ABSTRACT
This paper reports a comprehensive study of Theobroma cacao pericarp (TCP) residues, which has been prepared, characterized, and tested as an inexpensive and efficient biosorbent of Cr(VI) from aqueous solutions. The maximum adsorption capacity of TCP obtained at optimal conditions (pH = 2, dose = 0.5 g L-1, C0 = 100 mg L-1) was qmax = 48.5 mg g-1, which is one of the highest values reported by the literature. Structural and morphological characterization has been performed by FTIR, SEM/EDX, and pHPZC measurements. FTIR analysis revealed the presence of O-H, -NH, -NH2, C = H, C = O, C = C, C-O, and C-C functional groups that would be involved in the Cr(VI) biosorption processes. The experimental equilibrium data of biosorption process were successfully fitted to non-linear Langmuir (R2 = 0.95, χ2 = 11.0), Freundlich (R2 = 0.93, χ2 = 14.8), and Temkin (R2 = 0.93, χ2 = 14.7) isotherm models. Kinetics experimental data were well adjustment to non-linear pseudo-2nd (R2 = 0.99, χ2 = 2.08)- and pseudo-1st-order kinetic models (R2 = 0.98, χ2 = 2.25) and also to intra-particle Weber-Morris (R2 = 0.98) and liquid film diffusion (R2 = 0.99) models. These results indicate that Cr(VI) biosorption on heterogeneous surfaces as well as on monolayers of TCP would be a complex process controlled by chemisorption and physisorption mechanisms. The thermodynamic results indicate that the Cr(VI) biosorption on TCP is a feasible, spontaneous, and endothermic process. TCP can be regenerated with NaOH and reused up to 3 times.
Subject(s)
Cacao , Chromium , Cacao/chemistry , Chromium/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistryABSTRACT
Fungal biomass is as a cost-effective and sustainable biosorbent utilized in both active and inactive forms. This study investigated the efficacy of inactivated and dried biomass of Fusarium sp. in adsorbing Ni2+ and Pb2+ from aqueous solutions. The strain underwent sequential cultivation and was recovered by filtration. Then, the biomass was dried in an oven at 80 ± 2 °C and sieved using a 0.1-cm mesh. The biosorbent was thoroughly characterized, including BET surface area analysis, morphology examination (SEM), chemical composition (XRF and FT-IR), thermal behavior (TGA), and surface charge determination (pH-PZC and zeta potential). The biosorption mechanism was elucidated by fitting equilibrium models of kinetics, isotherm, and thermodynamic to the data. The biosorbent exhibited a neutral charge, a rough surface, a relatively modest surface area, appropriate functional groups for adsorption, and thermal stability above 200 °C. Optimal biosorption was achieved at 25 ± 2 °C, using 0.05 g of adsorbent per 50 mL of metallic ion solution at initial concentrations ranging from 0.5 to 2.0 mg L-1 and at pH 4.5 for Pb2+ and Ni2+. Biosorption equilibrium was achieved after 240 min for Ni2+ and 1440 min for Pb2+. The process was spontaneous, mainly through chemisorption, in monolayer for Ni2+ and multilayer for Pb2+, with efficiencies of over 85% for both metallic ion removal. These findings underscore the potential of inactive and dry Fusarium sp. biomass (IDFB) as a promising material for the biosorption of Ni2+ and Pb2+.
Subject(s)
Biomass , Fusarium , Lead , Nickel , Thermodynamics , Fusarium/metabolism , Nickel/chemistry , Kinetics , Adsorption , Water Pollutants, Chemical/chemistryABSTRACT
The study of the adsorption of polycyclic aromatic hydrocarbons on microplastics (MPs) has attracted much attention as to how microplastics can act as carriers of these pollutants. Polyurethane (PU) is one of the MPs found in aquatic environments, containing different functional groups it can interact with polar and nonpolar molecules. PAH derivatives (dPAHs) present different properties and thus can be adsorbed by different interactions; thus, this study investigated the adsorption of fluorene (FLN), dibenzothiophene (DBT), dibenzofuran (DBF), and carbazole (CBZ) onto PU MP. The Langmuir, Freundlich, and BET isotherm models were examined, and the BET model best fitted. The adsorption was a nonspontaneous process, exothermic for mono- and multilayer formation for FLN, DBT, and CBZ, and endothermic for DBF monolayer formation. The adsorption monolayer was formed by van der Waals forces, Hâbonding, and πâπ interactions, while the formation of the multilayer can be explained by πâπ and hydrophobic interactions. The pseudo-second-order model proved to be more consistent for the adsorption of dPAHs. The adsorption in artificial seawater shows no significant differences for the monolayer but favored the adsorption multilayer due to the salting-out effect. Due to the existence of several adsorption mechanisms, PU MP interacts with dPAHs in greater quantities when compared to a MP with a simpler structure.
Subject(s)
Microplastics , Polycyclic Aromatic Hydrocarbons , Polyurethanes , Thermodynamics , Polyurethanes/chemistry , Adsorption , Polycyclic Aromatic Hydrocarbons/chemistry , Kinetics , Microplastics/chemistry , Water Pollutants, Chemical/chemistryABSTRACT
The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.
Subject(s)
Biomass , Luffa , Trimethoprim , Water Pollutants, Chemical , Water Purification , Luffa/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Trimethoprim/chemistry , Water Purification/methods , Water/chemistry , KineticsABSTRACT
Industrial effluents, especially those containing dyes, have become the main cause of contamination of water resources. In this context, Brazilian bentonite/MgO composites, with excellent adsorptive properties, were prepared and investigated for their effectiveness in removing cationic and anionic dyes from aqueous solutions. The new adsorbents were obtained using Brazilian bentonites and MgO using the mechanochemical method followed by heat treatment (at 700 °C for 4 h). Different characterization techniques were used for the chemical, mineralogical, thermal, surface, and morphological analysis of the raw clays and the composites. The experimental adsorption isotherms were quantified under different conditions of initial concentration, contact time, pH, adsorbent dosage, and temperature variation to interpret the adsorption mechanism of the crystal violet (CV) and Congo red (CR) dyes. The modeling results were obtained from the empirical Sips equation and Pseudo Second Order (PSO) kinetics, indicating that the adsorption of molecules is a heterogeneous phenomenon that occurs in a monolayer on the surface (ns > 1), with the adsorption rate determined by chemisorption. The composites showed the best removal efficiency performance compared to the raw bentonites, with an increase of 12% for the CV dye and 46% for the CR dye. In addition, the qmax values obtained were 423.02 mg/g and 479.86 mg/g (AM01). This research underscores the potential of Brazilian bentonite/MgO composites as a promising solution for the removal of cationic and anionic dyes from water, offering hope for future applications in the field of environmental engineering and materials science.
Subject(s)
Bentonite , Coloring Agents , Water Pollutants, Chemical , Bentonite/chemistry , Adsorption , Coloring Agents/chemistry , Brazil , Water Pollutants, Chemical/chemistry , Magnesium Oxide/chemistry , Kinetics , Cations , AnionsABSTRACT
Magnetic particle spray mass spectrometry (MPS-MS), an innovative ambient ionization technique proposed by our research group, was employed to determine beta-blockers in human plasma samples. A dispersive solid phase extraction of atenolol, metoprolol, labetalol, propranolol, nadolol, and pindolol was carried out using magnetic molecularly imprinted polymer (M-MIP) particles that were attached to the tip of a metal probe, which was placed in the mass spectrometer inlet. A solvent (1% formic acid in methanol) was dispensed on the particles, and the Taylor cone was formed around them (in high voltage). The analytes were desorbed/ionized and determined by a triple quadrupole mass spectrometer. M-MIP was synthesized with oxprenolol as a pseudo-template, demonstrating good selectivity to beta-blockers compared with no-analog molecules, with an adsorption process occurring in monolayers, according to isotherm studies. Kinetic experiments indicated chemisorption as the predominant M-MIP/analyte interaction. The analytical curves were linear (R2 > 0.98), and the limit of quantification was 3 µg L-1 for all the analytes. Limits of detection ranged from 0.64 to 2.41 µg L-1. Precisions (relative standard deviation) and accuracies (relative error) ranged from 3.95 to 21.20% and -17.05 to 18.93%, respectively. MPS-MS proved to be a simple, sensitive, and advantageous technique compared with conventional approaches. The analyses were fast, requiring no chromatographic separation and without ionic suppression. The method is aligned with green chemistry principles, requiring minimal sample, solvent, and sorbent amounts. MPS-MS successfully integrates sample preparation and ambient ionization mass spectrometry and holds great potential for application with other sorbents, samples, and analytes.
Subject(s)
Adrenergic beta-Antagonists , Adrenergic beta-Antagonists/blood , Adrenergic beta-Antagonists/chemistry , Humans , Limit of Detection , Molecularly Imprinted Polymers/chemistry , Solid Phase Extraction/methods , Mass Spectrometry/methods , AdsorptionABSTRACT
Ficin fully immobilized on Asp-agarose beads at pH 7 but not on an aminated support. This made enzyme adsorption plus glutaraldehyde modification non-viable for this enzyme. Modifying glyoxyl-agarose beads with mixtures of Asp and 1,6-hexamethylenediamine (HA) at different ratios, mixed anion/cation exchanger supports were built. Only if HA greatly exceed Asp in the support, immobilization did not work. While only using the Asp-agarose support immobilized enzyme molecules were only ionically adsorbed after glutaraldehyde treatment (visualized in SDS-PAGE analysis), the mixed supports gave covalent immobilization. The glutaraldehyde modification of these biocatalysts permitted to establish covalent bonds with the support, and this was more effective when using higher amounts of HA in the support. When around 60 % of the groups in the support were HA, the treatment with glutaraldehyde fully suppressed enzyme release from the support after boiling in SDS. The glutaraldehyde treated biocatalysts were more stable than just the adsorbed enzymes or the enzyme adsorbed only on Asp supports and then treated with glutaraldehyde (the optimal biocatalyst retained 90 % of the initial activity while the just adsorbed ficin retained 50 % of the initial activity). This strategy can be utilized to immobilize other proteins with high isoelectric points following this immobilization strategy.
Subject(s)
Cations , Enzyme Stability , Enzymes, Immobilized , Glutaral , Sepharose , Glutaral/chemistry , Enzymes, Immobilized/chemistry , Adsorption , Sepharose/chemistry , Isoelectric Point , Cations/chemistry , Cross-Linking Reagents/chemistry , Ficain/chemistry , Hydrogen-Ion Concentration , Anions/chemistry , Glyoxylates/chemistryABSTRACT
In recent years, heterogeneous photocatalysis has emerged as a promising alternative for the treatment of organic pollutants. This technique offers several advantages, such as low cost and ease of operation. However, finding a semiconductor material that is both operationally viable and highly active under solar irradiation remains a challenge, often requiring materials of nanometric size. Furthermore, in many processes, photocatalysts are suspended in the solution, requiring additional steps to remove them. This can render the technique economically unviable, especially for nanosized catalysts. This work demonstrated the feasibility of using a structured photocatalyst (ZnO, g-C3N4, and carbon xerogel) optimized for this photodegradation process. The synthesized materials were characterized by nitrogen adsorption and desorption, X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS). Adhesion testing demonstrated the efficiency of the deposition technique, with film adhesion exceeding 90%. The photocatalytic evaluation was performed using a mixture of three textile dyes in a recycle photoreactor, varying pH (4.7 and 10), recycle flow rate (2, 4, and 6 L h-1), immobilized mass (1, 2, and 3 mg cm-2), monolith height (1.5, 3.0, and 4.5 cm), and type of radiation (solar and visible artificials; and natural solar). The structured photocatalyst degraded over 99% of the dye mixture under artificial radiation. The solar energy results are highly promising, achieving a degradation efficiency of approximately 74%. Furthermore, it was possible to regenerate the structured photocatalyst up to seven consecutive times using exclusively natural solar light and maintain a degradation rate of around 70%. These results reinforce the feasibility and potential application of this system in photocatalytic reactions, highlighting its effectiveness and sustainability.
Subject(s)
Nitriles , Zinc Oxide , Zinc Oxide/chemistry , Nitriles/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Catalysis , Brassica/chemistry , Photolysis , AdsorptionABSTRACT
Biochar amendment has emerged as a potential solution for preventing, remediating, and mitigating agricultural compound pollution. This groundbreaking technique not only improves crucial soil properties like porosity, water retention capacity, cation exchange capacity, and pH, but also intricately impacts the interaction and retention mechanisms of polluting molecules. In this study, we investigate the dynamic of the herbicide Imazapic when subjected to applying pyrolyzed biochars, specifically at temperatures of 300 and 500 °C, within the context of a low-fertility soil characterized as dystrophic Yellow Ultisol (YUd) in a sugarcane cultivation area in Igarassu-PE, Brazil. The biochars were produced from sugarcane bagasse by pyrolysis process in a muffle furnace. In laboratory conditions, with saturated soil columns under steady-state, analyses of the mechanisms involved in interaction and transport and determining hydrodispersive parameters for Imazapic were performed by the two-site nonequilibrium transport model using the CXTFIT 2.0 program. Samples of YUd soil amended with biochar pyrolyzed at 300 °C presented a negligible interaction with Imazapic. However, adding biochar pyrolyzed at 500 °C (BC500) to the soil samples enhanced the adsorption coefficient and improved the interaction with Imazapic. This research points out that biochar produced from agricultural waste biomass, such as sugarcane bagasse specifically pyrolyzed at 500 °C, offers a potential means to adsorb herbicides, reducing their leaching to deeper layers of the amended soils and the risk of groundwater contamination and potential environmental negative impacts.
Subject(s)
Charcoal , Herbicides , Saccharum , Soil Pollutants , Soil , Saccharum/chemistry , Charcoal/chemistry , Herbicides/chemistry , Adsorption , Soil Pollutants/chemistry , Soil/chemistry , Imidazoles/chemistry , Brazil , Environmental Restoration and Remediation/methods , Agriculture/methods , Cellulose , Nicotinic AcidsABSTRACT
Husks of rice (RH), coffee (CH), and cholupa (CLH) were used to produce natural adsorbents. The natural adsorbents were used to remove pharmaceuticals such as diclofenac, ciprofloxacin, and acetaminophen in a mixture of distilled water. However, CH stood out for its efficiency in removing ciprofloxacin (74%) due to the higher concentration of acidic groups, as indicated by the Boehm method. In addition, CH removed 86% of ciprofloxacin individually. Therefore, CH was selected and used to remove other fluoroquinolones, such as levofloxacin and Norfloxacin. Although electrostatic interactions favored removals, better removal was observed for ciprofloxacin due to its smaller molecular volume. Then, ciprofloxacin was selected, and the effect of pH, matrix, and adsorbent doses were evaluated. In this way, using a pH of 6.2 in urine with a dose of 1.5 g L-1, it is possible to adsorb CIP concentrations in the range (0.0050-0.42 mmol L-1). Subsequently, the high R2 values and low percentages of APE and Δq indicated better fits for pseudo-second-order kinetics, suggesting a two-stage adsorption. At the same time, the Langmuir isotherm recommends a monolayer adsorption with a Qm of 25.2 mg g-1. In addition, a cost of 0.373 USD/g CIP was estimated for the process, where the material can be reused up to 4 times with a CIP removal in the urine of 51%. Consequently, thermodynamics analysis showed an exothermic and spontaneous process with high disorder. Furthermore, changes in FTIR analysis after adsorption suggest that CH in removing CIP in urine involves electrostatic attractions, hydrogen bonds and π-π interactions. In addition, the life cycle analysis presents, for the 11 categories evaluated, a lower environmental impact of the CIP removal in urine with CH than for the preparation of adsorbent, confirming that the adsorption process is more environmentally friendly than materials synthesis or other alternatives of treatments. Furthermore, future directions of the study based on real applications were proposed.
Subject(s)
Water Pollutants, Chemical , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Ciprofloxacin/chemistry , Ciprofloxacin/urine , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/urineABSTRACT
The presence of drugs in aquatic environments has been considered a global challenge and several remediation technologies have been proposed, including adsorption. In this study, new diclofenac adsorbents were obtained from the reaction of sodium magadiite (Na-Mag) with surfactants dodecylpyridinium chloride hydrate (C12pyCl) and hexadecylpyridinium chloride monohydrate (C16pyCl)), 1-hexadecyltrimethylammonium bromide (C16Br), and dodecyltrimethylammonium bromide (C12Br). The synthesis was carried out in the microwave at 50 °C for 5 min using surfactant amounts of 100% and 200% in relation to the cation exchange capacity of Na-Mag. The elemental analysis indicated that surfactants with a longer organic chain were more incorporated into Na-Mag, whose values were 1.42 and 1.32 mmol g-1 for C16pyMag200% and C16Mag200%, respectively. X-ray diffraction results suggested formation of intercalated products with basal space in the range of 2.81-4.00 nm. Diclofenac was quickly adsorbed on all organophilic magadiites, at an equilibrium time of 1 min. Drug capacity adsorption was influenced by the arrangement and packing density of organic cations, the basal distance, and the organic contents of the samples at high drug concentrations. Alkylpyridinium magadiites exhibited maximum adsorption capacities higher than alkylammonium magadiites, of 96.4, 100.7, 131.7, and 166.1 mg g-1 for C12pyMag100%, C12pyMag200%, C16pyMag100%, and C16pyMag200%, respectively, at pH 6.0 and 30 °C. Diclofenac removal by samples was not affected by the presence of ibuprofen, which was also removed from binary system by organophilic magadiites reaching removal of 76.5% and 86.9% by C16pyMag100% and C16pyMag200%, respectively. Regeneration studies demonstrated a drug removal percentage of 83-92% for C16pyMag and C16Mag after three cycles of adsorption.
Subject(s)
Diclofenac , Surface-Active Agents , Water Pollutants, Chemical , Diclofenac/chemistry , Surface-Active Agents/chemistry , Adsorption , Water Pollutants, Chemical/chemistryABSTRACT
In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 â). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.
Subject(s)
Bioreactors , Enzymes, Immobilized , Lipase , Lipase/chemistry , Lipase/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Adsorption , Hydrogen-Ion Concentration , Aspergillus/enzymology , Fungal Proteins/chemistry , TemperatureABSTRACT
In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.
Subject(s)
Chromium , Lignin , Water Pollutants, Chemical , Lignin/chemistry , Chromium/chemistry , Chromium/isolation & purification , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Polymers/chemistry , Polymers/chemical synthesis , Water/chemistry , Hydrogen-Ion Concentration , PolymerizationABSTRACT
Orange II, an azo dye used in textile and leather industries, is toxic and contributes to reducing dissolved oxygen in water. In this sense, agri-food waste adsorbents offer efficient, cost-effective dye removal. In this study, potato surpluses were evaluated as adsorbents for the removal of Orange II at 22 °C and pH values between 4 and 9. The adsorbents were characterized by their morphology, elemental composition, infrared spectra, and point of zero charge. Adsorption isotherms were analysed using Langmuir and Freundlich models, revealing that the Langmuir equation (0.933 < r2 > 0.882) better described the adsorption process compared to the Freundlich model (0.909 < r2 > 0.852). The maximum adsorption capacity at pH 4 was 1.1 and 2.3 times higher than at pH 7 and 9, respectively. This increased capacity at pH 4 was due to favourable electrostatic interactions between the cationic adsorbent surface and the anionic dye. A kinetic model was developed to understand the adsorption dynamics of Orange II, demonstrating high accuracy with coefficients of determination (r2) exceeding 0.99 across various pH values. The predictions of the kinetic model aligned well with the Langmuir isotherm results, indicating a strong theoretical foundation. The critical contact time required to achieve the minimum adsorbent concentration necessary for meeting a discharge limit of 14.7 mg L-1 was determined using both the Langmuir and kinetic models. Simulation profiles showed that when the adsorbent concentration was increased from 12 to 40 g L-1, the contact time necessary to achieve the discharge limit decreased from 26 to 3.35 h, highlighting the trade-off between contact time and cost. This study offers a cost-effective solution for wastewater treatment and presents a robust model for optimizing batch adsorption processes, marking a significant advancement in using potato surpluses for dye removal.
Subject(s)
Azo Compounds , Benzenesulfonates , Solanum tuberosum , Water Pollutants, Chemical , Water Purification , Solanum tuberosum/chemistry , Azo Compounds/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Benzenesulfonates/chemistry , Water Purification/methods , Coloring Agents/chemistryABSTRACT
The global concern over water pollution caused by contaminants of emerging concern has been the subject of several studies due to the complexity of treatment. Here, the synthesis of a graphene oxide-based magnetic material (GO@Fe3O4) produced according to a modified Hummers' method followed by a hydrothermal reaction was proposed; then, its application as a photocatalyst in clonazepam photo-Fenton degradation was investigated. Several characterization analyses were performed to analyze the structure, functionalization and magnetic properties of the composite. A 23 factorial design was used for the optimization procedure to investigate the effect of [H2O2], GO@Fe3O4 dose and pH on clonazepam degradation. Adsorption experiments demonstrated that GO@Fe3O4 could not adsorb clonazepam. Photo-Fenton kinetics showed that total degradation of clonazepam was achieved within 5 min, and the experimental data were better fitted to the PFO model. A comparative study of clonazepam degradation by different processes highlighted that the heterogeneous photo-Fenton process was more efficient than homogeneous processes. The radical scavenging test showed that O 2 · - was the main active free radical in the degradation reaction, followed by hydroxyl radicals (â¢OH) and holes (h+) in the valence layer; accordingly, a mechanism of degradation was proposed to describe the process.
Subject(s)
Clonazepam , Graphite , Photolysis , Water Pollutants, Chemical , Graphite/chemistry , Clonazepam/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Adsorption , Water Purification/methods , KineticsABSTRACT
In this study, four Brazilian clays (Bofe, Verde-lodo, commercial Fluidgel, and expanded commercial vermiculite) were evaluated for their adsorptive capacity and removal percentage in relation to different toxic metals (Ni2+, Cd2+, Zn2+, and Cu2+). The best results were obtained by expanded vermiculite, with cadmium removal reaching values of 95%. The most promising clay was modified by the sodification process, and the metal cadmium was used to evaluate the ion exchange process. The clays expanded vermiculite (EV) and VNa-sodified vermiculite were evaluated by equilibrium study at 25, 35, and 45 °C. At 25 °C, EV obtained a maximum adsorption capacity of 0.368 mmol/g and sodified vermiculite 0.480 mmol/g, which represents an improvement of 30.4% in modified clay capacity. At 45 °C, the sodified vermiculite reached 0.970 mmol/g adsorption capacity. The Langmuir, Redlich-Peterson Freundlich, and Dubinin-Raduskevich models were adjusted to the results. Langmuir provided the best fit among the models. The thermodynamic quantities (ΔS, ΔH, and ΔG) demonstrated that the process is spontaneous and endothermic and the metal is captured by physisorption and chemisorption in the studied temperature range. For the ion exchange equilibrium, the binary Langmuir and binary Langmuir-Freundlich models were adjusted to the expanded vermiculite and sodified vermiculite isotherms, respectively. Both models were predictive. Thermal analysis indicated good heat resistance even after material modification. The apparent and real densities demonstrated that after each treatment or contamination, the clayey material undergoes contraction in its structure. An improved efficiency of the adsorbent was found after sodification.
Subject(s)
Aluminum Silicates , Clay , Thermodynamics , Adsorption , Clay/chemistry , Brazil , Ion Exchange , Aluminum Silicates/chemistry , Water Pollutants, Chemical/chemistry , Metals/chemistryABSTRACT
Calcium phosphate materials, particularly hydroxyapatite (HA), are extensively used in biomedical applications because of their prominence as primary inorganic constituents of human hard tissues. This study investigates the synthesis of HA coatings via spray pyrolysis using various precursors, including HA derived from bovine bone. The effects of pH on the formation and properties of HA coatings were systematically examined. Samples exposed to acidic conditions or left without pH adjustment led to the formation of HA, contrasting with the outcomes observed through dissolution methods. Different characterization techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), were employed to evaluate the quality and crystallinity of the coatings. Among the samples, those exhibiting superior crystallinity and nanostructured features, including bovine HA, were selected for further surface functionalization with the antibiotic enrofloxacin using spin coating. As expected, the antibiotic loading on each material's surface depended on the amount of HA deposited on the substrate. However, the desorption results indicated that, in all cases, desorption persisted beyond 38 h, implying that HA-loaded matrices could be effective systems for controlled and prolonged drug release, which could be useful in dental or orthopedic implants for inhibiting the growth of bacterial biofilms.
Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Durapatite , Durapatite/chemistry , Coated Materials, Biocompatible/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cattle , Animals , Hydrogen-Ion Concentration , Adsorption , PyrolysisABSTRACT
The presence of phenazopyridine in water is an environmental problem that can cause damage to human health and the environment. However, few studies have reported the adsorption of this emerging contaminant from aqueous matrices. Furthermore, existing research explored only conventional modeling to describe the adsorption phenomenon without understanding the behavior at the molecular level. Herein, the statistical physical modeling of phenazopyridine adsorption into graphene oxide is reported. Steric, energetic, and thermodynamic interpretations were used to describe the phenomenon that controls drug adsorption. The equilibrium data were fitted by mono, double, and multi-layer models, considering factors such as the numbers of phenazopyridine molecules by adsorption sites, density of receptor sites, and half saturation concentration. Furthermore, the statistical physical approach also calculated the thermodynamic parameters (free enthalpy, internal energy, Gibbs free energy, and entropy). The maximum adsorption capacity at the equilibrium was reached at 298 K (510.94 mg g-1). The results showed the physical meaning of adsorption, indicating that the adsorption occurs in multiple layers. The temperature affected the density of receptor sites and half saturation concentration. At the same time, the adsorbed species assumes different positions on the adsorbent surface as a function of the increase in the temperature. Meanwhile, the thermodynamic functions revealed increased entropy with the temperature and the equilibrium concentration.
Subject(s)
Nanostructures , Thermodynamics , Adsorption , Nanostructures/chemistry , Analgesics/chemistry , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistryABSTRACT
The present study modeled the adsorption process of the drug diclofenac sodium on activated charcoal. For this purpose, a mass balance-based model was used considering a fixed bed column. The mass transfer rate in the solid phase was represented by a driving force model proposed in this study, and a gamma exponent with a range of 0 > γ ≤ 2 was assigned to the model. Different isotherms were adopted to represent the equilibrium at the solid/liquid interface: the Langmuir, Freundlich, Sips and Redlich-Peterson isotherms. The modeling was approached from the perspective of Bayesian statistics, and the Markov chain Monte Carlo method was used for parameter estimation. Model validation was performed with experimental data obtained under different operating conditions of initial concentration ($C_{0.
Subject(s)
Bayes Theorem , Charcoal , Diclofenac , Diclofenac/chemistry , Adsorption , Charcoal/chemistry , Monte Carlo Method , Models, ChemicalABSTRACT
This article follows-up on our recently published work, which evaluated the impact of the addition of an alfalfa leaf-derived adsorbent in the aflatoxin B1 (AFB1)-contaminated diet in regard to the production parameters, blood cell count, serum biochemistry, liver enzymes, and liver histology of turkey poults. This paper presents complementary results on microbial community, ileal morphology, barrier function, and immunity. For this purpose, 350 1-day-old female turkey poults were randomly distributed into five groups: (1) Control, AFB1-free diet; (2) AF, AFB1-contaminated diet at 250 ng/g; (3) alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (4) alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and (5) YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). In general, in the AF group, the growth of opportunistic pathogens was promoted, which lead to gut dysbacteriosis, mainly influenced by Streptococcus lutetiensis. Conversely, a significant increase in beneficial bacteria (Faecalibacterium and Coprococcus catus) was promoted by the addition of the plant-based adsorbent. Moreover, the AF group had the lowest villus height and a compromised barrier function, as evidenced by a significant (p < 0.05) increase in fluorescein isothiocyanate dextran (FITC-d), but these negative effects were almost reversed by the addition of the alfalfa adsorbent. Furthermore, the AF + YCW and alfalfa + AF groups exhibited a significant increase in the cutaneous basophil hypersensitivity response compared to the rest of the experimental groups. Taken together, these results pointed out that the alfalfa counteracts the adverse effects of AFB1 in poults, facilitating the colonization of beneficial bacteria and improving the barrier function of the turkey poults.