Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Basic Clin Pharmacol Toxicol ; 135(3): 237-249, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39020526

ABSTRACT

Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce ß-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aß aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Brain , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Animals , Amyloid beta-Peptides/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/metabolism , Disease Models, Animal
2.
Vitam Horm ; 126: 125-168, 2024.
Article in English | MEDLINE | ID: mdl-39029971

ABSTRACT

Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.


Subject(s)
Blood-Brain Barrier , Mental Disorders , Nervous System Diseases , Polycyclic Sesquiterpenes , Polycyclic Sesquiterpenes/pharmacology , Humans , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Nervous System Diseases/drug therapy , Animals , Mental Disorders/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
3.
Rev Assoc Med Bras (1992) ; 70(6): e20240025, 2024.
Article in English | MEDLINE | ID: mdl-39045961

ABSTRACT

OBJECTIVE: Blood-brain barrier is a protective layer that regulates the influx and efflux of biological materials for cerebral tissue. The aim of this study was to investigate the effects of Biochanin A on cerebral histopathology and blood-brain barrier immunohistochemically. METHODS: A total of 24 rats were assigned to three groups: sham, ischemia-reperfusion, and ischemia-reperfusion+Biochanin A. Ischemia-reperfusion was performed by occluding the left carotid artery for 2/24 h. Notably, 20 mg/kg Biochanin A was administered to rats for 7 days after ischemia-reperfusion. Blood was collected for malondialdehyde and total oxidant/antioxidant status analysis. Cerebral tissues were processed for histopathology and further for immunohistochemical analysis. RESULTS: Malondialdehyde content with total oxidant status value was significantly increased and total antioxidant status values were significantly decreased in the ischemia-reperfusion group compared with the sham group. Biochanin A treatment significantly improved scores in the ischemia-reperfusion+Biochanin A group. The normal histological appearance was recorded in the cerebral sections of the sham group. Degenerated neurons and vascular structures with disrupted integrity of the cerebral cortex were observed after ischemia-reperfusion. Biochanin A alleviated the histopathology in the cerebrum in the ischemia-reperfusion+Biochanin A group. Ischemia-reperfusion injury decreased the expression of blood-brain barrier in the ischemia-reperfusion group compared to the sham group. Administration of Biochanin A upregulated the blood-brain barrier immunoreactivity in the cerebrum by restoring blood-brain barrier. CONCLUSION: Cerebral ischemia-reperfusion caused an increase in oxidative stress and pathological lesions in the cerebrum. Biochanin A treatment restored the adverse effects of ischemia-reperfusion injury by restoring blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Genistein , Malondialdehyde , Reperfusion Injury , Animals , Genistein/pharmacology , Genistein/therapeutic use , Reperfusion Injury/drug therapy , Blood-Brain Barrier/drug effects , Male , Malondialdehyde/analysis , Rats , Brain Ischemia/drug therapy , Rats, Wistar , Antioxidants/pharmacology , Immunohistochemistry , Oxidative Stress/drug effects , Disease Models, Animal
4.
J Neurosci Res ; 102(5): e25340, 2024 May.
Article in English | MEDLINE | ID: mdl-38745527

ABSTRACT

The ubiquity of nanoparticles, sourced from both natural environments and human activities, presents critical challenges for public health. While offering significant potential for innovative biomedical applications-especially in enhancing drug transport across the blood-brain barrier-these particles also introduce possible hazards due to inadvertent exposure. This concise review explores the paradoxical nature of nanoparticles, emphasizing their promising applications in healthcare juxtaposed with their potential neurotoxic consequences. Through a detailed examination, we delineate the pathways through which nanoparticles can reach the brain and the subsequent health implications. There is growing evidence of a disturbing association between nanoparticle exposure and the onset of neurodegenerative conditions, highlighting the imperative for comprehensive research and strategic interventions. Gaining a deep understanding of these mechanisms and enacting protective policies are crucial steps toward reducing the health threats of nanoparticles, thereby maximizing their therapeutic advantages.


Subject(s)
Nanoparticles , Neurodegenerative Diseases , Humans , Nanoparticles/toxicity , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain/metabolism , Environmental Exposure/adverse effects
5.
CNS Neurol Disord Drug Targets ; 23(12): 1499-1515, 2024.
Article in English | MEDLINE | ID: mdl-38712373

ABSTRACT

BACKGROUND: In response to inflammation and other stressors, tryptophan is catalyzed by Tryptophan 2,3-Dioxygenase (TDO), which leads to activation of the kynurenine pathway. Sepsis is a serious condition in which the body responds improperly to an infection, and the brain is the inflammation target in this condition. OBJECTIVE: This study aimed to determine if the induction of TDO contributes to the permeability of the Blood-Brain Barrier (BBB), mortality, neuroinflammation, oxidative stress, and mitochondrial dysfunction, besides long-term behavioral alterations in a preclinical model of sepsis. METHODS: Male Wistar rats with two months of age were submitted to the sepsis model using Cecal Ligation and Perforation (CLP). The rats received allopurinol (Allo, 20 mg/kg, gavage), a TDO inhibitor, or a vehicle once a day for seven days. RESULTS: Sepsis induction increased BBB permeability, IL-6 level, neutrophil infiltrate, nitric oxide formation, and oxidative stress, resulting in energy impairment in 24h after CLP and Allo administration restored these parameters. Regarding memory, Allo restored short-term memory impairment and decreased depressive behavior. However, no change in survival rate was verified. CONCLUSION: In summary, TDO inhibition effectively prevented depressive behavior and memory impairment 10 days after CLP by reducing acute BBB permeability, neuroinflammation, oxidative stress, and mitochondrial alteration.


Subject(s)
Allopurinol , Blood-Brain Barrier , Depression , Oxidative Stress , Sepsis , Tryptophan Oxygenase , Animals , Male , Rats , Allopurinol/pharmacology , Allopurinol/therapeutic use , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Depression/drug therapy , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Memory/drug effects , Memory Disorders/drug therapy , Oxidative Stress/drug effects , Rats, Wistar , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , Tryptophan Oxygenase/metabolism , Tryptophan Oxygenase/antagonists & inhibitors
6.
Int J Mol Sci ; 22(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34681597

ABSTRACT

Enzyme replacement therapy (ERT) improves somatic manifestations in mucopolysaccharidoses (MPS). However, because intravenously administered enzymes cannot cross the blood-brain barrier (BBB), ERT is ineffective against the progressive neurodegeneration and resultant severe central nervous system (CNS) symptoms observed in patients with neuronopathic MPS. Attempts to surmount this problem have been made with intrathecal and intracerebroventricular ERT in order to achieve CNS effects, but the burdens on patients are inimical to long-term administrations. However, since pabinafusp alfa, a human iduronate-2-sulfatase fused with a BBB-crossing anti-transferrin receptor antibody, showed both central and peripheral efficacy in a mouse model, subsequent clinical trials in a total of 62 patients with MPS-II (Hunter syndrome) in Japan and Brazil substantiated this dual efficacy and provided an acceptable safety profile. To date, pabinafusp alfa is the only approved intravenous ERT that is effective against both the somatic and CNS symptoms of patients with MPS-II. This article summarizes the previously obtained preclinical and clinical evidence related to the use of this drug, presents latest data, and discusses the preclinical, translational, and clinical challenges of evaluating, ameliorating, and preventing neurodegeneration in patients with MPS-II.


Subject(s)
Enzyme Replacement Therapy , Iduronate Sulfatase/therapeutic use , Mucopolysaccharidosis II/drug therapy , Animals , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/metabolism , Clinical Trials as Topic , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Iduronate Sulfatase/genetics , Iduronate Sulfatase/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucopolysaccharidosis II/pathology , Recombinant Proteins/adverse effects , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Severity of Illness Index
7.
Neurotoxicology ; 86: 125-138, 2021 09.
Article in English | MEDLINE | ID: mdl-34371026

ABSTRACT

Organisms have metabolic pathways responsible for eliminating endogenous and exogenous toxicants. Generally, we associate the liver par excellence as the organ in charge of detoxifying the body; however, this process occurs in all tissues, including the brain. Due to the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), the Central Nervous System (CNS) is considered a partially isolated organ, but similar to other organs, the CNS possess xenobiotic transporters and metabolic pathways associated with the elimination of xenobiotic agents. In this review, we describe the different systems related to the detoxification of xenobiotics in the CNS, providing examples in which their association with neurodegenerative processes is suspected. The CNS detoxifying systems include carrier-mediated, active efflux and receptor-mediated transport, and detoxifying systems that include phase I and phase II enzymes, as well as those enzymes in charge of neutralizing compounds such as electrophilic agents, reactive oxygen species (ROS), and free radicals, which are products of the bioactivation of xenobiotics. Moreover, we discuss the differential expression of these systems in different regions of the CNS, showing the different detoxifying needs and the composition of each region in terms of the cell type, neurotransmitter content, and the accumulation of xenobiotics and/or reactive compounds.


Subject(s)
Brain/drug effects , Brain/metabolism , Metabolic Networks and Pathways/drug effects , Xenobiotics/metabolism , Xenobiotics/toxicity , Biological Transport/drug effects , Biological Transport/physiology , Biotransformation/drug effects , Biotransformation/physiology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Humans , Metabolic Networks and Pathways/physiology
8.
Int J Dev Neurosci ; 81(7): 579-604, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34196408

ABSTRACT

Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.


Subject(s)
Antioxidants/pharmacology , Aquaporin 4/metabolism , Autistic Disorder/metabolism , Blood-Brain Barrier/drug effects , Brain Edema/prevention & control , Resveratrol/pharmacology , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Female , Male , Permeability/drug effects , Rats , Rats, Wistar
9.
Microvasc Res ; 137: 104193, 2021 09.
Article in English | MEDLINE | ID: mdl-34062190

ABSTRACT

Sepsis is a complication of an infection which imbalance the normal regulation of several organ systems, including the central nervous system (CNS). Evidence points towards inflammation and oxidative stress as major steps associated with brain dysfunction in sepsis. Thus, we investigated the folic acid (FA) effect as an important antioxidant compound on acute brain dysfunction in rats and long term cognitive impairment and survival. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FA (10 mg/kg after CLP) or vehicle (veh). Animals were divided into sham + veh, sham + FA, CLP + veh and CLP + FA groups. Twenty-four hours after surgery, the hippocampus and prefrontal cortex were obtained and assayed for levels of blood brain barrier (BBB) permeability, nitrite/nitrate concentration, myeloperoxidase (MPO) activity, thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. Survival was performed during 10 days after surgery and memory was evaluated. FA reduced BBB permeability, MPO activity in hippocampus and pre frontal cortex in 24 h and lipid peroxidation in hippocampus and improves the survival rate after sepsis. Long term cognitive improvement was verified with FA in septic rats compared with CLP + veh. Our data demonstrates that FA reduces the memory impairment in 10 days after sepsis and mortality in part by decreasing BBB permeability and oxidative stress parameters in the brain.


Subject(s)
Antioxidants/pharmacology , Behavior, Animal/drug effects , Blood-Brain Barrier/drug effects , Capillary Permeability/drug effects , Cognition/drug effects , Cognitive Dysfunction/prevention & control , Folic Acid/pharmacology , Oxidative Stress/drug effects , Sepsis/drug therapy , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Disease Models, Animal , Lipid Peroxidation/drug effects , Male , Memory/drug effects , Protein Carbonylation/drug effects , Rats, Wistar , Sepsis/metabolism , Sepsis/physiopathology , Sepsis/psychology
10.
J Alzheimers Dis ; 82(s1): S179-S193, 2021.
Article in English | MEDLINE | ID: mdl-34032611

ABSTRACT

BACKGROUND: Redox active metal cations, such as Cu2 +, have been related to induce amyloid plaques formation and oxidative stress, which are two of the key events in the development of Alzheimer's disease (AD) and others metal promoted neurodegenerative diseases. In these oxidative events, standard reduction potential (SRP) is an important property especially relevant in the reactive oxygen species formation. OBJECTIVE: The SRP is not usually considered for the selection of drug candidates in anti-AD treatments. In this work, we present a computational protocol for the selection of multifunctional ligands with suitable metal chelating, pharmacokinetics, and redox properties. METHODS: The filtering process is based on quantum chemical calculations and the use of in silico tools. Calculations of SRP were performed by using the M06-2X density functional and the isodesmic approach. Then, a virtual screening technique (VS) was used for similar structure search. RESULTS: Protocol application allowed the assessment of chelating, drug likeness, and redox properties of copper ligands. Those molecules showing the best features were selected as molecular scaffolds for a VS procedure in order to obtain related compounds. After applying this process, we present a list of candidates with suitable properties to prevent the redox reactions mediated by copper(II) ion. CONCLUSION: The protocol incorporates SRP in the filtering stage and can be effectively used to obtain a set of potential drug candidates for AD treatments.


Subject(s)
Alzheimer Disease/metabolism , Chelating Agents/metabolism , Computational Chemistry/methods , Copper/metabolism , Drug Design , Alzheimer Disease/drug therapy , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Chelating Agents/chemical synthesis , Chelating Agents/therapeutic use , Copper/chemistry , Copper/therapeutic use , Humans , Ligands , Oxidation-Reduction
11.
Purinergic Signal ; 17(2): 255-271, 2021 06.
Article in English | MEDLINE | ID: mdl-33834349

ABSTRACT

Ischemic stroke is a major cause of morbidity and mortality worldwide and only few affected patients are able to receive treatment, especially in developing countries. Detailed pathophysiology of brain ischemia has been extensively studied in order to discover new treatments with a broad therapeutic window and that are accessible to patients worldwide. The nucleoside guanosine (Guo) has been shown to have neuroprotective effects in animal models of brain diseases, including ischemic stroke. In a rat model of focal permanent ischemia, systemic administration of Guo was effective only when administered immediately after stroke induction. In contrast, intranasal administration of Guo (In-Guo) was effective even when the first administration was 3 h after stroke induction. In order to validate the neuroprotective effect in this larger time window and to investigate In-Guo neuroprotection under global brain dysfunction induced by ischemia, we used the model of thermocoagulation of pial vessels in Wistar rats. In our study, we have found that In-Guo administered 3 h after stroke was capable of preventing ischemia-induced dysfunction, such as bilateral suppression and synchronicity of brain oscillations and ipsilateral cell death signaling, and increased permeability of the blood-brain barrier. In addition, In-Guo had a long-lasting effect on preventing ischemia-induced motor impairment. Our data reinforce In-Guo administration as a potential new treatment for brain ischemia with a more suitable therapeutic window.


Subject(s)
Brain/physiopathology , Guanosine/administration & dosage , Guanosine/therapeutic use , Ischemic Stroke/drug therapy , Ischemic Stroke/physiopathology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Administration, Intranasal , Animals , Blood-Brain Barrier/drug effects , Cell Death/drug effects , Cerebral Veins/drug effects , Electrocoagulation , Electroencephalography/drug effects , Functional Laterality/drug effects , Ischemic Stroke/complications , Male , Movement Disorders/etiology , Movement Disorders/prevention & control , Rats , Rats, Wistar , Signal Transduction/drug effects
12.
Nat Prod Res ; 35(11): 1840-1846, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31282201

ABSTRACT

Phyllanthus tenellus Roxb. (Phyllanthaceae) is a plant used in Brazilian folk medicine for the treatment of intestinal infections and diabetes. Despite its use in traditional medicine, it was reported that P. tenellus extract may cause several effects in the central nervous system (CNS) of animals, such as agitation and signs of depression. The aim of this study was to determine the main constituents of P. tenellus methanol extract and to investigate whether the extract is able to inhibit the enzymes prolyl oligopeptidase (POP), acetylcholinesterase (AChE) and dipeptidyl peptidase-IV (DPP-IV). Corilagin (1) was isolated as the main constituent of the P. tenellus extract, along with rutin (2) and vitexin-2″-O-rhamnoside (3). The extract presented the ability to inhibit mainly POP. Dichloromethane and ethyl acetate fractions showed the highest inhibitory potency against POP (IC50 values of 1.7 ± 0.4 and 11.7 ± 2 µg/mL, respectively). All fractions were inactive against AChE. Corilagin displayed selective POP inhibition in a dose-dependent manner, with IC50= 19.7 ± 2.6 µg/mL. Corilagin exhibited moderate capacity to pass through the phospholipid membrane by passive diffusion, presenting effective permeability (Pe) of 1.26 × 10-7 cm/s.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Phyllanthus/chemistry , Prolyl Oligopeptidases/antagonists & inhibitors , Animals , Blood-Brain Barrier/drug effects , Brazil , Cholinesterase Inhibitors/chemistry , Glucosides/pharmacology , Hydrolyzable Tannins/pharmacology , Plant Extracts/pharmacology , Prolyl Oligopeptidases/metabolism
13.
Biochim Biophys Acta Gen Subj ; 1865(3): 129813, 2021 03.
Article in English | MEDLINE | ID: mdl-33321150

ABSTRACT

BACKGROUND: Malaria is a parasitic disease that compromises the human host. Currently, control of the Plasmodium falciparum burden is centered on artemisinin-based combination therapies. However, decreased sensitivity to artemisinin and derivatives has been reported, therefore it is important to identify new therapeutic strategies. METHOD: We used human erythrocytes infected with P. falciparum and experimental cerebral malaria (ECM) animal model to assess the potential antimalarial effect of eugenol, a component of clove bud essential oil. RESULTS: Plasmodium falciparum cultures treated with increasing concentrations of eugenol reduced parasitemia in a dose-dependent manner, with IC50 of 532.42 ± 29.55 µM. This effect seems to be irreversible and maintained even in the presence of high parasitemia. The prominent effect of eugenol was detected in the evolution from schizont to ring forms, inducing important morphological changes, indicating a disruption in the development of the erythrocytic cycle. Aberrant structural modification was observed by electron microscopy, showing the separation of the two nuclear membrane leaflets as well as other subcellular membranes, such as from the digestive vacuole. Importantly, in vivo studies using ECM revealed a reduction in blood parasitemia and cerebral edema when mice were treated for 6 consecutive days upon infection. CONCLUSIONS: These data suggest a potential effect of eugenol against Plasmodium sp. with an impact on cerebral malaria. GENERAL SIGNIFICANCE: Our results provide a rational basis for the use of eugenol in therapeutic strategies to the treatment of malaria.


Subject(s)
Antimalarials/pharmacology , Brain Edema/drug therapy , Eugenol/pharmacology , Life Cycle Stages/drug effects , Malaria, Cerebral/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/parasitology , Brain Edema/parasitology , Disease Models, Animal , Erythrocytes/drug effects , Erythrocytes/parasitology , Humans , Inhibitory Concentration 50 , Life Cycle Stages/physiology , Malaria, Cerebral/parasitology , Malaria, Falciparum/parasitology , Male , Mice , Mice, Inbred C57BL , Plasmodium berghei/drug effects , Plasmodium berghei/growth & development , Plasmodium berghei/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity
14.
Chem Biol Interact ; 331: 109278, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33038329

ABSTRACT

Only in the last decade the long-term consequences of sepsis started to be studied and even less attention has been given to the treatment of psychological symptoms of sepsis survivors. It is estimated that 60% of sepsis survivors have psychological disturbances, including depression, anxiety, and cognitive impairment. Although the causative factors remain largely poorly understood, blood-brain barrier (BBB) disturbances, neuroinflammation, and oxidative stress have been investigated. Therefore, we sought to explore if the immunomodulatory and antioxidant selenocompound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) would be able to ameliorate long-term behavioral and biochemical alterations in sepsis survivors male Swiss mice. CMI treatment (1 mg/kg, given orally for seven consecutive days) attenuated depression- and anxiogenic-like behaviors and cognitive impairment present one month after the induction of sepsis (lipopolysaccharide, 5 mg/kg intraperitoneally). Meantime, CMI treatment modulated the number of neutrophils and levels of reactive species in neutrophils, lymphocytes, and monocytes. In addition, peripheral markers of liver and kidneys dysfunction (AST, ALT, urea, and creatinine) were reduced after CMI treatment in post-septic mice. Notably, CMI treatment to non-septic mice did not alter AST, ALT, urea, and creatinine levels, indicating the absence of acute hepatotoxicity and nephrotoxicity following CMI treatment. Noteworthy, CMI ameliorated BBB dysfunction induced by sepsis, modulating the expression of inflammation-associated genes (NFκB, IL-1ß, TNF-α, IDO, COX-2, iNOS, and BDNF) and markers of oxidative stress (reactive species, nitric oxide, and lipid peroxidation levels) in the prefrontal cortices and hippocampi of mice. In conclusion, we unraveled crucial molecular pathways that are impaired in post-septic mice and we present CMI as a promising therapeutic candidate aimed to manage the long-lasting behavioral alterations of sepsis survivors to improve their quality of life.


Subject(s)
Behavior, Animal , Indoles/chemistry , Oxidative Stress , Sepsis/pathology , Animals , Anxiety/drug therapy , Anxiety/etiology , Behavior, Animal/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Depression/drug therapy , Depression/etiology , Depression/pathology , Disease Models, Animal , Indoles/pharmacology , Indoles/therapeutic use , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Kidney/drug effects , Kidney/metabolism , Lipopolysaccharides/toxicity , Liver/drug effects , Liver/metabolism , Locomotion/drug effects , Male , Mice , Neutrophils/cytology , Neutrophils/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sepsis/complications
15.
Neurotherapeutics ; 17(4): 1907-1918, 2020 10.
Article in English | MEDLINE | ID: mdl-32632775

ABSTRACT

Neuroinflammation triggered by the expression of damaged-associated molecular patterns released from dying cells plays a critical role in the pathogenesis of ischemic stroke. However, the benefits from the control of neuroinflammation in the clinical outcome have not been established. In this study, the effectiveness of intranasal, a highly efficient route to reach the central nervous system, and intraperitoneal dexamethasone administration in the treatment of neuroinflammation was evaluated in a 60-min middle cerebral artery occlusion (MCAO) model in C57BL/6 male mice. We performed a side-by-side comparison using intranasal versus intraperitoneal dexamethasone, a timecourse including immediate (0 h) or 4 or 12 h poststroke intranasal administration, as well as 4 intranasal doses of dexamethasone beginning 12 h after the MCAO versus a single dose at 12 h to identify the most effective conditions to treat neuroinflammation in MCAO mice. The best results were obtained 12 h after MCAO and when mice received a single dose of dexamethasone (0.25 mg/kg) intranasally. This treatment significantly reduced mortality, neurological deficits, infarct volume size, blood-brain barrier permeability in the somatosensory cortex, inflammatory cell infiltration, and glial activation. Our results demonstrate that a single low dose of intranasal dexamethasone has neuroprotective therapeutic effects in the MCAO model, showing a better clinical outcome than the intraperitoneal administration. Based on these results, we propose a new therapeutic approach for the treatment of the damage process that accompanies ischemic stroke.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Brain Injuries/drug therapy , Brain Ischemia/drug therapy , Dexamethasone/administration & dosage , Ischemic Stroke/drug therapy , Administration, Intranasal , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Brain/drug effects , Brain/pathology , Brain Injuries/mortality , Brain Injuries/pathology , Brain Ischemia/mortality , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/mortality , Infarction, Middle Cerebral Artery/pathology , Ischemic Stroke/mortality , Ischemic Stroke/pathology , Male , Mice , Mice, Inbred C57BL
16.
CNS Neurol Disord Drug Targets ; 19(5): 344-359, 2020.
Article in English | MEDLINE | ID: mdl-32552657

ABSTRACT

Migraine is a complex neurovascular disorder characterized by attacks of moderate to severe unilateral headache, accompanied by photophobia among other neurological signs. Although an arsenal of antimigraine agents is currently available in the market, not all patients respond to them. As Calcitonin Gene-Related Peptide (CGRP) plays a key role in the pathophysiology of migraine, CGRP receptor antagonists (gepants) have been developed. Unfortunately, further pharmaceutical development (for olcegepant and telcagepant) was interrupted due to pharmacokinetic issues observed during the Randomized Clinical Trials (RCT). On this basis, the use of monoclonal antibodies (mAbs; immunoglobulins) against CGRP or its receptor has recently emerged as a novel pharmacotherapy to treat migraines. RCT showed that these mAbs are effective against migraines producing fewer adverse events. Presently, the U.S. Food and Drug Administration approved four mAbs, namely: (i) erenumab; (ii) fremanezumab; (iii) galcanezumab; and (iv) eptinezumab. In general, specific antimigraine compounds exert their action in the trigeminovascular system, but the locus of action (peripheral vs. central) of the mAbs remains elusive. Since these mAbs have a molecular weight of ∼150 kDa, some studies rule out the relevance of their central actions as they seem unlikely to cross the Blood-Brain Barrier (BBB). Considering the therapeutic relevance of this new class of antimigraine compounds, the present review has attempted to summarize and discuss the current evidence on the probable sites of action of these mAbs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide/drug effects , Migraine Disorders/drug therapy , Antibodies, Monoclonal/immunology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/immunology , Calcitonin Gene-Related Peptide/immunology , Headache/drug therapy , Humans
17.
Int J Nanomedicine ; 15: 2809-2828, 2020.
Article in English | MEDLINE | ID: mdl-32368056

ABSTRACT

INTRODUCTION: Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS: Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS: SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION: SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Liposomes/administration & dosage , RNA Interference , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Blood-Brain Barrier/drug effects , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Gene Transfer Techniques , Glioblastoma/genetics , Glioblastoma/pathology , Gold/chemistry , Humans , Liposomes/chemistry , Male , Metal Nanoparticles/chemistry , Mice, Inbred C57BL , MicroRNAs/genetics , Nucleic Acids/chemistry , Oligonucleotides/chemistry , Oligonucleotides/genetics , Oligonucleotides/pharmacokinetics , Viral Envelope Proteins/genetics , Xenograft Model Antitumor Assays
18.
Drug Deliv Transl Res ; 10(1): 34-42, 2020 02.
Article in English | MEDLINE | ID: mdl-31240624

ABSTRACT

Cationic solid lipid nanoparticles (cSLNs) are considered as one of the most effective lipid nanocarriers for delivery of low water-solubility compounds and genetic materials. As the excipients used in the cSLN production are generally regarded as safe (GRAS), the formulations are granted as non-toxic. However, the toxicological profile of new SLN-based formulations should always be performed to confirm that the delivery systems themselves may not impose risks to the human health. Therefore, in this study, we delineate the toxicological profile of the cSLN formulation at 24 and 72 h after single intravenous injection to male Wistar rats. Hematological, biochemical, and histopathological evaluations of the spleen, lungs, liver, and kidneys indicated short-lived alterations including neutrophilia. We found increases in the population of macrophages in the lungs, liver, and spleen and also migration of circulating neutrophils into inflamed tissue and a decrease in blood urea nitrogen. We also observed the presence of cSLNs within the brain parenchyma without any sign of damage to the blood-brain barrier. These side effects appeared to be mild and transitory (< 72 h). These findings reinforce the importance of investigating the toxicity of SLN-based formulations before the incorporation of drugs/genetic material to the formulation and its translation to the clinic.


Subject(s)
Blood-Brain Barrier/drug effects , Lipids/chemistry , Macrophages/metabolism , Nanoparticles/toxicity , Administration, Intravenous , Animals , Blood Urea Nitrogen , Cations , Kidney/drug effects , Kidney/immunology , Liver/drug effects , Liver/immunology , Lung/drug effects , Lung/immunology , Macrophages/drug effects , Male , Nanoparticles/chemistry , Particle Size , Rats , Rats, Wistar , Spleen/drug effects , Spleen/immunology
19.
Microvasc Res ; 128: 103956, 2020 03.
Article in English | MEDLINE | ID: mdl-31733304

ABSTRACT

Blood brain barrier (BBB) permeability and oxidative stress have been reported to be important mechanisms for brain damage following ischemic stroke and stanniocalcin-1 (STC-1), a neuroprotective protein, has anti-inflammatory and anti-oxidative stress properties. Herein, we report the effect of STC-1 on BBB permeability and brain oxidative stress after stroke in an animal model. Male Wistar received an intracerebroventricularly injection of human recombinant STC-1 (100 ng/kg) or saline and were subjected to sham procedure or global cerebral ischemia/reperfusion (I/R) model. Six and 24 h after I/R, neurological evaluation was performed; at 24 h brain water content was evaluated in the total brain, and BBB permeability, nitrite/nitrate (N/N) concentration, lipid peroxidation, protein carbonyls formation, superoxide dismutase (SOD) and catalase (CAT) activity were determined in the hippocampus, cortex, prefrontal cortex, striatum and cerebellum. Rats exhibited neurological deficit at 6 and 24 h after I/R and STC-1 reduction at 24 h. After I/R there were an increase of brain water content, BBB permeability in the hippocampus, cortex and pre-frontal cortex and N/N in the hippocampus, and STC-1 decreased this level only in the hippocampus. STC-1 decreased lipid peroxidation in the hippocampus, cortex and prefrontal cortex and protein oxidative damage in the hippocampus and cortex. SOD activity decreased in the hippocampus, cortex and prefrontal cortex after I/R and STC-1 reestablished these levels in the hippocampus and cortex. CAT activity decreased only in the hippocampus and cortex and STC-1 increased the CAT activity in the hippocampus. Our data provide the first experimental demonstration that STC-1 reduced brain dysfunction associated with cerebral I/R in rats, by decreasing BBB permeability and oxidative stress parameters.


Subject(s)
Antioxidants/administration & dosage , Brain Ischemia/prevention & control , Brain/drug effects , Capillary Permeability/drug effects , Glycoproteins/administration & dosage , Neuroprotective Agents/administration & dosage , Oxidative Stress/drug effects , Reperfusion Injury/prevention & control , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Brain/metabolism , Brain/physiopathology , Brain Edema/metabolism , Brain Edema/physiopathology , Brain Edema/prevention & control , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Disease Models, Animal , Injections, Intraventricular , Lipid Peroxidation/drug effects , Male , Protein Carbonylation/drug effects , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Signal Transduction
20.
Nutrition ; 70: 110417, 2020 02.
Article in English | MEDLINE | ID: mdl-30867119

ABSTRACT

OBJECTIVES: Sepsis is a severe organic dysfunction caused by an infection that affects the normal regulation of several organ systems, including the central nervous system. Inflammation and oxidative stress play crucial roles in the development of brain dysfunction in sepsis. The aim of this study was to determine the effect of a fish oil (FO)-55-enriched lipid emulsion as an important anti-inflammatory compound on brain dysfunction in septic rats. METHODS: Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FO (600 µL/kg after CLP) or vehicle (saline; sal). Animals were divided into sham+sal, sham+FO, CLP+sal and CLP+FO groups. At 24 h and 10 d after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of interleukin (IL)-1ß and IL-10, blood-brain barrier permeability, nitrite/nitrate concentration, myeloperoxidase activity, thiobarbituric acid reactive species formation, protein carbonyls, superoxide dismutase and catalase activity, and brain-derived neurotrophic factor levels. Behavioral tasks were performed 10 d after surgery. RESULTS: FO reduced BBB permeability in the prefrontal cortex and total cortex of septic rats, decreased IL-1ß levels and protein carbonylation in all brain structures, and diminished myeloperoxidase activity in the hippocampus and prefrontal cortex. FO enhanced brain-derived neurotrophic factor levels in the hippocampus and prefrontal cortex and prevented cognitive impairment. CONCLUSIONS: FO diminishes the negative effect of polymicrobial sepsis in the rat brain by reducing inflammatory and oxidative stress markers.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cognitive Dysfunction/prevention & control , Fish Oils/pharmacokinetics , Oxidative Stress/drug effects , Sepsis/psychology , Animals , Biomarkers/metabolism , Blood-Brain Barrier/drug effects , Brain/drug effects , Cecal Diseases/complications , Cecal Diseases/microbiology , Cecum/blood supply , Cecum/microbiology , Cognitive Dysfunction/microbiology , Disease Models, Animal , Emulsions , Frontal Lobe/drug effects , Interleukin-1beta/metabolism , Intestinal Perforation/complications , Intestinal Perforation/microbiology , Ligation/adverse effects , Male , Permeability , Protein Carbonylation/drug effects , Rats , Rats, Wistar , Sepsis/etiology , Sepsis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL