ABSTRACT
Decapod crustaceans, like mammals, retain the ability to make new neurons throughout life. In mammals, immune cells are closely associated with stem cells that generate adult-born neurons. In crayfish, evidence suggests that immune cells (hemocytes) originating in the immune system travel to neurogenic regions and transform into neural progenitor cells. This nontraditional immune activity takes place continuously under normal physiological conditions, but little is known under pathological conditions (neurodegeneration). In this study, the immune system and its relationship with neurogenesis were investigated during neurodegeneration (unilateral antennular ablation) in adult crayfish. Our experiments show that after ablation (1) Proliferating cells decrease in neurogenic areas of the adult crayfish brain; (2) The immune response, but not neurogenesis, is ablation-side dependent; (3) Inducible nitric oxide synthase (iNOS) plays a crucial role in the neurogenic niche containing neural progenitors during the immune response; (4) Brain areas targeted by antennular projections respond acutely (15 min) to the lesion, increasing the number of local immune cells; (5) Immune cells are recruited to the area surrounding the ipsilateral neurogenic niche; and (6) The vasculature in the niche responds acutely by dilation and possibly also neovascularization. We conclude that immune cells are important in both neurodegeneration and neurogenesis by contributing in physiological conditions to the maintenance of the number of neural precursor cells in the neurogenic niche (neurogenesis), and in pathological conditions (neurodegeneration) by coordinating NO release and vascular responses associated with the neurogenic niche. Our data suggest that neural damage and recovery participate in a balance between these competing immune cell roles.
Subject(s)
Astacoidea/immunology , Immune System/immunology , Nerve Degeneration/immunology , Neurogenesis/immunology , Animals , Astacoidea/ultrastructure , Blood Vessels/metabolism , Brain/pathology , Bromodeoxyuridine/metabolism , Cell Count , Cell Proliferation , Female , Glutamate-Ammonia Ligase/metabolism , Hemocytes/metabolism , Male , Neuropil/metabolism , Nitric Oxide Synthase Type II/metabolism , Stem Cell NicheABSTRACT
Lectins participate in the immune mechanisms of crustaceans. They have been considered as humoral receptors for pathogen-associated molecular patterns; however, some reports suggest that lectins could regulate crustacean cellular functions. In the present study, we purified and characterized a serum lectin (CqL) from the hemolymph of Cherax quadricarinatus by affinity chromatography and determined its participation in the regulation of hemocytes' oxidative burst. CqL is a 290-kDa lectin in native form, constituted by 108, 80, and 29-kDa subunits. It is mainly composed of glycine, alanine, and a minor proportion of methionine and histidine. It showed no carbohydrates in its structure. CqL is composed of several isoforms, as determined by 2D-electrophoresis, and shows no homology with any crustacean protein as determined by Lc/Ms mass spectrometry. CqL agglutinated mainly rat and rabbit erythrocytes and showed a broad specificity for monosaccharides such as galactose, glucose, and sialic acid, as well as for glycoproteins, such as porcine stomach and bovine submaxillary mucin and fetuin. It is a Mn(2+)-dependent lectin. CqL recognized 8% of crayfish granular hemocytes and increased 4.2-fold the production of hemocytes' superoxide anion in vitro assays when compared with non-treated hemocytes. This effect showed the same specificity for carbohydrates as hemagglutination; moreover, superoxide dismutase and diphenyleneiodonium chloride were effective inhibitors of CqL oxidative-activation. The CqL homoreceptor is a 120-kDa glycoprotein identified in the hemocytes lysate. Our results suggest that CqL participates actively in the regulation of the generation of superoxide anions in hemocytes using NADPH-dependent mechanisms.