On the 43rd day after operations, intrahepatic vascular concentration-response curves to ET-1 were obtained with the following preincubatioins: 1) vehicle; 2) 17ß-estradiol; 3) progesterone; 4) testosterone. Livers from sham and BDL rats were dissected for real-time polymerase chain reaction analysis of estrogen, progesterone and testosterone receptors. RESULTS: Compared with sham males perfused with vehicle, sham females presented higher perfusion pressure changes to ET-1 which was reversed only by 17 ß-estradiol. In cirrhosis, compared with males, 17 ß-estradiol no longer attenuated vascular responsiveness to ET-1 in females. In females, BDL rats had lower hepatic estrogen receptor α(ERßα) mRNA expression than that in sham rats. CONCLUSIONS: The sham females showed a stronger intrahepatic vascular constrictive effect to ET-1 than sham males, which could be reversed by 17ß-estradiol. However, the influence of 17 ß-estradiol was lost in cirrhotic females, which may be attributed, at least partly, to intrahepatic ER α down-regulation in females with cirrhosis.
Subject(s)
Endothelin-1/pharmacology , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Gene Expression Regulation , Hepatic Artery/physiopathology , Liver Cirrhosis, Experimental/physiopathology , Vasoconstriction/drug effects , Animals , Estrogen Receptor alpha/biosynthesis , Estrogens/pharmacology , Female , Hepatic Artery/drug effects , Liver/blood supply , Liver/metabolism , Liver Cirrhosis, Experimental/drug therapy , Liver Cirrhosis, Experimental/genetics , Male , RNA/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain ReactionABSTRACT
Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.
Subject(s)
Adaptation, Physiological/genetics , Gene-Environment Interaction , Genome, Plant , Oryza/genetics , Africa , Amino Acid Sequence , Asia , Australia , Base Sequence , Diploidy , Evolution, Molecular , Gene Dosage , Genes, Plant , Genetic Variation , MicroRNAs/genetics , Molecular Sequence Data , Multigene Family , Oryza/classification , Phylogeny , Plant Proteins/genetics , RNA, Plant/genetics , Selection, Genetic , Sequence Alignment , Sequence Homology , South America , Species SpecificityABSTRACT
BACKGROUND: Neuraxial application of dexmedetomidine (DEX) as adjuvant analgesic has been invetigated in some randomized controlled trials (RCTs) but not been approved because of the inconsistency of efficacy and safety in these RCTs. We performed this meta-analysis to access the efficacy and safety of neuraxial DEX as local anaesthetic (LA) adjuvant. METHODS: We searched PubMed, PsycINFO, Scopus, EMBASE, and CENTRAL databases from inception to June 2013 for RCTs that investigated the analgesia efficacy and safety for neuraxial application DEX as LA adjuvant. Effects were summarized using standardized mean differences (SMDs), weighed mean differences (WMDs) or odds ratio (OR) with suitable effect model. The primary outcomes were postoperative pain intensity and analgesic duration, bradycardia and hypotension. RESULTS: Sixteen RCTs involving 1092 participants were included. Neuraxial DEX significantly decreased postoperative pain intensity (SMD, -1.29; 95% confidence interval (CI), -1.70 to -0.89; P<0.00001), prolonged analgesic duration (WMD, 6.93 hours; 95% CI, 5.23 to 8.62; P<0.00001) and increased the risk of bradycardia (OR, 2.68; 95% CI, 1.18 to 6.10; Pâ=â0.02). No evidence showed that neuraxial DEX increased the risk of other adverse events, such as hypotension (OR, 1.54; 95% CI, 0.83 to 2.85; Pâ=â0.17). Additionally, neuraxial DEX was associated with beneficial alterations in postoperative sedation scores and number of analgesic requirements, sensory and motor block characteristics, and intro-operative hemodynamics. CONCLUSION: Neuraxial DEX is a favorable LA adjuvant with better and longer analgesia. The greatest concern is bradycardia. Further large sample trials with strict design and focusing on long-term outcomes are needed.