ABSTRACT
OBJECTIVES: Metastasis is one of the biggest challenges in the management of Esophageal Squamous Cell Carcinoma (ESCC), of which molecular mechanisms remain elusive. The present study aimed to explore the roles and underlying mechanisms of Transmembrane protein 26 (TMEM26) in ESCC. METHOD: TMEM26 expressions in tumorous and adjacent tissues from patients with ESCC and in normal esophageal epithelial and ESCC cell lines were detected by immunostaining and western blotting, respectively. The Epithelial-Mesenchymal Transition (EMT), a critical process during metastasis, was investigated by wound healing and Transwell assays, and EMT-related proteins were examined after the TMEM26 alteration in ESCC cell lines. NF-κB signaling activation and Tight Junction (TJ) protein expression were analyzed by western blotting and immunofluorescence, respectively. In vivo verification was performed on the liver metastatic murine model. RESULTS: Compared with non-cancerous esophageal tissues and cells, the TMEM26 expression level was higher in ESCC samples and cell lines, where the plasma membrane localization of TMEM26 was observed. The EMT-related processes of ESCC cells were suppressed by RNAi depletion of TMEM26 but aggravated by TMEM26 overexpression. Mechanistically, TMEM26 promoted NF-κB signaling to accelerate EMT in ESCC cells. The plasma membrane presentation and assembly of TJ proteins were impaired by TMEM26. CONCLUSION: Overall, TMEM26 acts as a critical determinant for EMT in ESCC cells by disrupting TJ formation and promoting NF-κB signaling, which may be a potential therapeutic target for treating metastatic ESCC.
Subject(s)
Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Membrane Proteins , Animals , Humans , Mice , NF-kappa B , Tight Junctions , Membrane Proteins/metabolismABSTRACT
Abstract Objectives Metastasis is one of the biggest challenges in the management of Esophageal Squamous Cell Carcinoma (ESCC), of which molecular mechanisms remain elusive. The present study aimed to explore the roles and underlying mechanisms of Transmembrane protein 26 (TMEM26) in ESCC. Method TMEM26 expressions in tumorous and adjacent tissues from patients with ESCC and in normal esophageal epithelial and ESCC cell lines were detected by immunostaining and western blotting, respectively. The Epithelial-Mesenchymal Transition (EMT), a critical process during metastasis, was investigated by wound healing and Transwell assays, and EMT-related proteins were examined after the TMEM26 alteration in ESCC cell lines. NF-κB signaling activation and Tight Junction (TJ) protein expression were analyzed by western blotting and immunofluorescence, respectively. In vivo verification was performed on the liver metastatic murine model. Results Compared with non-cancerous esophageal tissues and cells, the TMEM26 expression level was higher in ESCC samples and cell lines, where the plasma membrane localization of TMEM26 was observed. The EMT-related processes of ESCC cells were suppressed by RNAi depletion of TMEM26 but aggravated by TMEM26 overexpression. Mechanistically, TMEM26 promoted NF-κB signaling to accelerate EMT in ESCC cells. The plasma membrane presentation and assembly of TJ proteins were impaired by TMEM26. Conclusion Overall, TMEM26 acts as a critical determinant for EMT in ESCC cells by disrupting TJ formation and promoting NF-κB signaling, which may be a potential therapeutic target for treating metastatic ESCC.
ABSTRACT
OBJECTIVE: To determine whether longer breastfeeding is associated with higher infant lead concentrations. STUDY DESIGN: Data were analyzed from 3 studies of developmental effects of iron deficiency in infancy: Costa Rica (1981-1984), Chile (1991-1996), and Detroit (2002-2003). The relation between duration of breastfeeding and lead levels was assessed with Pearson product-moment or partial correlation coefficients. RESULTS: More than 93% of the Costa Rica and Chile samples was breastfed (179 and 323 breastfed infants, respectively; mean weaning age, 8-10 months), as was 35.6% of the Detroit sample (53 breastfed infants; mean weaning age, 4.5 months). Lead concentrations averaged 10.8 microg/dL (Costa Rica, 12-23 months), 7.8 microg/dL (Chile, 12 months), and 2.5 microg/dL (Detroit, 9-10 months). Duration of breastfeeding as sole milk source and total breastfeeding correlated with lead concentration in all samples (r values = 0.14-0.57; P values = .06-<.0001). CONCLUSIONS: Longer breastfeeding was associated with higher infant lead concentration in 3 countries, in 3 different decades, in settings differing in breastfeeding patterns, environmental lead sources, and infant lead levels. The results suggest that monitoring lead concentrations in breastfed infants be considered.