Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
ACS Infect Dis ; 10(10): 3607-3617, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39303151

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe complications that can occur in infections caused by any Plasmodium species. Due to the high lethality rate and the lack of specific treatment for ALI/ARDS, studies aimed at understanding and searching for treatment strategies for such complications have been fundamental. Here, we investigated the protective role of dietary supplementation with DHA-rich fish oil against lung damage induced by Plasmodium berghei ANKA in a murine model. Our results demonstrated that alveolar vascular damage, lung edema, and histopathological alterations were significantly reduced in mice that received dietary supplementation compared to those that did not receive the supplementation. Furthermore, a significant reduction in the number of CD8+ T lymphocytes, in addition to reduced infiltration of inflammatory cells in the bronchoalveolar lavage fluid was also observed. High levels of IL-10, but not of TNF-α and IFN-γ, were also observed in infected mice that received the supplementation, along with a reduction in local oxidative stress. Together, the data suggest that dietary supplementation with DHA-rich fish oil in malarial endemic areas may help reduce lung damage resulting from the infection, thus preventing worsening of the condition.


Subject(s)
Dietary Supplements , Disease Models, Animal , Docosahexaenoic Acids , Malaria , Plasmodium berghei , Animals , Plasmodium berghei/drug effects , Mice , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/administration & dosage , Lung/pathology , Lung/drug effects , Lung/parasitology , Bronchoalveolar Lavage Fluid/chemistry , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/administration & dosage , Oxidative Stress/drug effects , Acute Lung Injury/prevention & control , Acute Lung Injury/drug therapy , CD8-Positive T-Lymphocytes/immunology , Interleukin-10 , Fish Oils/pharmacology , Fish Oils/administration & dosage
2.
Braz J Med Biol Res ; 57: e13235, 2024.
Article in English | MEDLINE | ID: mdl-38511769

ABSTRACT

The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1ß, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.


Subject(s)
Acute Lung Injury , Sepsis , Mice , Animals , Pioglitazone , Up-Regulation , PPAR gamma/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Sepsis/complications , Lipopolysaccharides , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
3.
Braz J Med Biol Res ; 56: e12906, 2023.
Article in English | MEDLINE | ID: mdl-37970921

ABSTRACT

The aim of this research was to determine the anti-inflammatory effect of betaine on sepsis-induced acute respiratory distress syndrome (ARDS) in rats through histopathological examination, radiologic imaging, and biochemical analysis. Eight rats were included in the control group, and no procedure was performed. Feces intraperitoneal procedure (FIP) was performed on 24 rats to create a sepsis-induced ARDS model. These rats were separated into three groups as follows: FIP alone (sepsis group, n=8), FIP + saline (1 mL/kg, placebo group, n=8), and FIP + betaine (500 mg/kg, n=8). Computed tomography (CT) was performed after FIP, and the Hounsfield units (HU) value of the lungs was measured. The plasma levels of tumor necrosis factor (TNF)-α, interleukin-1ß (IL-1ß), IL-6, C-reactive protein, malondialdehyde (MDA), and lactic acid (LA) were determined, and arterial oxygen pressure (PaO2) and arterial CO2 pressure (PaCO2) were measured from an arterial blood sample. Histopathology was used to evaluate lung damage. This study completed all histopathological and biochemical evaluations in 3 months. All evaluated biomarkers were decreased in the FIP + betaine group compared to FIP + saline and FIP alone (all P<0.05). Also, the parenchymal density of the rat lung on CT and histopathological scores were increased in FIP + saline and FIP alone compared to control and these findings were reversed by betaine treatment (all P<0.05). Our study demonstrated that betaine suppressed the inflammation and ameliorated acute lung injury in a rat model of sepsis.


Subject(s)
Acute Lung Injury , Lung Injury , Respiratory Distress Syndrome , Sepsis , Rats , Animals , Antioxidants/therapeutic use , Betaine/therapeutic use , Rats, Sprague-Dawley , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Lung/pathology , Anti-Inflammatory Agents/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Tumor Necrosis Factor-alpha , Sepsis/complications , Sepsis/drug therapy , Tomography, X-Ray Computed , Lung Injury/pathology
4.
Braz J Cardiovasc Surg ; 38(1): 79-87, 2023 02 10.
Article in English | MEDLINE | ID: mdl-35657304

ABSTRACT

OBJECTIVE: To explore the effect of ischemic postconditioning on myocardial ischemia-reperfusion-induced acute lung injury (ALI). METHODS: Forty adult male C57BL/6 mice were randomly divided into sham operation group (SO group), myocardial ischemia-reperfusion group (IR group), ischemic preconditioning group (IPRE group) and ischemic postconditioning group (IPOST group) (10 mice in each group). Anterior descending coronary artery was blocked for 60 min and then reperfused for 15 min to induce myocardial IR. For the IPRE group, 3 consecutive cycles of 5 min of occlusion and 5 minutes of reperfusion of the coronary arteries were performed before ischemia. For the IPOST group, 3 consecutive cycles of 5 min reperfusion and 5 minutes of occlusion of the coronary arteries were performed before reperfusion. Pathological changes of lung tissue, lung wet-to-dry (W/D) weight ratio, inflammatory factors, oxidative stress indicators, apoptosis of lung cells and endoplasmic reticulum stress (ERS) protein were used to evaluate lung injury. RESULTS: After myocardial IR, lung injury worsened significantly, manifested by alveolar congestion, hemorrhage, structural destruction of alveolar septal thickening, and interstitial neutrophil infiltration. In addition, lung W/D ratio was increased, plasma inflammatory factors, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-17A, were increased, malondialdehyde (MDA) activity of lung tissue was increased, and superoxide dismutase (SOD) activity was decreased after myocardial IR. It was accompanied by the increased protein expression levels of ERS-related protein glucose regulatory protein 78 (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), and caspase-12, and the increased apoptotic indices of lung tissues. CONCLUSION: IPOST can effectively improve myocardial IR-induced ALI by inhibiting ERS-induced apoptosis of alveolar epithelial cells.


Subject(s)
Acute Lung Injury , Ischemic Postconditioning , Myocardial Reperfusion Injury , Reperfusion Injury , Male , Mice , Animals , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/pathology , Mice, Inbred C57BL , Lung/pathology , Interleukin-6 , Tumor Necrosis Factor-alpha/metabolism , Apoptosis , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Endoplasmic Reticulum Stress , Reperfusion Injury/pathology
5.
Braz J Cardiovasc Surg ; 37(3): 370-379, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35605218

ABSTRACT

INTRODUCTION: The objective of this study is to investigate the protective mechanism of dexmedetomidine (Dex) in myocardial ischemia/reperfusion (MIR)-induced acute lung injury (ALI) of diabetic rats by inhibiting hypoxia-inducible factor-1α (HIF-1α). METHODS: Initially, healthy male Sprague Dawley rats were treated with streptozocin to induce diabetes. Then, three weeks after the induction, Dex or lentiviral vector (LV)-HIF-1α was injected into the rats 30 minutes prior to the MIR modeling. After four weeks, lung tissues were harvested for pathological changes observation and the wet/dry weight (W/D) ratio determination. Afterwards, oxidative stress indicators and pro-inflammatory factors were measured. In addition, HIF-1α expression was assessed by immunohistochemistry and western blot analysis. RESULTS: Dex could suppress inflammatory cell infiltration, improve lung tissue structure, reduce pathological score and the W/D ratio, and block oxidative stress and inflammatory response in MIR-induced ALI of diabetic rats. Besides, Dex could also inhibit HIF-1α expression. Moreover, Dex + LV-HIF-1α reversed the protective role of Dex on diabetic MIR-induced ALI. CONCLUSION: Our study has made it clear that Dex inhibited the upregulation of HIF-1α in diabetic MIR-induced ALI, and thus protect lung functions by quenching the accumulation of oxygen radical and reducing lung inflammatory response.


Subject(s)
Acute Lung Injury , Dexmedetomidine , Diabetes Mellitus, Experimental , Myocardial Reperfusion Injury , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung/pathology , Male , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Rats , Rats, Sprague-Dawley , Signal Transduction
6.
Inflammation ; 45(4): 1534-1547, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35267122

ABSTRACT

Acute lung injury (ALI) is a life-threatening acute inflammatory disease with high rates of morbidity and mortality worldwide. 4-Allyl-2,6-dimethoxyphenol (methoxyeugenol), a phenylpropanoid from a synthetic source, exhibits strong anti-inflammatory activity, but its effects on the inflammation of ALI have not yet been reported. In our study, the anti-inflammatory effects of methoxyeugenol were investigated on RAW 264.7 cells and a mice model of ALI. Our results showed that methoxyeugenol (7.5 and 30 µM) attenuated the proliferation and gene expression of interleukin (IL)-6 in LPS-stimulated RAW 264.7 cells. In a mice model of ALI induced with LPS, methoxyeugenol exhibited a significant protective effect, based on influx reduction of macrophages and neutrophils into the lungs; reduction in release of the cytokines IL-6, TNF-α, and IL-10; and in reactive oxygen species (ROS) formation. We show that the anti-inflammatory effects of methoxyeugenol are associated with the suppression of the NFκB signaling pathway. Moreover, we demonstrated for the first time that a phenolic compound, from a synthetic source, protects against lung tissue inflammation and promotes a reduction of NET formation. These findings provided evidence for the use of methoxyeugenol as a new strategy to control inflammation in ALI disease.


Subject(s)
Acute Lung Injury , Extracellular Traps , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Extracellular Traps/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/prevention & control , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Mice , Mice, Inbred C57BL , Pneumonia/metabolism
7.
Clinics (Sao Paulo) ; 76: e2513, 2021.
Article in English | MEDLINE | ID: mdl-33978073

ABSTRACT

OBJECTIVES: The current study compared the impact of pretreatment with melatonin and N-acetylcysteine (NAC) on the prevention of rat lung damage following intestinal ischemia-reperfusion (iIR). METHODS: Twenty-eight Wistar rats were subjected to intestinal ischemia induced by a 60 min occlusion of the superior mesenteric artery, followed by reperfusion for 120 min. Animals were divided into the following groups (n=7 per group): sham, only abdominal incision; SS+iIR, pretreated with saline solution and iIR; NAC+iIR, pretreated with NAC (20 mg/kg) and iIR; MEL+iIR, pretreated with melatonin (20 mg/kg) and iIR. Oxidative stress and inflammatory mediators were measured and histological analyses were performed in the lung tissues. RESULTS: Data showed a reduction in malondialdehyde (MDA), myeloperoxidase (MPO), and TNF-alpha in the animals pretreated with NAC or MEL when compared to those treated with SS+iIR (p<0.05). An increase in superoxide dismutase (SOD) levels in the NAC- and MEL-pretreated animals as compared to the SS+iIR group (34±8 U/g of tissue; p<0.05) was also observed. TNF-α levels were lower in the MEL+iIR group (91±5 pg/mL) than in the NAC+iIR group (101±6 pg/mL). Histological analysis demonstrated a higher lung lesion score in the SS+iIR group than in the pretreated groups. CONCLUSION: Both agents individually provided tissue protective effect against intestinal IR-induced lung injury, but melatonin was more effective in ameliorating the parameters analyzed in this study.


Subject(s)
Acute Lung Injury , Melatonin , Reperfusion Injury , Acetylcysteine/therapeutic use , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Animals , Ischemia , Melatonin/therapeutic use , Rats , Rats, Wistar , Reperfusion , Reperfusion Injury/prevention & control
8.
Sci Rep ; 11(1): 5925, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723330

ABSTRACT

Sepsis is the leading cause of acute kidney injury (AKI) and lung injury worldwide. Despite therapeutic advances, sepsis continues to be associated with high mortality. Because Brazilian green propolis (GP) has promising anti-inflammatory, antioxidant, and immunomodulatory properties, we hypothesized that it would protect kidneys and lungs in rats induced to sepsis by cecal ligation and puncture (CLP). Male Wistar rats were divided into groups-control (sham-operated); CLP (CLP only); and CLP + GP (CLP and treatment with GP at 6 h thereafter)-all receiving volume expansion and antibiotic therapy at 6 h after the procedures. By 24 h after the procedures, treatment with GP improved survival, attenuated sepsis-induced AKI, and restored renal tubular function. Whole-blood levels of reduced glutathione were higher in the CLP + GP group. Sepsis upregulated the Toll-like receptor 4/nuclear factor-kappa B axis in lung and renal tissues, as well as increasing inflammatory cytokine levels and macrophage infiltration; all of those effects were attenuated by GP. Treatment with GP decreased the numbers of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive cells in renal and lung tissue, as well as protecting the morphology of the renal mitochondria. Our data open the prospect for clinical trials of the use of GP in sepsis.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Anti-Infective Agents/pharmacology , Propolis/chemistry , Sepsis/complications , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Anti-Infective Agents/chemistry , Apoptosis , Biomarkers , Chemotaxis, Leukocyte/immunology , Chromatography, High Pressure Liquid , Cytokines/metabolism , Disease Models, Animal , Kidney Function Tests , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Oxidative Stress/drug effects , Protective Agents/pharmacology , Rats , Signal Transduction
9.
Eur J Pharmacol ; 897: 173929, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33561444

ABSTRACT

Acute lung injury (ALI) remains to cause a high rate of mortality in critically ill patients. It is known that inflammation is a key factor in the pathogenesis of lipopolysaccharide (LPS)-induced ALI, which makes it a relevant approach to the treatment of ALI. In this study, we evaluated the potential of nasally instilled p-coumaric acid to prevent LPS-induced ALI in mice, by evaluating its effects on cellular and molecular targets involved in inflammatory response via in vitro and in silico approaches. Our results demonstrated that p-coumaric acid reduced both neutrophil accumulation and pro-inflammatory cytokine abundance, and simultaneously increased IL-10 production at the site of inflammation, potentially contributing to protection against LPS-induced ALI in mice. In the in vitro experiments, we observed inhibitory effects of p-coumaric acid against IL-6 and IL-8 production in stimulated A549 cells, as well as reactive oxygen species generation by neutrophils. In addition, p-coumaric acid treatment decreased neutrophil adhesion on the TNF-α-stimulated endothelial cells. According to the in silico predictions, p-coumaric acid reached stable interactions with both the ATP-binding site of IKKß as well as the regions within LFA-1, critical for interaction with ICAM-1, thereby suppressing the production of proinflammatory mediators and hindering the neutrophil infiltration, respectively. Collectively, these findings indicate that p-coumaric acid is a promising anti-inflammatory agent that can be used for developing a pharmaceutical drug for the treatment of ALI and other inflammatory disorders.


Subject(s)
Acute Lung Injury/prevention & control , Anti-Inflammatory Agents/administration & dosage , Coumaric Acids/administration & dosage , Lung/drug effects , A549 Cells , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Administration, Intranasal , Animals , Anti-Inflammatory Agents/metabolism , Binding Sites , Coculture Techniques , Computer Simulation , Coumaric Acids/metabolism , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides , Lung/metabolism , Lung/pathology , Male , Mice , Molecular Docking Simulation , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/metabolism , Protein Binding , Reactive Oxygen Species/metabolism
10.
Clinics ; Clinics;76: e2513, 2021. graf
Article in English | LILACS | ID: biblio-1249580

ABSTRACT

OBJECTIVES: The current study compared the impact of pretreatment with melatonin and N-acetylcysteine (NAC) on the prevention of rat lung damage following intestinal ischemia-reperfusion (iIR). METHODS: Twenty-eight Wistar rats were subjected to intestinal ischemia induced by a 60 min occlusion of the superior mesenteric artery, followed by reperfusion for 120 min. Animals were divided into the following groups (n=7 per group): sham, only abdominal incision; SS+iIR, pretreated with saline solution and iIR; NAC+iIR, pretreated with NAC (20 mg/kg) and iIR; MEL+iIR, pretreated with melatonin (20 mg/kg) and iIR. Oxidative stress and inflammatory mediators were measured and histological analyses were performed in the lung tissues. RESULTS: Data showed a reduction in malondialdehyde (MDA), myeloperoxidase (MPO), and TNF-alpha in the animals pretreated with NAC or MEL when compared to those treated with SS+iIR (p<0.05). An increase in superoxide dismutase (SOD) levels in the NAC- and MEL-pretreated animals as compared to the SS+iIR group (34±8 U/g of tissue; p<0.05) was also observed. TNF-α levels were lower in the MEL+iIR group (91±5 pg/mL) than in the NAC+iIR group (101±6 pg/mL). Histological analysis demonstrated a higher lung lesion score in the SS+iIR group than in the pretreated groups. CONCLUSION: Both agents individually provided tissue protective effect against intestinal IR-induced lung injury, but melatonin was more effective in ameliorating the parameters analyzed in this study.


Subject(s)
Animals , Rats , Reperfusion Injury/prevention & control , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Melatonin/therapeutic use , Acetylcysteine/therapeutic use , Reperfusion , Rats, Wistar , Ischemia
11.
Acta Cir Bras ; 35(2): e202000205, 2020.
Article in English | MEDLINE | ID: mdl-32428061

ABSTRACT

Purpose To investigate the effects of induction of selective liver hypothermia in a rodent model. Methods Seven male Wistar rats were subjected to 90 minutes of partial 70% liver ischemia and topic liver 26°C hypothermia (H group). Other seven male Wistar rats were subjected to 90 minutes of partial 70% normothermic liver ischemia (N group). Five additional rats underwent a midline incision and section of liver ligaments under normothermic conditions and without any liver ischemia (sham group). All animals were sacrificed 24-h after reperfusion, and livers were sampled for analyses. Pathology sections were scored for sinusoidal congestion, ballooning, hepatocelllular necrosis and the presence of neutrophilic infiltrates. Results At the end of the experiment, liver tissue expressions of TNF-ɑ, IL-1ß, iNOS and TNF-ɑ/IL-10 ratio were significantly reduced in the H group compared to N group, whereas IL-10 and eNOS were significantly increased in H group. Histopathological injury scores revealed a significant decrease in ischemia/reperfusion (I/R) injuries in H group. Conclusion Selective liver hypothermia prevented I/R injury by inhibiting the release of inflammatory cytokines, preserves microcirculation, prevents hepatocellular necrosis and leukocyte infiltration, allowing maintenance of the liver architecture.


Subject(s)
Acute Lung Injury/prevention & control , Hypothermia, Induced/methods , Liver/blood supply , Reperfusion Injury/prevention & control , Acute Lung Injury/pathology , Animals , Body Temperature , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Ischemia/pathology , Liver/pathology , Male , Necrosis/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Tumor Necrosis Factor-alpha
12.
Endocrinology ; 161(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-31837219

ABSTRACT

Hemorrhagic shock (HS) is a potential life-threatening condition that may lead to injury to multiple organs, including the lung. The estrogen sulfotransferase (EST, or SULT1E1) is a conjugating enzyme that sulfonates and deactivates estrogens. In this report, we showed that the expression of Est was markedly induced in the liver but not in the lung of female mice subject to HS and resuscitation. Genetic ablation or pharmacological inhibition of Est effectively protected female mice from HS-induced acute lung injury (ALI), including interstitial edema, neutrophil mobilization and infiltration, and inflammation. The pulmonoprotective effect of Est ablation or inhibition was sex-specific, because the HS-induced ALI was not affected in male Est-/- mice. Mechanistically, the pulmonoprotective phenotype in female Est-/- mice was accompanied by increased lung and circulating levels of estrogens, attenuated pulmonary inflammation, and inhibition of neutrophil mobilization from the bone marrow and neutrophil infiltration to the lung, whereas the pulmonoprotective effect was abolished upon ovariectomy, suggesting that the protection was estrogen dependent. The pulmonoprotective effect of Est ablation was also tissue specific, as loss of Est had little effect on HS-induced liver injury. Moreover, transgenic reconstitution of human EST in the liver of global Est-/- mice abolished the pulmonoprotective effect, suggesting that it is the EST in the liver that sensitizes mice to HS-induced ALI. Taken together, our results revealed a sex- and tissue-specific role of EST in HS-induced ALI. Pharmacological inhibition of EST may represent an effective approach to manage HS-induced ALI.


Subject(s)
Acute Lung Injury/pathology , Shock, Hemorrhagic/complications , Sulfotransferases/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Animals , Estrogens/metabolism , Female , Liver/enzymology , Male , Mice , Mice, Knockout , Mice, Transgenic , Resuscitation , Sex Factors , Shock, Hemorrhagic/therapy
13.
Acta cir. bras ; Acta cir. bras;35(2): e202000205, 2020. graf
Article in English | LILACS | ID: biblio-1130618

ABSTRACT

Purpose To investigate the effects of induction of selective liver hypothermia in a rodent model. Methods Seven male Wistar rats were subjected to 90 minutes of partial 70% liver ischemia and topic liver 26°C hypothermia (H group). Other seven male Wistar rats were subjected to 90 minutes of partial 70% normothermic liver ischemia (N group). Five additional rats underwent a midline incision and section of liver ligaments under normothermic conditions and without any liver ischemia (sham group). All animals were sacrificed 24-h after reperfusion, and livers were sampled for analyses. Pathology sections were scored for sinusoidal congestion, ballooning, hepatocelllular necrosis and the presence of neutrophilic infiltrates. Results At the end of the experiment, liver tissue expressions of TNF-ɑ, IL-1β, iNOS and TNF-ɑ/IL-10 ratio were significantly reduced in the H group compared to N group, whereas IL-10 and eNOS were significantly increased in H group. Histopathological injury scores revealed a significant decrease in ischemia/reperfusion (I/R) injuries in H group. Conclusion Selective liver hypothermia prevented I/R injury by inhibiting the release of inflammatory cytokines, preserves microcirculation, prevents hepatocellular necrosis and leukocyte infiltration, allowing maintenance of the liver architecture.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/prevention & control , Acute Lung Injury/prevention & control , Hypothermia, Induced/methods , Liver/blood supply , Body Temperature , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Cytokines/metabolism , Tumor Necrosis Factor-alpha , Rats, Wistar , Inflammation Mediators/metabolism , Nitric Oxide Synthase/metabolism , Disease Models, Animal , Acute Lung Injury/pathology , Ischemia/pathology , Liver/pathology , Necrosis/pathology , Nitric Oxide/metabolism
14.
Acta cir. bras. ; 34(6): e201900609, Sept. 19, 2019. tab, ilus, graf
Article in English | VETINDEX | ID: vti-23297

ABSTRACT

Purpose: The research is intended for clarification of the efficacy as well as the underlying mechanism of GSK-3β inhibitors on the advancement of acute lung injuries in acute necrotizing pancreatitis (ANP) in rats. Methods: Seventy-two rats were randomly divided into 6 groups: (1)ANP-vehicle; (2)ANP-TDZD-8;(3)ANP-SB216763;(4)Sham-vehicle;(5)Sham-TDZD-8;(6)Sham-SB216763; Blood biochemical test, histopathological examination and immunohistochemical analysis of rats pancreas and lung tissues were performed. The protein expression of GSK-3β, phospho-GSK-3β (Ser9), iNOS, ICAM-1, TNF-α, and IL-10 were detected in lung tissues by Western-blot. Results: The outcomes revealed that the intervention of GSK-3β inhibitors alleviated the pathological damage of pancreas and lung (P<0.01), reduced serum amylase, lipase, hydrothorax and lung Wet-to-Dry Ratio, attenuated serum concentrations of IL-1β and IL-6 (P<0.01), inhibited the activation of NF-κB, and abated expression of iNOS, ICAM-1 and TNF-α protein, but up-regulated IL-10 expression in lung of ANP rats (P<0.01). The inflammatory response and various indicators in ANP-TDZD-8 groups were lower than those in ANP-SB216763 groups. Conclusions: Inhibition of GSK-3β weakens acute lung injury related to ANP via the inhibitory function of NF-κB signaling pathway. Different kinds of GSK-3β inhibitors have different effects to ANP acute lung injury.(AU)


Subject(s)
Animals , Male , Rats , Acute Lung Injury/blood , Acute Lung Injury/classification , Acute Lung Injury/prevention & control , Acute Lung Injury/physiopathology , Pancreatitis, Acute Necrotizing/blood , Pancreatitis, Acute Necrotizing/complications , Pancreatitis, Acute Necrotizing/physiopathology , Glycogen Synthase Kinase 3 beta/administration & dosage , Glycogen Synthase Kinase 3 beta/analysis , China , Rats, Wistar
15.
Acta Cir Bras ; 34(6): e201900609, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31433000

ABSTRACT

PURPOSE: The research is intended for clarification of the efficacy as well as the underlying mechanism of GSK-3ß inhibitors on the advancement of acute lung injuries in acute necrotizing pancreatitis (ANP) in rats. METHODS: Seventy-two rats were randomly divided into 6 groups: (1)ANP-vehicle; (2)ANP-TDZD-8;(3)ANP-SB216763;(4)Sham-vehicle;(5)Sham-TDZD-8;(6)Sham-SB216763; Blood biochemical test, histopathological examination and immunohistochemical analysis of rats pancreas and lung tissues were performed. The protein expression of GSK-3ß, phospho-GSK-3ß (Ser9), iNOS, ICAM-1, TNF-α, and IL-10 were detected in lung tissues by Western-blot. RESULTS: The outcomes revealed that the intervention of GSK-3ß inhibitors alleviated the pathological damage of pancreas and lung (P<0.01), reduced serum amylase, lipase, hydrothorax and lung Wet-to-Dry Ratio, attenuated serum concentrations of IL-1ß and IL-6 (P<0.01), inhibited the activation of NF-κB, and abated expression of iNOS, ICAM-1 and TNF-α protein, but up-regulated IL-10 expression in lung of ANP rats (P<0.01). The inflammatory response and various indicators in ANP-TDZD-8 groups were lower than those in ANP-SB216763 groups. CONCLUSIONS: Inhibition of GSK-3ß weakens acute lung injury related to ANP via the inhibitory function of NF-κB signaling pathway. Different kinds of GSK-3ß inhibitors have different effects to ANP acute lung injury.


Subject(s)
Acute Lung Injury/prevention & control , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Pancreatitis, Acute Necrotizing/complications , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Immunohistochemistry , Interleukin-1beta/metabolism , Male , NF-kappa B/metabolism , Pancreatitis, Acute Necrotizing/pathology , Phosphorylation , Rats , Rats, Wistar , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
16.
Braz J Med Biol Res ; 52(7): e8092, 2019.
Article in English | MEDLINE | ID: mdl-31241712

ABSTRACT

Acute lung injury (ALI) is a serious clinical syndrome with a high rate of mortality. The activation of inflammation is well-recognized as a vital factor in the pathogenesis of lipopolysaccharide (LPS)-induced ALI. Therefore, suppression of the inflammatory response could be an ideal strategy to prevent ALI. Epigallocatechin-3-gallate (EGCG), mainly from green tea, has been shown to have an anti-inflammatory effect. The aim of the study was to explore whether EGCG alleviates inflammation in sepsis-related ALI. Male BALB/C mice were treated with EGCG (10 mg/kg) intraperitoneally (ip) 1 h before LPS injection (10 mg/kg, ip). The results showed that EGCG attenuated LPS-induced ALI as it decreased the changes in blood gases and reduced the histological lesions, wet-to-dry weight ratios, and myeloperoxidase (MPO) activity. In addition, EGCG significantly decreased the expression of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in the lung, serum, and bronchoalveolar lavage fluid, and alleviated the expression of TLR-4, MyD88, TRIF, and p-p65 in the lung tissue. In addition, it increased the expression of IκB-α and had no influence on the expression of p65. Collectively, these results demonstrated the protective effects of EGCG against LPS-induced ALI in mice through its anti-inflammatory effect that may be attributed to the suppression of the activation of TLR 4-dependent NF-κB signaling pathways.


Subject(s)
Acute Lung Injury/prevention & control , Catechin/analogs & derivatives , NF-kappa B/drug effects , Toll-Like Receptor 4/drug effects , Acute Lung Injury/chemically induced , Animals , Catechin/administration & dosage , Disease Models, Animal , Lipopolysaccharides , Male , Mice , Mice, Inbred BALB C , Signal Transduction/drug effects
17.
J Bras Pneumol ; 45(5): e20180067, 2019 Mar 25.
Article in English, Portuguese | MEDLINE | ID: mdl-30916116

ABSTRACT

OBJECTIVE: To compare the effects that prone and supine positioning during high-frequency oscillatory ventilation (HFOV) have on oxygenation and lung inflammation, histological injury, and oxidative stress in a rabbit model of acute lung injury (ALI). METHODS: Thirty male Norfolk white rabbits were induced to ALI by tracheal saline lavage (30 mL/kg, 38°C). The injury was induced during conventional mechanical ventilation, and ALI was considered confirmed when a PaO2/FiO2 ratio < 100 mmHg was reached. Rabbits were randomly divided into two groups: HFOV in the supine position (SP group, n = 15); and HFOV with prone positioning (PP group, n = 15). For HFOV, the mean airway pressure was initially set at 16 cmH2O. At 30, 60, and 90 min after the start of the HFOV protocol, the mean airway pressure was reduced to 14, 12, and 10 cmH2O, respectively. At 120 min, the animals were returned to or remained in the supine position for an extra 30 min. We evaluated oxygenation indices and histological lung injury scores, as well as TNF-α levels in BAL fluid and lung tissue. RESULTS: After ALI induction, all of the animals showed significant hypoxemia, decreased respiratory system compliance, decreased oxygenation, and increased mean airway pressure in comparison with the baseline values. There were no statistically significant differences between the two groups, at any of the time points evaluated, in terms of the PaO2 or oxygenation index. However, TNF-α levels in BAL fluid were significantly lower in the PP group than in the SP group, as were histological lung injury scores. CONCLUSIONS: Prone positioning appears to attenuate inflammatory and histological lung injury during HFOV in rabbits with ALI.


Subject(s)
Acute Lung Injury , High-Frequency Ventilation , Prone Position , Supine Position , Animals , Male , Rabbits , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Bronchoalveolar Lavage Fluid/chemistry , High-Frequency Ventilation/adverse effects , High-Frequency Ventilation/methods , Lipid Peroxidation , Models, Animal , Oxidative Stress , Oxygen/metabolism , Prone Position/physiology , Prospective Studies , Reference Values , Reproducibility of Results , Supine Position/physiology , Time Factors , Tumor Necrosis Factor-alpha/analysis
18.
Bol. latinoam. Caribe plantas med. aromát ; 18(1): 16-26, ene. 2019. ilus, tab
Article in English | LILACS | ID: biblio-1007454

ABSTRACT

The aim of this study was to evaluate the effects of single oral doses of D-005 (a lipid extract obtained from the fruit oil of Acrocomia crispa) on LPS-induced acute lung injury (ALI) in mice. D-005 batch composition was: lauric (35.8%), oleic (28.4%), myristic (14.2%), palmitic (8.9%), stearic (3.3%), capric (1.9%), caprylic (1.2%), and palmitoleic (0.05%) acids, for a total content of fatty acids of 93.7%. D-005 (200 mg/kg) significantly reduced lung edema (LE) (≈ 28% inhibition) and Lung Weight/Body Weight ratio (LW/BW) (75.8% inhibition). D-005 (25, 50, 100 and 200 mg/kg) produced a significant reduction of Histological score (59.9, 56.1, 53.5 and 73.3% inhibition, respectively). Dexamethasone, as the reference drug, was effective in this experimental model. In conclusion, pretreatment with single oral doses of D-005 significantly prevented the LPS-induced ALI in mice.


El objetivo de este estudio fue evaluar los efectos de dosis orales únicas de D-005 (extracto lipídico obtenido del aceite de frutos de Acrocomia crispa) sobre el daño pulmonar agudo (DPA) inducido por LPS en ratones. La composición del lote de D-005 fue: ácido láurico (35.8%), oleico (28.4%), mirístico (14.2%), palmítico (8.9%), esteárico (3.3%), cáprico (1.9%), caprílico (1.2%) y palmitoleico (0.05%), con un contenido total de ácidos grasos de 93.7%. D-005 (200 mg/kg) redujo significativamente el edema pulmonar (EP) (≈ 28% de inhibición) y la relación peso pulmón/peso corporal (PP/PC) (75.8% de inhibición). D-005 (25, 50, 100 y 200 mg/kg) produjo una reducción significativa de la puntuación histológica (59.9, 56.1, 53.5 y 73.3% de inhibición, respectivamente). La dexametasona, fármaco de referencia, fue efectiva en este modelo experimental. En conclusión, el pretratamiento con dosis orales únicas de D-005 previno significativamente el DPA inducido por LPS en ratones.


Subject(s)
Animals , Mice , Plant Extracts/administration & dosage , Arecaceae , Acute Lung Injury/prevention & control , Plant Extracts/chemistry , Lipopolysaccharides/adverse effects , Administration, Oral , Chromatography, Gas , Acute Lung Injury/chemically induced , Fatty Acids/analysis , Fruit , Lung/drug effects
19.
Acta cir. bras ; Acta cir. bras;34(6): e201900609, 2019. tab, graf
Article in English | LILACS | ID: biblio-1019266

ABSTRACT

Abstract Purpose The research is intended for clarification of the efficacy as well as the underlying mechanism of GSK-3β inhibitors on the advancement of acute lung injuries in acute necrotizing pancreatitis (ANP) in rats. Methods Seventy-two rats were randomly divided into 6 groups: (1)ANP-vehicle; (2)ANP-TDZD-8;(3)ANP-SB216763;(4)Sham-vehicle;(5)Sham-TDZD-8;(6)Sham-SB216763; Blood biochemical test, histopathological examination and immunohistochemical analysis of rats pancreas and lung tissues were performed. The protein expression of GSK-3β, phospho-GSK-3β (Ser9), iNOS, ICAM-1, TNF-α, and IL-10 were detected in lung tissues by Western-blot. Results The outcomes revealed that the intervention of GSK-3β inhibitors alleviated the pathological damage of pancreas and lung (P<0.01), reduced serum amylase, lipase, hydrothorax and lung Wet-to-Dry Ratio, attenuated serum concentrations of IL-1β and IL-6 (P<0.01), inhibited the activation of NF-κB, and abated expression of iNOS, ICAM-1 and TNF-α protein, but up-regulated IL-10 expression in lung of ANP rats (P<0.01). The inflammatory response and various indicators in ANP-TDZD-8 groups were lower than those in ANP-SB216763 groups. Conclusions Inhibition of GSK-3β weakens acute lung injury related to ANP via the inhibitory function of NF-κB signaling pathway. Different kinds of GSK-3β inhibitors have different effects to ANP acute lung injury.


Subject(s)
Animals , Male , Rats , Pancreatitis, Acute Necrotizing/complications , Acute Lung Injury/prevention & control , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Phosphorylation , Immunohistochemistry , Signal Transduction , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Pancreatitis, Acute Necrotizing/pathology , Disease Models, Animal , Interleukin-1beta/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology
20.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(7): e8092, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011595

ABSTRACT

Acute lung injury (ALI) is a serious clinical syndrome with a high rate of mortality. The activation of inflammation is well-recognized as a vital factor in the pathogenesis of lipopolysaccharide (LPS)-induced ALI. Therefore, suppression of the inflammatory response could be an ideal strategy to prevent ALI. Epigallocatechin-3-gallate (EGCG), mainly from green tea, has been shown to have an anti-inflammatory effect. The aim of the study was to explore whether EGCG alleviates inflammation in sepsis-related ALI. Male BALB/C mice were treated with EGCG (10 mg/kg) intraperitoneally (ip) 1 h before LPS injection (10 mg/kg, ip). The results showed that EGCG attenuated LPS-induced ALI as it decreased the changes in blood gases and reduced the histological lesions, wet-to-dry weight ratios, and myeloperoxidase (MPO) activity. In addition, EGCG significantly decreased the expression of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the lung, serum, and bronchoalveolar lavage fluid, and alleviated the expression of TLR-4, MyD88, TRIF, and p-p65 in the lung tissue. In addition, it increased the expression of IκB-α and had no influence on the expression of p65. Collectively, these results demonstrated the protective effects of EGCG against LPS-induced ALI in mice through its anti-inflammatory effect that may be attributed to the suppression of the activation of TLR 4-dependent NF-κB signaling pathways.


Subject(s)
Animals , Male , Rabbits , Catechin/analogs & derivatives , NF-kappa B/drug effects , Toll-Like Receptor 4/drug effects , Acute Lung Injury/prevention & control , Signal Transduction/drug effects , Catechin/administration & dosage , Lipopolysaccharides , Disease Models, Animal , Acute Lung Injury/chemically induced , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL