Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biomaterials ; 313: 122776, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39236629

ABSTRACT

Surgical resection, the mainstay for melanoma treatment, faces challenges due to high tumor recurrence rates and complex postoperative wound healing. Chronic inflammation from residual disease and the risk of secondary infections impede healing. We introduce an innovative, injectable hydrogel system that integrates a multifaceted therapeutic approach. The hydrogel, crosslinked by calcium ions with sodium alginate, encapsulates a blood clot rich in dendritic cells (DCs) chemoattractants and melanoma cell-derived nanovesicles (NVs), functioning as a potent immunostimulant. This in situ recruitment strategy overcomes the limitations of subcutaneous tumor vaccine injections and more effectively achieves antitumor immunity. Additionally, the hydrogel incorporates Chlorella extracts, enhancing its antimicrobial properties to prevent wound infections and promote healing. One of the key findings of our research is the dual functionality of Chlorella extracts; they not only expedite the healing process of infected wounds but also increase the hydrogel's ability to stimulate an antitumor immune response. Given the patient-specific nature of the blood clot and NVs, our hydrogel system offers customizable solutions for individual postoperative requirements. This personalized approach is highlighted by our study, which demonstrates the synergistic impact of the composite hydrogel on preventing melanoma recurrence and hastening wound healing, potentially transforming postsurgical melanoma management.


Subject(s)
Dendritic Cells , Hydrogels , Melanoma , Wound Healing , Hydrogels/chemistry , Animals , Dendritic Cells/immunology , Dendritic Cells/drug effects , Melanoma/therapy , Melanoma/pathology , Wound Healing/drug effects , Humans , Neoplasm Recurrence, Local/prevention & control , Mice, Inbred C57BL , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/pharmacology , Mice , Cell Line, Tumor , Female
SELECTION OF CITATIONS
SEARCH DETAIL