ABSTRACT
PURPOSE: To investigate the potential effects of pretreatment with allopurinol on renal ischemia/reperfusion injury (IRI) in a rat model. METHODS: Twenty four rats were subjected to right kidney uninephrectomy were randomly distributed into the following three groups (n=8): Group A (sham-operated group); Group B (ischemic group) with 30 min of renal ischemia after surgery; and Group C (allopurinol + ischemia group) pretreated with allopurinol at 50 mg/kg for 14 days. At 72 h after renal reperfusion, the kidney was harvested to assess inflammation and apoptosis. RESULTS: Pretreatment with allopurinol significantly improved renal functional and histological grade scores following I/R injury (p<0.05). Compared with Group B, the expression levels of caspase-3 and Bax were markedly reduced in Group C, meanwhile, whereas expression of bcl-2 was clearly increased (p<0.05). A newly described marker of inflammation, High Mobility Group Box 1(HMGB1), showed reduced expression in Group C (p<0.05). CONCLUSION: Pretreatment with allopurinol had a protective effect on kidney ischemia/reperfusion injury, which might be related to the inhibition of HMGB1 expression.
Subject(s)
Allopurinol/pharmacology , HMGB1 Protein/drug effects , Ischemic Preconditioning/methods , Kidney/blood supply , Protective Agents/pharmacology , Reperfusion Injury/prevention & control , Animals , Apoptosis/drug effects , Blood Urea Nitrogen , Disease Models, Animal , HMGB1 Protein/metabolism , Inflammation/metabolism , Kidney/pathology , Male , Peroxidase/metabolism , Random Allocation , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Superoxide Dismutase/drug effectsABSTRACT
PURPOSE:To investigate the potential effects of pretreatment with allopurinol on renal ischemia/reperfusion injury (IRI) in a rat model.METHODS:Twenty four rats were subjected to right kidney uninephrectomy were randomly distributed into the following three groups (n=8): Group A (sham-operated group); Group B (ischemic group) with 30 min of renal ischemia after surgery; and Group C (allopurinol + ischemia group) pretreated with allopurinol at 50 mg/kg for 14 days. At 72 h after renal reperfusion, the kidney was harvested to assess inflammation and apoptosis.RESULTS:Pretreatment with allopurinol significantly improved renal functional and histological grade scores following I/R injury (p<0.05). Compared with Group B, the expression levels of caspase-3 and Bax were markedly reduced in Group C, meanwhile, whereas expression of bcl-2 was clearly increased (p<0.05). A newly described marker of inflammation, High Mobility Group Box 1(HMGB1), showed reduced expression in Group C (p<0.05).CONCLUSION:Pretreatment with allopurinol had a protective effect on kidney ischemia/reperfusion injury, which might be related to the inhibition of HMGB1 expression.(AU)
Subject(s)
Animals , Rats , Allopurinol/therapeutic use , Reperfusion Injury/therapy , Reperfusion Injury/veterinary , HMGB1 Protein , Kidney/injuries , ApoptosisABSTRACT
ABSTRACT PURPOSE: To investigate the potential effects of pretreatment with allopurinol on renal ischemia/reperfusion injury (IRI) in a rat model. METHODS: Twenty four rats were subjected to right kidney uninephrectomy were randomly distributed into the following three groups (n=8): Group A (sham-operated group); Group B (ischemic group) with 30 min of renal ischemia after surgery; and Group C (allopurinol + ischemia group) pretreated with allopurinol at 50 mg/kg for 14 days. At 72 h after renal reperfusion, the kidney was harvested to assess inflammation and apoptosis. RESULTS: Pretreatment with allopurinol significantly improved renal functional and histological grade scores following I/R injury (p<0.05). Compared with Group B, the expression levels of caspase-3 and Bax were markedly reduced in Group C, meanwhile, whereas expression of bcl-2 was clearly increased (p<0.05). A newly described marker of inflammation, High Mobility Group Box 1(HMGB1), showed reduced expression in Group C (p<0.05). CONCLUSION: Pretreatment with allopurinol had a protective effect on kidney ischemia/reperfusion injury, which might be related to the inhibition of HMGB1 expression.