Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 571
Filter
1.
Curr Microbiol ; 81(11): 384, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354231

ABSTRACT

A novel bacterial isolate A520T (A520T = CBAS 737T = CAIM 1944T) was obtained from the skin of bandtail puffer fish Sphoeroides spengleri (Tetraodontidae Family), collected in Arraial do Cabo (Rio de Janeiro, Brazil). A520T is Gram-stain-negative, flagellated and aerobic bacteria. Optimum growth occurs at 25-30 °C in the presence of 3% NaCl. The genome sequence of the novel isolate consisted of 4.5 Mb (4082 coding genes and G+C content of 41.1%). The closest phylogenetic neighbor was Pseudoalteromonas shioyasakiensis JCM 18891T (97.9% 16S rRNA sequence similarity, 94.8% Average Amino Acid Identity, 93% Average Nucleotide Identity and 51.8% similarity in Genome-to-Genome-Distance). Several in silico phenotypic features are useful to differentiate A520T from its closest phylogenetic neighbors, including trehalose, D-mannose, cellobiose, pyrrolidonyl-beta-naphthylamide, starch hydrolysis, D-xylose, lactose, tartrate utilization, sucrose, citrate, glycerol, mucate and acetate utilization, malonate, glucose oxidizer, gas from glucose, nitrite to gas, L-rhamnose, ornithine decarboxylase, lysine decarboxylase and yellow pigment. The genome of the novel species contains 3 gene clusters (~ 66.81 Kbp in total) coding for different types of bioactive compounds that could indicate ecological roles pertaining to the bandtail puffer fish host. Based on genome-based taxonomic approach, strain A520T (A520T = CBAS 737T = CAIM 1944T) is proposed as a new species, Pseudoalteromonas simplex sp. nov.


Subject(s)
Base Composition , DNA, Bacterial , Phylogeny , Pseudoalteromonas , RNA, Ribosomal, 16S , Skin , Tetraodontiformes , Animals , Pseudoalteromonas/genetics , Pseudoalteromonas/classification , Pseudoalteromonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Tetraodontiformes/microbiology , DNA, Bacterial/genetics , Skin/microbiology , Genome, Bacterial , Brazil , Bacterial Typing Techniques , Fatty Acids/chemistry , Fatty Acids/analysis , Sequence Analysis, DNA
2.
Int J Syst Evol Microbiol ; 74(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39361511

ABSTRACT

Two Gram-stain-positive bacterial strains, EXRC-4A-4T and RC-2-3T, were isolated from soil samples collected at Union Glacier, Antarctica. Based on 16S rRNA gene sequence similarity, strain EXRC-4A-4T was identified as belonging to the genus Rhodococcus, and strain RC-2-3T to the genus Pseudarthrobacter. Further genomic analyses, including average nucleotide identity and digital DNA-DNA hybridization, suggested that these strains represent new species. Strain EXRC-4A-4T exhibited growth at temperatures ranging from 4 to 28 °C (optimum between 20 and 28 °C), at pH 5.0-9.0 (optimum, pH 6.0), and in the presence of 0-5.0% NaCl (optimum between 0 and 1% NaCl). Strain RC-2-3T grew at 4-28 °C (optimum growth at 28 °C), pH 6.0-10 (optimum, pH 7.0) and in the presence of 0-5.0% NaCl (optimum, 1% NaCl). The fatty acid profile of EXRC-4A-4T was dominated by C17:1 ω-7, while that of RC-2-3T was dominated by anteiso-C15 : 0. The draft genome sequences revealed a DNA G+C content of 64.6 mol% for EXRC-4A-4T and 65.8 mol% for RC-2-3T. Based on this polyphasic study, EXRC-4A-4T and RC-2-3T represent two novel species within the genera Rhodococcus and Pseudarthrobacter, respectively. We propose the names Rhodococcus navarretei sp. nov. and Pseudarthrobacter quantipunctorum sp. nov. The type strains are Rhodococcus navarretei EXRC-4A-4T and Pseudarthrobacter quantipunctorum RC-2-3T. These strains have been deposited deposited in the CChRGM and BCCM/LMG culture collections with entry numbers RGM 3539/LMG 33621 and RGM 3538/LMG 33620, respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Rhodococcus , Sequence Analysis, DNA , Soil Microbiology , Rhodococcus/genetics , Rhodococcus/classification , Rhodococcus/isolation & purification , Rhodococcus/metabolism , RNA, Ribosomal, 16S/genetics , Antarctic Regions , DNA, Bacterial/genetics , Ice Cover/microbiology , Actinomycetales/genetics , Actinomycetales/isolation & purification , Actinomycetales/classification , Actinomycetales/metabolism
3.
Genes (Basel) ; 15(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39336713

ABSTRACT

Australian isolates of Haloquadratum walsbyi, a square-shaped haloarchaeon, often harbor small cryptic plasmids of the pL6-family, approximately 6 kb in size, and five examples have been previously described. These plasmids exhibit a highly conserved gene arrangement and encode replicases similar to those of betapleolipoviruses. To assess their global distribution and recover more examples for analysis, fifteen additional plasmids were reconstructed from the metagenomes of seven hypersaline sites across four countries: Argentina, Australia, Puerto Rico, and Spain. Including the five previously described plasmids, the average plasmid size is 6002 bp, with an average G+C content of 52.5%. The tetramers GGCC and CTAG are either absent or significantly under-represented, except in the two plasmids with the highest %G+C. All plasmids share a similar arrangement of genes organized as outwardly facing replication and ATPase modules, but variations were observed in some core genes, such as F2, and some plasmids had acquired accessory genes. Two plasmids, pCOLO-c1 and pISLA-c6, shared 92.7% nt identity despite originating from Argentina and Spain, respectively. Numerous metagenomic CRISPR spacers matched sequences in the fifteen reconstructed plasmids, indicating frequent invasion of haloarchaea. Spacers could be assigned to haloarchaeal genera by mapping their associated direct repeats (DR), with half of these matching Haloquadratum. Finally, strand-specific metatranscriptome (RNA-seq) data could be used to demonstrate the active transcription of two pL6-family plasmids, including antisense transcripts.


Subject(s)
Plasmids , Plasmids/genetics , Phylogeny , Halobacteriaceae/genetics , Australia , Metagenome , Argentina , Spain , Base Composition/genetics , Puerto Rico , Genetic Variation
4.
Mol Omics ; 20(8): 524-531, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39162257

ABSTRACT

The basidiomycete fungus Leucoagaricus gongylophorus is able to grow in the fungus garden of leaf-cutter ants. This mutualistic interaction has driven the evolutionary adaptation of L. gongylophorus, shaping its metabolism to produce enzymes adept at lignocellulosic biomass degradation. In this study, we undertook the comprehensive sequencing, assembly, and functional annotation of the genome of L. gongylophorus strain LEU18496, mutualistic fungus of the Atta mexicana. Our genomic analyses revealed a distinctive bimodal nature to the genome: a predominant region characterized by AT enrichment and low genetic density, alongside a smaller region exhibiting higher GC content and higher genetic density. The presence of transposable elements (TEs) within the AT-enriched region suggests genomic compartmentalization, facilitating differential evolutionary rates. With a gene count of 6748, the assembled genome of L. gongylophorus LEU18496 surpasses previous reports for this fungal species. Inspection of genes associated with central metabolism unveiled a remarkable abundance of carbohydrate-active enzymes (CAZymes) and fungal oxidative lignin enzymes (FOLymes), underscoring their pivotal roles in the life cycle of this fungus.


Subject(s)
Genome, Fungal , Molecular Sequence Annotation , Symbiosis , Symbiosis/genetics , Animals , Genomics/methods , DNA Transposable Elements/genetics , Agaricales/genetics , Base Composition , Phylogeny , Ants/genetics , Ants/microbiology , Basidiomycota/genetics
5.
Antonie Van Leeuwenhoek ; 117(1): 96, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980405

ABSTRACT

Strain C29T, a Gram-staining-negative, straight rod occurring singly, in pairs or short chains, was isolated from floating filamentous biomass of the Uruguay River. The strain was catalase and oxidase positive, chemoorganotrophic, strictly aerobic, non-motile, and grew at pH 6.0-9.0, 15-45 °C, and 0-0.5% (w/v) NaCl. Polyhydroxybutyrate was accumulated in nutrient-limited conditions. Phylogenetic analysis based on the 16S rRNA gene revealed that strain C29T had the highest sequence similarity with Leptothrix discophora SS-1T (97.82%), Ideonella livida TBM-1T (97.82%), Vitreoscilla filiformis L1401-2T (97.52%), Sphaerotilus sulfidivorans D-501T (97.50%) and Sphaerotilus natans DSM 6575T (97.46%). Other type strains with validly published names had similarities below 97.46%. Further phylogenomic analysis showed that strain C29T was affiliated to the family Sphaerotilaceae. Average nucleotide identity (ANI) and in silico DNA-DNA hybridization (dDDH) values with its phylogenetic relatives were lower than 91 and 41%, respectively, revealing that strain C29T represented a new species. The DNA G + C content of strain C29T was 70.9%. The annotation of the genome of the novel strain shows it possessed genes for the degradation of aromatic compounds. It also contained genes that encode sigma factors involved in response regulation of stress resistance, which is an important function for adaptation and survival in natural niches. Based on the results of the phylogenetic and phenotypic analyses, we propose that strain C29T represents a novel species, for which the name Sphaerotilus uruguayifluvii sp. nov. is proposed. The type strain is C29T (= CCM 9043T = DSM 113250T).


Subject(s)
Base Composition , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Rivers , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , Uruguay , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Fatty Acids/metabolism , Fatty Acids/analysis , Water Microbiology
6.
Curr Microbiol ; 81(8): 247, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951210

ABSTRACT

Stenotrophomonas species are recognized as rhizobacteria that play a pivotal role in promoting plant growth by making substantial contributions to enhanced soil fertility, nutrient recycling, and phytopathogen control. Employing them as bioinputs constitutes an environmentally sound strategy, particularly within the rhizospheric community. This study revealed the draft genome sequence of Stenotrophomonas geniculata LGMB417, which was originally isolated from root samples of maize (Zea mays L.). This research assessed the potential of a bacterial strain at the molecular level through genome mining, aiming to identify genes with biotechnological significance for promoting plant growth and protection. The assembly findings indicate that strain LGMB417 possesses a genome size of 4,654,011 bp, with a G + C content of 66.50%. The draft genome sequence revealed the presence of gene clusters responsible for the synthesis of secondary metabolites and carbohydrate active enzymes (CAZymes), glycoside hydrolases (23), glycosyltransferases (18), carbohydrate esterases (5), polysaccharide lyases (2), carbohydrate-binding modules (2), and auxiliary activities (1). Several genes related to growth promotion were found in the genome, including those associated with phosphate transport and solubilization, nitrogen metabolism, siderophore production and iron transport, hormonal modulation, stress responses (such as to drought, temperature fluctuations, osmotic challenges, and oxidative conditions), and volatile organic compounds (VOCs). Subsequent phases will encompass investigations utilizing gene expression methodologies, with future explorations concentrating on facets pertinent to agricultural production, including comprehensive field studies.


Subject(s)
Genome, Bacterial , Stenotrophomonas , Zea mays , Zea mays/microbiology , Stenotrophomonas/genetics , Stenotrophomonas/metabolism , Biotechnology , Base Composition , Plant Roots/microbiology , Soil Microbiology , Agriculture , Phylogeny , Multigene Family
7.
Article in English | MEDLINE | ID: mdl-39058544

ABSTRACT

Strain T-12T, an orange, Gram-stain-negative, non-motile, rod-shaped strain, was isolated in November 2013 from water samples collected from an Atlantic salmon (Salmo salar) fry culturing system at a fish farm in Chile. Phylogenetic analysis based on 16S rRNA sequences (1394 bp) revealed that strain T-12T belonged to the genus Flavobacterium, showing close relationships to Flavobacterium bernardetii F-372T (99.48 %) and Flavobacterium terrigena DS-20T (98.50 %). The genome size of strain T-12T was 3.28 Mb, with a G+C content of 31.1 mol%. Genome comparisons aligned strain T-12T with Flavobacterium bernardetii F-372T (GCA_011305415) and Flavobacterium terrigena DSM 17934T (GCA_900108955). The highest digital DNA-DNA hybridization (dDDH) values were 42.6 % with F. bernardetii F-372T (GCA_011305415) and 33.9 % with F. terrigena DSM 17934T (GCA_900108955). Pairwise average nucleotide identity (ANI) calculations were below the species cutoff, with the best results with F. bernardetii F-372T being: ANIb, 90.33 %; ANIm, 91.85 %; and TETRA, 0.997 %. These dDDH and ANI results confirm that strain T-12T represents a new species. The major fatty acids were iso-C15 : 0 and C15 : 1ω6с. Detected polar lipids included phospholipids (n=2), aminophospholipid (n=1), aminolipid (n=1) and unidentified lipids (n=2). The predominant respiratory quinone was menaquinone MK7 (80 %) followed by MK-6 (20 %). Phenotypic, chemotaxonomic, and genomic data support the classification of strain T-12T (=CECT 30410T=RGM 3222T) as representing a novel species of Flavobacterium, for which the name Flavobacterium facile sp. nov. is proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Flavobacterium , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Salmo salar , Sequence Analysis, DNA , Vitamin K 2 , Animals , Flavobacterium/genetics , Flavobacterium/isolation & purification , Flavobacterium/classification , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Salmo salar/microbiology , DNA, Bacterial/genetics , Chile , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Water Microbiology , Phospholipids/analysis
8.
Gene ; 928: 148774, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39025338

ABSTRACT

Repetitive elements in DNA sequences are a hallmark of Apicomplexan protozoa. A genome-wide screening for Tandem Repeats was conducted in Toxoplasma gondii and related Coccidian parasites with a novel strategy to assess compositional bias. A conserved pattern of GC skew and purine-pyrimidine bias was observed. Compositional bias was also present at the protein level. Glutamic acid was the most abundant amino acid in the purine (GA) rich cluster, while Serine prevailed in pyrimidine (CT) rich cluster. Purine rich repeats, and consequently glutamic acid abundance, correlated with high scores for intrinsically disordered protein regions/domains. Finally, variability was established for repetitive regions within a well-known rhoptry antigen (ROP1) and an uncharacterized hypothetical protein with similar features. The approach we present could be useful to identify potential antigens bearing repetitive elements.


Subject(s)
Protozoan Proteins , Tandem Repeat Sequences , Toxoplasma , Toxoplasma/genetics , Tandem Repeat Sequences/genetics , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Genome, Protozoan , Base Composition
9.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38953769

ABSTRACT

Several hundred ciliate species live in animals' guts as a part of their microbiome. Among them, Muniziella cunhai (Trichostomatia, Pycnotrichidae), the largest described ciliate, is found exclusively associated with Hydrochoerus hydrochaeris (capybara), the largest known rodent reaching up to 90 kg. Here, we present the sequence, structural and functional annotation of this giant microeukaryote macronuclear genome and discuss its phylogenetic placement. The 85 Mb genome is highly AT rich (GC content 25.71 %) and encodes a total of 11 397 protein-coding genes, of which 2793 could have their functions predicted with automated functional assignments. Functional annotation showed that M. cunhai can digest recalcitrant structural carbohydrates, non-structural carbohydrates, and microbial cell walls, suggesting a role in diet metabolization and in microbial population control in the capybara's intestine. Moreover, the phylogenetic placement of M. cunhai provides insights on the origins of gigantism in the subclass Trichostomatia.


Subject(s)
Ciliophora , Phylogeny , Animals , Ciliophora/genetics , Ciliophora/classification , Rodentia/microbiology , Genome, Protozoan , Base Composition , Molecular Sequence Annotation
10.
Sci Rep ; 14(1): 13604, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871769

ABSTRACT

Neltuma alba (Algarrobo blanco), Neltuma chilensis (Algarrobo Chileno) and Strombocarpa strombulifera (Fortuna) are some of the few drought resistant trees and shrubs found in small highly fragmented populations, throughout the Atacama Desert. We reconstructed their plastid genomes using de novo assembly of paired-end reads from total genomic DNA. We found that the complete plastid genomes of N. alba and N. chilensis are larger in size compared to species of the Strombocarpa genus. The Strombocarpa species presented slightly more GC content than the Neltuma species. Therefore, we assume that Strombocarpa species have been exposed to stronger natural selection than Neltuma species. We observed high variation values in the number of cpSSRs (chloroplast simple sequence repeats) and repeated elements among Neltuma and Strombocarpa species. The p-distance results showed a low evolutionary divergence within the genus Neltuma, whereas a high evolutionary divergence was observed between Strombocarpa species. The molecular divergence time found in Neltuma and Strombocarpa show that these genera diverged in the late Oligocene. With this study we provide valuable information about tree species that provide important ecosystem services in hostile environments which can be used to determine these species in the geographically isolated communities, and keep the highly fragmented populations genetically healthy.


Subject(s)
Phylogeny , Evolution, Molecular , Desert Climate , Genome, Plastid , Genetic Variation , Base Composition
11.
Sci Rep ; 14(1): 14285, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38902258

ABSTRACT

A polyphasic approach was applied to characterize taxonomically a novel endophytic bacterial strain, designated as EP178T, which was previously isolated from Passiflora incarnata leaves and characterized as plant-growth promoter. The strain EP178T forms Gram stain-negative and rod-shaped cells, and circular and yellow-pigmented colonies. Its growth occurs at 10-37 °C, at pH 6.0-8.0, and tolerates up to 7% (w/v) NaCl. The major cellular fatty acids found were summed feature 8 (C18:1 ω7c), summed feature 3 (C16:1 ω6c /C16:1 ω7c), and C16:0, and the predominant ubiquinone was Q-9. The phylogenetic and nucleotide-similarity analysis with 16S rRNA gene sequences showed that strain EP178T belongs to Pseudomonas genus. The genomic-based G + C content was 65.5%. The average nucleotide identity and digital DNA-DNA hybridization values between strains EP178T and the closest type strain, P. oryzihabitans DSM 6835T, were 92.6% and 52.2%, respectively. Various genes associated with plant-growth promoting mechanisms were annotated from genome sequences. Based on the phenotypic, genomic, phylogeny and chemotaxonomic data, strain EP178T represents a new species of the genus Pseudomonas, for which the name Pseudomonas flavocrustae sp. nov. was proposed. The type strain is EP178T (= CBMAI 2609T = ICMP 24844T = MUM 23.01T).


Subject(s)
Endophytes , Passiflora , Phylogeny , Pseudomonas , RNA, Ribosomal, 16S , Endophytes/genetics , Pseudomonas/genetics , Pseudomonas/isolation & purification , Passiflora/microbiology , Passiflora/growth & development , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/metabolism , DNA, Bacterial/genetics , Plant Leaves/microbiology , Nucleic Acid Hybridization
12.
Article in English | MEDLINE | ID: mdl-38563675

ABSTRACT

Strain LB-N7T, a novel Gram-negative, orange, translucent, gliding, rod-shaped bacterium, was isolated from water samples collected from an open system of Atlantic salmon (Salmo salar) smolts in a fish farm in Chile during a flavobacterial infection outbreak in 2015. Phylogenetic analysis based on 16S rRNA sequences (1337 bp) revealed that strain LB-N7T belongs to the genus Flavobacterium and is closely related to the type strains Flavobacterium ardleyense A2-1T (98.8 %) and Flavobacterium cucumis R2A45-3T (96.75 %). The genome size of strain LB-N7T was 2.93 Mb with a DNA G+C content 32.6 mol%. Genome comparisons grouped strain LB-N7T with Flavobacterium cheniae NJ-26T, Flavobacterium odoriferum HXWNR29T, Flavobacterium lacisediminis TH16-21T and Flavobacterium celericrescens TWA-26T. The calculated digital DNA-DNA hybridization values between strain LB-N7T and the closest related Flavobacterium strains were 23.3 % and the average nucleotide identity values ranged from 71.52 to 79.39 %. Menaquinone MK-6 was the predominant respiratory quinone, followed by MK-7. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The primary polar lipids detected included nine unidentified lipids, two amounts of aminopospholipid and phospholipids, and a smaller amount of aminolipid. Phenotypic, genomic, and chemotaxonomic data suggest that strain LB-N7T (=CECT 30406T=RGM 3221T) represents as a novel bacterial species, for which the name Flavobacterium psychraquaticum sp. nov. is proposed.


Subject(s)
Flavobacterium , Salmo salar , Animals , Flavobacterium/genetics , Chile , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
13.
Appl Environ Microbiol ; 90(4): e0235123, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38517167

ABSTRACT

In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.


Subject(s)
Euryarchaeota , Oryza , Soil/chemistry , Oryza/microbiology , Fermentation , Tartrates/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Phylogeny , Base Composition , Sequence Analysis, DNA , Bacteria , Bacteria, Anaerobic/metabolism , Euryarchaeota/metabolism , Firmicutes/metabolism , Gram-Negative Bacteria/genetics , Methane/metabolism
14.
Braz J Microbiol ; 55(2): 1817-1828, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358421

ABSTRACT

The Amazon rainforest, a hotspot for biodiversity, is a crucial research area for scientists seeking novel microorganisms with ecological and biotechnological significance. A key region within the Amazon rainforest is the Amazonian Dark Earths (ADE), noted for supporting diverse plant and microbial communities, and its potential as a blueprint for sustainable agriculture. This study delineates the isolation, morphological traits, carbon source utilization, and genomic features of Fictibacillus terranigra CENA-BCM004, a candidate novel species of the Fictibacillus genus isolated from ADE. The genome of Fictibacillus terranigra was sequenced, resulting in 16 assembled contigs, a total length of 4,967,627 bp, and a GC content of 43.65%. Genome annotation uncovered 3315 predicted genes, encompassing a wide range of genes linked to various metabolic pathways. Phylogenetic analysis indicated that CENA-BCM004 is a putative new species, closely affiliated with other unidentified Fictibacillus species and Bacillus sp. WQ 8-8. Moreover, this strain showcased a multifaceted metabolic profile, revealing its potential for diverse biotechnological applications. It exhibited capabilities to antagonize pathogens, metabolize multiple sugars, mineralize organic matter compounds, and solubilize several minerals. These insights substantially augment our comprehension of microbial diversity in ADE and underscore the potential of Fictibacillus terranigra as a precious resource for biotechnological endeavors. The genomic data generated from this study will serve as a foundational resource for subsequent research and exploration of the biotechnological capabilities of this newly identified species.


Subject(s)
Base Composition , Genome, Bacterial , Phylogeny , Rainforest , Genomics , RNA, Ribosomal, 16S/genetics , Bacillaceae/genetics , Bacillaceae/classification , Bacillaceae/isolation & purification , Bacillaceae/metabolism , Brazil , DNA, Bacterial/genetics
15.
Braz J Microbiol ; 55(2): 1557-1567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38374322

ABSTRACT

Species of genus Chromobacterium have been isolated from diverse geographical settings, which exhibits significant metabolic flexibility as well as biotechnological and pathogenic properties. This study describes the isolation, characterization, draft assembly, and detailed sequence analysis of Chromobacterium piscinae strain W1B-CG-NIBSM isolated from water samples from multi use community pond. The organism was characterized by biochemical tests, Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI TOF-MS) and partial genome sequencing. The partial genomic data of Chromobacterium pisciane isolate W1B NIBSM strain was submitted to GenBank with Bio project number PRJNA803347 and accession no CP092474. An integrated genome analysis of Chromobacterium piscinae has been accomplished with PATRIC which indicates good quality genome. DNA sequencing using the illumina HiSeq 4000 system generated total length of 4,155,481 bp with 63 contig with G + C content is 62.69%. This partial genome contains 4,126 protein-coding sequences (CDS), 27 repeats region and 78 transfer RNA (tRNA) genes as well as 3 ribosomal RNA (rRNA) genes. The genomic annotation of Chromobacterium W1B depicts 2,925 proteins with functional assignments and 1201 hypothetical proteins. A repertoire of specialty genes implicated in antibiotic resistance (45 genes), drug target (6 genes), Transporter (3 genes) and virulence factor (10 genes). The genomic analysis reveals the adaptability, displays metabolic varied pathways and shows specific structural complex and various virulence factors which makes this strain multi drug resistant. The isolate was found to be highly resistant to ß-lactam antibiotics whereas it showed sensitivity towards aminoglycosides and fluoroquinolone antibiotics. Hence, the recovery of Chromobacterium piscinae from community pond evidenced for uncertain hidden source of public health hazard. To the best of authors knowledge this is first report of isolation and genomic description of C. piscinae from India.


Subject(s)
Anti-Bacterial Agents , Base Composition , Chromobacterium , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Phylogeny , Chromobacterium/genetics , Chromobacterium/drug effects , Chromobacterium/metabolism , India , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genomics , DNA, Bacterial/genetics , Sequence Analysis, DNA , Microbial Sensitivity Tests
16.
Article in English | MEDLINE | ID: mdl-38421264

ABSTRACT

The recently proposed genus Allomuricauda Deshmukh and Oren 2023 is illegitimate because it includes the type species of the genera Flagellimonas Bae et al. 2007 and Spongiibacterium Yoon and Oh 2012, contravening Rule 51b(1) of the International Code of Nomenclature of Prokaryotes. As Flagellimonas Bae et al. 2007 is the earlier described genus, we here reclassify 36 species earlier described as belonging to the illegitimate genus Muricauda as species of Flagellimonas. We also present an emended description of the genus Flagellimonas.


Subject(s)
Fatty Acids , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry
17.
Article in English | MEDLINE | ID: mdl-38407127

ABSTRACT

Four yeast isolates collected from flowers from different ecosystems in Brazil, one from fruit of Nothofagus alpina in Argentina, three from flowers of Neltuma chilensis in Chile and one obtained from the proventriculus of a female bumblebee in Canada were demonstred, by analysis of the sequences of the internal transcribed spacer (ITS) region and D1/D2 domains of the large subunit rRNA gene, to represent two novel species of the genus Starmerella. These species are described here as Starmerella gilliamiae f.a, sp. nov. (CBS 16166T; Mycobank MB 851206) and Starmerella monicapupoae f.a., sp. nov. (PYCC 8997T; Mycobank MB 851207). The results of a phylogenomic analysis using 1037 single-copy orthogroups indicated that S. gilliamiae is a member of a subclade that contains Starmerella opuntiae, Starmerella aceti and Starmerella apicola. The results also indicated that S. monicapupoae is phylogenetically related to Starmerella riodocensis. The two isolates of S. monicapupoae were obtained from flowers in Brazil and were probably vectored by insects that visit these substrates. Starmerella gilliamiae has a wide geographical distribution having been isolated in flowers from Brazil and Chile, fruit from Argentina and a bumblebee from Canada.


Subject(s)
Ecosystem , Saccharomycetales , Animals , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , Saccharomycetales/genetics , Insecta
18.
Article in English | MEDLINE | ID: mdl-38359077

ABSTRACT

Three yeast isolate candidates for a novel species were obtained from rotting wood samples collected in Brazil and Colombia. The Brazilian isolate differs from the Colombian isolates by one nucleotide substitution in each of the D1/D2 and small subunit (SSU) sequences. The internal transcribed spacer (ITS) and translation elongation factor 1-α gene sequences of the three isolates were identical. A phylogenetic analysis showed that this novel species belongs to the genus Ogataea. This novel species is phylogenetically related to Candida nanaspora and Candida nitratophila. The novel species differs from C. nanaspora by seven nucleotides and two indels, and by 17 nucleotides and four indels from C. nitratophila in the D1/D2 sequences. The ITS sequences of these three species differ by more than 30 nucleotides. Analyses of the sequences of the SSU and translation elongation factor 1-α gene also showed that these isolates represent a novel species of the genus Ogataea. Different from most Ogataea species, these isolates did not assimilate methanol as the sole carbon source. The name Ogataea nonmethanolica sp. nov. is proposed to accommodate these isolates. The holotype of Ogataea nonmethanolica is CBS 13485T. The MycoBank number is MB 851195.


Subject(s)
Peptide Elongation Factor 1 , Saccharomycetales , Peptide Elongation Factor 1/genetics , Brazil , Phylogeny , Colombia , DNA, Ribosomal Spacer/genetics , Wood , RNA, Ribosomal, 16S/genetics , DNA, Fungal/genetics , Mycological Typing Techniques , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , Saccharomycetales/genetics , Nucleotides
19.
Article in English | MEDLINE | ID: mdl-38194255

ABSTRACT

In this study, a novel genus is proposed, Scaptona, with a novel species, Scaptona ramosa, isolated from nests of stingless bees (Scaptotrigona sp.). The taxonomic novelty was determined by the phylogenetic analysis of DNA sequences from the internal transcribed spacer regions, small subunit rRNA (18S rRNA), large subunit rRNA (28S rRNA) and the RNA polymerase II second-largest subunit gene (RPB2) and paired with our morphological studies. Based on this single species, Scaptona is characterized by greyish green to dark grey colonies, densely and profusely branched conidiophores and single-celled, variously shaped hyaline conidia. Scaptona ramosa constitutes a distinct, well-supported lineage within Cephalothecaceae and can be clearly distinguished from other genera both by DNA sequence analysis and morphological traits. The holotype of S. ramosa is URM 95352. The ex-type strain has been deposited in the Micoteca URM culture collection as URM 8721T and URM 8722. The MycoBank accession number is MB 849456 for the genus and MB 849456 for the species.


Subject(s)
Fatty Acids , Animals , Bees , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , RNA, Ribosomal, 18S
20.
BMC Infect Dis ; 24(1): 6, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166822

ABSTRACT

BACKGROUND: Weeksella virosa pneumonia is an infection that has been described as a healthcare-associated infection. This is a rare gram-negative anaerobic bacterium associated with the use of mechanical ventilation for a long period of time and is more frequent in immunosuppressed patients. This is the first case reported in the state of Veracruz and the second in Mexico. CASE PRESENTATION: We present the case of a 64-year-old female from Veracruz, Mexico who developed an infectious process in the right pelvic limb after a transcatheter aortic valve replacement procedure and subsequently developed sudden cardiorespiratory arrest requiring mechanical ventilation, with subsequent imaging studies demonstrating a pneumonic process associated with a nosocomial infection. DISCUSSION AND CONCLUSIONS: We should take into consideration that this pathogen affects not only adults with multiple comorbidities but also children with renal, hepatic, or oncological pathologies, as well as immunocompromised patients, who should be considered high-risk populations for W. virosa infection.


Subject(s)
Cross Infection , Pneumonia, Ventilator-Associated , Adult , Female , Child , Humans , Middle Aged , Pneumonia, Ventilator-Associated/diagnosis , Base Composition , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Bacteria, Aerobic , Cross Infection/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL