Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 652
Filter
1.
Molecules ; 29(19)2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39407708

ABSTRACT

Despite the great effort that has gone into developing new molecules as multitarget compounds to treat Alzheimer's disease (AD), none of these have been approved to treat this disease. Therefore, it will be interesting to determine whether benzazoles such as benzimidazole, benzoxazole, and benzothiazole, employed as pharmacophores, could act as multitarget drugs. AD is a multifactorial disease in which several pharmacological targets have been identified-some are involved with amyloid beta (Aß) production, such as beta secretase (BACE1) and beta amyloid aggregation, while others are involved with the cholinergic system as acetylcholinesterase (AChE) and butirylcholinesterase (BChE) and nicotinic and muscarinic receptors, as well as the hyperphosphorylation of microtubule-associated protein (tau). In this review, we describe the in silico and in vitro evaluation of benzazoles on three important targets in AD: AChE, BACE1, and Aß. Benzothiazoles and benzimidazoles could be the best benzazoles to act as multitarget drugs for AD because they have been widely evaluated as AChE inhibitors, forming π-π interactions with W286, W86, Y72, and F338, as well as in the AChE gorge and catalytic site. In addition, the sulfur atom from benzothiazol interacts with S286 and the aromatic ring from W84, with these compounds having an IC50 value in the µM range. Also, benzimidazoles and benzothiazoles can inhibit Aß aggregation. However, even though benzazoles have not been widely evaluated on BACE1, benzimidazoles evaluated in vitro showed an IC50 value in the nM range. Therefore, important chemical modifications could be considered to improve multitarget benzazoles' activity, such as substitutions in the aromatic ring with electron withdrawal at position five, or a linker 3 or 4 carbons in length, which would allow for better interaction with targets.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cholinesterase Inhibitors , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Humans , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Protein Aggregates/drug effects , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Animals
2.
ACS Chem Neurosci ; 15(19): 3543-3562, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39302203

ABSTRACT

Seven treatments are approved for Alzheimer's disease, but five of them only relieve symptoms and do not alter the course of the disease. Aducanumab (Adu) and lecanemab are novel disease-modifying antiamyloid-ß (Aß) human monoclonal antibodies that specifically target the pathophysiology of Alzheimer's disease (AD) and were recently approved for its treatment. However, their administration is associated with serious side effects, and their use is limited to early stages of the disease. Therefore, drug discovery remains of great importance in AD research. To gain new insights into the development of novel drugs for Alzheimer's disease, a combination of techniques was employed, including mutation screening, molecular dynamics, and quantum biochemistry. These were used to outline the interfacial interactions of the Aducanumab::Aß2-7 complex. Our analysis identified critical stabilizing contacts, revealing up to 40% variation in the affinity of the Adu chains for Aß2-7 depending on the conformation outlined. Remarkably, two complementarity determining regions (CDRs) of the Adu heavy chain (HCDR3 and HCDR2) and one CDR of the Adu light chain (LCDR3) accounted for approximately 77% of the affinity of Adu for Aß2-7, confirming their critical role in epitope recognition. A single mutation, originally reported to have the potential to increase the affinity of Adu for Aß2-7, was shown to decrease its structural stability without increasing the overall binding affinity. Mimetic peptides that have the potential to inhibit Aß aggregation were designed by using computational outcomes. Our results support the use of these peptides as promising drugs with great potential as inhibitors of Aß aggregation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Antibodies, Monoclonal, Humanized , Immunotherapy , Molecular Dynamics Simulation , Mutation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Amyloid beta-Peptides/metabolism , Immunotherapy/methods , Peptide Fragments/metabolism , Drug Design , Drug Development/methods
3.
Neuropharmacology ; 261: 110152, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245141

ABSTRACT

Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aß), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 µM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aß by -69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by -33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by -25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by -29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by -33, -86, and -78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aß (Vina Score -6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cholinergic Neurons , Minocycline , Presenilin-1 , tau Proteins , Presenilin-1/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Minocycline/pharmacology , Animals , tau Proteins/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Mice , Humans , Cell Death/drug effects , Cell Death/physiology , Neuroprotective Agents/pharmacology , Molecular Docking Simulation
4.
ACS Chem Neurosci ; 15(19): 3563-3575, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39259845

ABSTRACT

Familial Alzheimer's disease (FAD) is a chronic neurological condition that progresses over time. Currently, lacking a viable treatment, the use of multitarget medication combinations has generated interest as a potential FAD therapy approach. In this study, we examined the effects of 4-phenylbutyric acid (4-PBA) and methylene blue (MB) either separately or in combination on PSEN1 I416T cholinergic-like neuron cells (ChLNs), which serve as a model for FAD. We found that MB was significantly efficient at reducing the accumulation of intracellular Aß, phosphorylation of TAU Ser202/Thr205, and increasing Δψm, whereas 4-PBA was significantly efficient at diminishing oxidation of DJ-1Cys106-SH, expression of TP53, and increasing ACh-induced Ca2+ influx. Both agents were equally effective at blunting phosphorylated c-JUN at Ser63/Ser73 and activating caspase 3 (CASP3) into cleaved caspase 3 (CC3) on mutant cells. Combination of MB and 4-PBA at middle (0.1, 1) concentration significantly reduced iAß, p-TAU, and oxDJ-1 and augmented the ACh-induced Ca2+ influx compared to combined agents at low (0.05, 0.5) or high (0.5, 5) concentration. However, combined MB and 4-PBA were efficient only at dropping DJ-1Cys106-SO3 and increasing ACh-induced Ca2+ inward in mutant ChLNs. Our data show that the reagents MB and 4-PBA alone possess more than one action (e.g., antiamyloid, antioxidant, anti-TAU, antiapoptotic, and ACh-induced Ca2+ influx enhancers), that in combination might cancel or diminish each other. Together, these results strongly argue that MB and 4-PBA might protect PSEN1 I416T ChLNs from Aß-induced toxicity by working intracellularly as anti-Aß and anti-Tau agents, improving Δψm and cell survival, and extracellularly, by increasing ACh-induced Ca2+ ion influx. MB and 4-PBA are promising drugs with potential for repurposing in familial AD.


Subject(s)
Alzheimer Disease , Antioxidants , Apoptosis , Methylene Blue , Phenylbutyrates , Presenilin-1 , Presenilin-1/genetics , Presenilin-1/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Methylene Blue/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Humans , Phenylbutyrates/pharmacology , tau Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Animals , Phosphorylation/drug effects
5.
J Mol Model ; 30(10): 350, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325274

ABSTRACT

CONTEXT: Alzheimer's disease (AD) is the leading cause of dementia around the world, totaling about 55 million cases, with an estimated growth to 74.7 million cases in 2030, which makes its treatment widely desired. Several studies and strategies are being developed considering the main theories regarding its origin since it is not yet fully understood. Among these strategies, the 5-HT6 receptor antagonism emerges as an auspicious and viable symptomatic treatment approach for AD. The 5-HT6 receptor belongs to the G protein-coupled receptor (GPCR) family and is closely implicated in memory loss processes. As a serotonin receptor, it plays an important role in cognitive function. Consequently, targeting this receptor presents a compelling therapeutic opportunity. By employing antagonists to block its activity, the 5-HT6 receptor's functions can be effectively modulated, leading to potential improvements in cognition and memory. METHODS: Addressing this challenge, our research explored a promising avenue in drug discovery for AD, employing Artificial Neural Networks-Quantitative Structure-Activity Relationship (ANN-QSAR) models. These models have demonstrated great potential in predicting the biological activity of compounds based on their molecular structures. By harnessing the capabilities of machine learning and computational chemistry, we aimed to create a systematic approach for analyzing and forecasting the activity of potential drug candidates, thus streamlining the drug discovery process. We assembled a diverse set of compounds targeting this receptor and utilized density functional theory (DFT) calculations to extract essential molecular descriptors, effectively representing the structural features of the compounds. Subsequently, these molecular descriptors served as input for training the ANN-QSAR models alongside corresponding biological activity data, enabling us to predict the potential efficacy of novel compounds as 5-hydroxytryptamine receptor 6 (5-HT6) antagonists. Through extensive analysis and validation of ANN-QSAR models, we identified eight new promising compounds with therapeutic potential against AD.


Subject(s)
Alzheimer Disease , Drug Design , Quantitative Structure-Activity Relationship , Receptors, Serotonin , Serotonin Antagonists , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Receptors, Serotonin/metabolism , Receptors, Serotonin/chemistry , Humans , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Serotonin Antagonists/therapeutic use , Neural Networks, Computer , Models, Molecular
6.
Alzheimers Dement ; 20(10): 6709-6721, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39140361

ABSTRACT

INTRODUCTION: Brain glucose hypometabolism, indexed by the fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging, is a metabolic signature of Alzheimer's disease (AD). However, the underlying biological pathways involved in these metabolic changes remain elusive. METHODS: Here, we integrated [18F]FDG-PET images with blood and hippocampal transcriptomic data from cognitively unimpaired (CU, n = 445) and cognitively impaired (CI, n = 749) individuals using modular dimension reduction techniques and voxel-wise linear regression analysis. RESULTS: Our results showed that multiple transcriptomic modules are associated with brain [18F]FDG-PET metabolism, with the top hits being a protein serine/threonine kinase activity gene cluster (peak-t(223) = 4.86, P value < 0.001) and zinc-finger-related regulatory units (peak-t(223) = 3.90, P value < 0.001). DISCUSSION: By integrating transcriptomics with PET imaging data, we identified that serine/threonine kinase activity-associated genes and zinc-finger-related regulatory units are highly associated with brain metabolic changes in AD. HIGHLIGHTS: We conducted an integrated analysis of system-based transcriptomics and fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) at the voxel level in Alzheimer's disease (AD). The biological process of serine/threonine kinase activity was the most associated with [18F]FDG-PET in the AD brain. Serine/threonine kinase activity alterations are associated with brain vulnerable regions in AD [18F]FDG-PET. Zinc-finger transcription factor targets were associated with AD brain [18F]FDG-PET metabolism.


Subject(s)
Alzheimer Disease , Brain , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Humans , Fluorodeoxyglucose F18/metabolism , Male , Female , Brain/metabolism , Brain/diagnostic imaging , Aged , Transcriptome , Hippocampus/metabolism , Hippocampus/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/diagnostic imaging , Aged, 80 and over
7.
Metab Brain Dis ; 39(8): 1679-1687, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39145861

ABSTRACT

Exercise increases peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) expression, which in turn causes the fibronectin type III domain containing 5 (FNDC5) protein to be produced. This protein is then cleaved, primarily in skeletal muscle fibers, to produce irisin. When the mature FNDC5 is cleaved by proteases, Irisin - which is the fibronectin III domain without the signal sequence - is released. Resistance, aerobic, and high-intensity interval training (HIIT) are recognized as forms of physical exercise that raise irisin levels, and insulin receptor phosphorylation in tyrosine residues, favoring an increase in the activity of the insulin-dependent pathway (PI3K pathway) and assisting in the fight against insulin resistance, inflammation, and cognitive decline. Irisin may represent a promising option for the therapeutic targeting in several brain-related pathological conditions, like Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, type 2 diabetes, and obesity. Exercise protocols are healthy and inexpensive interventions that can help find cellular and molecular changes in several brain-related pathological conditions. Here, it was reviewed what is known about exercise-produced irisin studies involving AD, PD, epilepsy, type 2 diabetes, and obesity.


Subject(s)
Exercise , Fibronectins , Humans , Fibronectins/metabolism , Exercise/physiology , Animals , Alzheimer Disease/metabolism , Diabetes Mellitus, Type 2/metabolism , Parkinson Disease/metabolism , Parkinson Disease/therapy , Obesity/metabolism , Epilepsy/metabolism , Brain/metabolism
8.
Ageing Res Rev ; 101: 102464, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39173916

ABSTRACT

A Disintegrin and Metalloproteinase 10 (ADAM10) is a crucial transmembrane protein involved in diverse cellular processes, including cell adhesion, migration, and proteolysis. ADAM10's ability to cleave over 100 substrates underscores its significance in physiological and pathological contexts, particularly in Alzheimer's disease (AD). This review comprehensively examines ADAM10's multifaceted roles, highlighting its critical function in the non-amyloidogenic processing of the amyloid precursor protein (APP), which mitigates amyloid beta (Aß) production, a critical factor in AD development. We summarize the regulation of ADAM10 at multiple levels: transcriptional, translational, and post-translational, revealing the complexity and responsiveness of its expression to various cellular signals. A standardized nomenclature for ADAM10 isoforms is proposed to improve clarity and consistency in research, facilitating better comparison and replication of findings across studies. We address the challenges in detecting ADAM10 isoforms using antibodies, advocating for standardized detection protocols to resolve discrepancies in results from different biological matrices. By highlighting these issues, this review underscores the potential of ADAM10 as a biomarker for early diagnosis and a therapeutic target in AD. By consolidating current knowledge on ADAM10's regulation and function, we aim to provide insights that will guide future research and therapeutic strategies in the AD context.


Subject(s)
ADAM10 Protein , Alzheimer Disease , Protein Isoforms , Humans , Alzheimer Disease/metabolism , ADAM10 Protein/metabolism , Animals , Amyloid Precursor Protein Secretases/metabolism , Antibodies , Membrane Proteins/metabolism , Clinical Relevance
9.
Eur J Neurosci ; 60(5): 4707-4722, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39119857

ABSTRACT

Disputes about the scientific validity of the amyloid-ß hypothesis of Alzheimer's disease have been held since the early 1990s, with little constructive progress made between opposing sides despite recent therapeutic progress. Here, I argue that philosophy of science can improve the chance of constructive debate by giving researchers technical language to describe and assess scientific progress. To do so, I interpret the amyloid hypothesis using a modified version of the research programme concept from philosopher of science Imre Lakatos. I first outline the amyloid-ß hypothesis and study critiques of its central place in Alzheimer's research. Then, I draw on the complexity of amyloid-ß and Alzheimer's research to discuss the limits of using concepts from popular philosophers of science Karl Popper or Thomas Kuhn, before finally arguing that an adaptation of the research programme concept can foster constructive debates about the science of Alzheimer's and within it. I will argue that the amyloid-ß hypothesis has contributed to significant progress in the Alzheimer's field based on what Lakatos called the "positive heuristic" (motivating the programme to test its predictions) and the "negative heuristic" (protecting the programme from refutation). I consider the amyloid research agenda to be progressive despite the fact that its claims about disease aetiology could be wrong.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Humans , Amyloid beta-Peptides/metabolism , Philosophy , Animals
10.
Biol Res ; 57(1): 56, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175009

ABSTRACT

Synaptic dysfunction is an early feature in Alzheimer's disease (AD) pathogenesis and a major morphological correlate of memory deficits. Given the main synaptic location of N-methyl-D-aspartate receptors (NMDARs), their dysregulation has been implicated in these pathological effects. Here, to detect possible alterations in the expression and synaptic localisation of the GluN1 subunit in the brain of amyloidogenic APP/PS1 mice, we employed histoblot and SDS-digested freeze-fracture replica labelling (SDS-FRL) techniques. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus in a layer-dependent manner, in the cortex and the caudate putamen of APP/PS1 transgenic mice at 12 months of age but was unaltered at 1 and 6 months. Using quantitative SDS-FRL, we unravelled the molecular organisation of GluN1 in seven excitatory synapse populations at a high spatial resolution in the CA1 and CA3 fields and the DG of the hippocampus in 12-month-old APP/PS1 mice. In the CA1 field, the labelling density for GluN1 in the excitatory synapses established on spines and interneurons, was significantly reduced in APP/PS1 mice compared to age-matched wild-type mice in the stratum lacunosum-moleculare but unaltered in the stratum radiatum. In the CA3 field, synaptic GluN1 was reduced in mossy fibre-CA3 pyramidal cell synapses but unaltered in the A/C-CA3 pyramidal cell synapses. In the DG, the density of GluN1 in granule cell-perforant pathway synapses was reduced in APP/PS1 mice. Altogether, our findings provide evidence of specific alterations of synaptic GluN1 in the trisynaptic circuit of the hippocampus in Aß pathology. This differential vulnerability in the disruption of NMDARs may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit and cognitive impairment characteristic of APP/PS1 mice.


Subject(s)
Alzheimer Disease , Hippocampus , Receptors, N-Methyl-D-Aspartate , Synapses , Animals , Male , Mice , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Mice, Transgenic , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synapses/pathology
11.
Ageing Res Rev ; 100: 102439, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074563

ABSTRACT

Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Metformin , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Metformin/therapeutic use , Metformin/pharmacology , Humans , Animals , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Translational Research, Biomedical/methods , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Insulin Resistance/physiology
12.
Neurochem Res ; 49(10): 2785-2802, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38985243

ABSTRACT

To contribute to research on female models of Alzheimer's disease (AD), our aim was to study the effect of intracerebroventricular (ICV) injection of streptozotocin (STZ) in female rats, and to evaluate a potential neuroprotective action of ovarian steroids against STZ. Female rats were either ovariectomized (OVX) or kept with ovaries (Sham) two weeks before ICV injections. Animals were injected with either vehicle (artificial cerebrospinal fluid, aCSF) or STZ (3 mg/kg) and separated into four experimental groups: Sham + aCSF, Sham + STZ, OVX + aCSF and OVX + STZ. Nineteen days post-injection, we assessed different behavioral aspects: burying, anxiety and exploration, object recognition memory, spatial memory, and depressive-like behavior. Immunohistochemistry and Immunoblot analyses were performed in the hippocampus to examine changes in AD-related proteins and neuronal and microglial populations. STZ affected burying and exploratory behavior depending on ovarian status, and impaired recognition but not spatial memory. STZ and ovariectomy increased depressive-like behavior. Interestingly, STZ did not alter the expression of ß-amyloid peptide or Tau phosphorylated forms. STZ affected the neuronal population from the Dentate Gyrus, where immature neurons were more vulnerable to STZ in OVX rats. Regarding microglia, STZ increased reactive cells, and the OVX + STZ group showed an increase in the total cell number. In sum, STZ partially affected female rats, compared to what was previously reported for males. Although AD is more frequent in women, reports about the effect of ICV-STZ in female rats are scarce. Our work highlights the need to deepen into the effects of STZ in the female brain and study possible sex differences.


Subject(s)
Alzheimer Disease , Ovariectomy , Streptozocin , Animals , Female , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Rats , Injections, Intraventricular , Rats, Wistar , Hippocampus/drug effects , Hippocampus/metabolism , Ovary/drug effects , Ovary/metabolism , Depression/chemically induced , Depression/metabolism , Amyloid beta-Peptides/metabolism , Spatial Memory/drug effects
13.
Basic Clin Pharmacol Toxicol ; 135(3): 237-249, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39020526

ABSTRACT

Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce ß-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aß aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Brain , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Animals , Amyloid beta-Peptides/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/metabolism , Disease Models, Animal
14.
J Phys Chem B ; 128(29): 7022-7032, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39016210

ABSTRACT

The interaction between iron and amyloid-beta (Aß) peptides has received significant attention in Alzheimer's disease (AD) research due to its potential implications in developing this pathology. However, the coordination preferences of iron and Aß1-42 have not been thoroughly investigated or remain unknown. This study employs a computational protocol that combines homology modeling techniques with quantum mechanics (DTF-xTB) calculations to build and evaluate several 3D models of Fe2+/3+-Aß1-42. Our results reveal well-defined complexes for both the metal and peptide moieties, and we discuss the molecular interactions stabilizing these complexes by elucidating the coordinating environments and binding preferences. These proposed models offer valuable insights into the role of iron in Alzheimer's disease (AD) pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Peptide Fragments , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Humans , Quantum Theory , Models, Molecular , Iron/chemistry , Iron/metabolism , Ferric Compounds/chemistry , Ferrous Compounds/chemistry
15.
ACS Chem Neurosci ; 15(16): 2982-2994, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39007352

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative process, also considered a metabolic condition due to alterations in glucose metabolism and insulin signaling pathways in the brain, which share similarities with diabetes. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analog, in the early stages of the neurodegenerative process in a sporadic model of Alzheimer's-like disease induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days reversed the cognitive impairment in short- and long-term memories caused by STZ in rodents. We attribute these effects to BFT's ability to modulate glucose transporters type 1 and 3 (GLUT1 and GLUT3) in the hippocampus, inhibit GSK3 activity in the hippocampus, and modulate the insulin signaling in the hippocampus and entorhinal cortex, as well as reduce the activation of apoptotic pathways (BAX) in the hippocampus. Therefore, BFT emerges as a promising and accessible intervention in the initial treatment of conditions similar to AD.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Hippocampus , Insulin , Signal Transduction , Streptozocin , Thiamine , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Insulin/metabolism , Signal Transduction/drug effects , Male , Hippocampus/drug effects , Hippocampus/metabolism , Thiamine/pharmacology , Thiamine/analogs & derivatives , Thiamine/therapeutic use , Rats , Cognition/drug effects , Rats, Wistar , Maze Learning/drug effects
16.
Front Immunol ; 15: 1401800, 2024.
Article in English | MEDLINE | ID: mdl-38933275

ABSTRACT

Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.


Subject(s)
Air Pollution , Alzheimer Disease , Inflammation , Leptin , Obesity , Particulate Matter , Animals , Humans , Air Pollutants/adverse effects , Air Pollution/adverse effects , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Inflammation/metabolism , Inflammation/etiology , Leptin/metabolism , Obesity/metabolism , Obesity/etiology , Particulate Matter/adverse effects , Signal Transduction , Toll-Like Receptor 4/metabolism
17.
Alzheimers Dement ; 20(8): 5398-5410, 2024 08.
Article in English | MEDLINE | ID: mdl-38934107

ABSTRACT

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Hippocampus , Ketamine , Mice, Transgenic , Neuronal Plasticity , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Ketamine/analogs & derivatives , Ketamine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Mice , Long-Term Potentiation/drug effects , Amyloid beta-Peptides/metabolism , Protein Biosynthesis/drug effects , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Memory/drug effects , Male , Memory Disorders/drug therapy , Mice, Inbred C57BL , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics , Humans
18.
Neurochem Res ; 49(9): 2535-2555, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38888830

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-ß, leading to N-methyl-D-aspartate (NMDA) receptor-dependent synaptic depression, spine elimination, and memory deficits. Glycine transporter type 1 (GlyT1) modulates glutamatergic neurotransmission via NMDA receptors (NMDAR), presenting a potential alternative therapeutic approach for AD. This study investigates the neuroprotective potential of GlyT1 inhibition in an amyloid-ß-induced AD mouse model. C57BL/6 mice were treated with N-[3-([1,1-Biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine (NFPS), a GlyT1 inhibitor, 24 h prior to intrahippocampal injection of amyloid-ß. NFPS pretreatment prevented amyloid-ß-induced cognitive deficits in short-term and long-term memory, evidenced by novel object recognition and spatial memory tasks. Moreover, NFPS pretreatment curbed microglial activation, astrocytic reactivity, and subsequent neuronal damage from amyloid-ß injection. An extensive label-free quantitative UPLC-MSE proteomic analysis was performed on the hippocampi of mice treated with NFPS. In proteomics, KEGG enrichment analysis revealed increased in dopaminergic synapse, purine-containing compound biosynthetic process and long-term potentiation, and a reduction in Glucose catabolic process and glycolytic process pathways. The western blot analysis confirmed that NFPS treatment elevated BDNF levels, correlating with enhanced TRKB phosphorylation and mTOR activation. Moreover, NFPS treatment reduced the GluN2B expression after 6 h, which was associated with an increase on CaMKIV and CREB phosphorylation. Collectively, these findings demonstrate that GlyT1 inhibition by NFPS activates diverse neuroprotective pathways, enhancing long-term potentiation signaling and countering amyloid-ß-induced hippocampal damage.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Glycine Plasma Membrane Transport Proteins , Hippocampus , Mice, Inbred C57BL , Neuroprotective Agents , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Alzheimer Disease/prevention & control , Amyloid beta-Peptides/metabolism , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine Plasma Membrane Transport Proteins/metabolism , Disease Models, Animal , Sarcosine/analogs & derivatives , Sarcosine/pharmacology , Sarcosine/therapeutic use , Neuroprotection/drug effects , Neuroprotection/physiology
19.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732141

ABSTRACT

Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAß; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 µM), CU (10 µM), or SP (1 µM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 µM) concentration was efficient in diminishing the iAß, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAß compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAß-induced ChLN damage in FAD.


Subject(s)
Alzheimer Disease , Anthracenes , Curcumin , Presenilin-1 , Taurine/analogs & derivatives , Curcumin/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Anthracenes/pharmacology , Animals , Reactive Oxygen Species/metabolism , Mice , Amyloid beta-Peptides/metabolism , Humans , tau Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Membrane Potential, Mitochondrial/drug effects
20.
J Mater Chem B ; 12(21): 5085-5097, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38713059

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment associated with the accumulation of beta-amyloid protein (Aß). Aß activates glial cells in the brain, increasing the secretion of proinflammatory cytokines, which leads to neuroinflammation and neuronal death. Currently, there are no effective treatments that cure or stop its progression; therefore, AD is considered a global health priority. The main limitations are the low drug bioavailability and impermeability of the blood-brain barrier (BBB). Fortunately, nanomedicine has emerged as a promising field for the development of new nanosystems for the controlled and targeted delivery of drugs to the brain. Therefore, in this work, lipid-polymer hybrid nanoparticles (LPHNPs) conjugated with transferrin (Tf) to facilitate crossing the BBB and loaded with N-acetylcysteine (NAC) for its anti-inflammatory effect were synthesized, and their physicochemical characterization was carried out. Subsequently, an in vitro model involving human astrocytes derived from induced pluripotent stem cells (iPSC) from an AD-diagnosed patient was developed, which was brought to a reactive state by stimulation with lipopolysaccharides (LPSs). The cell culture was treated with either Tf-conjugated LPHNPs loaded with NAC (NAC-Tf-LPHNPs) at 0.25 mg mL-1, or free NAC at 5 mM. The results showed that NAC-Tf-LPHNPs favorably modulated the expression of proinflammatory genes such as interleukin-1ß (IL-1ß), amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP). In addition, they reduced the secretion of the proinflammatory cytokines interleukin 6 (IL-6), IL-1ß and interferon-gamma (INF-γ). Results for both cases were compared to the group of cells that did not receive any treatment. In contrast, free NAC only had this effect on the expression of IL-1ß and the secretion of the cytokines IL-6 and INF-γ. These results indicate the potential of NAC-Tf-LPHNPs for AD treatment.


Subject(s)
Acetylcysteine , Alzheimer Disease , Astrocytes , Induced Pluripotent Stem Cells , Nanoparticles , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Nanoparticles/chemistry , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Acetylcysteine/chemistry , Acetylcysteine/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Polymers/chemistry , Polymers/pharmacology , Lipids/chemistry , Biomarkers/metabolism , Particle Size , Neuroinflammatory Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL