Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Adv Neurobiol ; 39: 269-284, 2024.
Article in English | MEDLINE | ID: mdl-39190079

ABSTRACT

Autism spectrum disorder (ASD) comprises a complex neurodevelopmental condition characterized by an impairment in social interaction, involving communication deficits and specific patterns of behaviors, like repetitive behaviors. ASD is clinically diagnosed and usually takes time, typically occurring not before four years of age. Genetic mutations affecting synaptic transmission, such as neuroligin and neurexin, are associated with ASD and contribute to behavioral and cognitive deficits. Recent research highlights the role of astrocytes, the brain's most abundant glial cells, in ASD pathology. Aberrant Ca2+ signaling in astrocytes is linked to behavioral deficits and neuroinflammation. Notably, the cytokine IL-6 overexpression by astrocytes impacts synaptogenesis. Altered neurotransmitter levels, disruptions in the blood-brain barrier, and cytokine dysregulation further contribute to ASD complexity. Understanding these astrocyte-related mechanisms holds promise for identifying ASD subtypes and developing targeted therapies.


Subject(s)
Astrocytes , Autism Spectrum Disorder , Neurons , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Humans , Astrocytes/metabolism , Neurons/metabolism , Animals , Synaptic Transmission , Blood-Brain Barrier/metabolism , Brain/metabolism
2.
Life Sci ; 354: 122979, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39147315

ABSTRACT

Stroke is the second most common cause of death and one of the most common causes of disability worldwide. The intestine is home to several microorganisms that fulfill essential functions for the natural and physiological functioning of the human body. There is an interaction between the central nervous system (CNS) and the gastrointestinal system that enables bidirectional communication between them, the so-called gut-brain axis. Based on the gut-brain axis, there is evidence of a link between the gut microbiota and the regulation of microglial functions through glial activation. This interaction is partly due to the immunological properties of the microbiota and its connection with the CNS, such that metabolites produced by the microbiota can cross the gut barrier, enter the bloodstream and reach the CNS and significantly affect microglia, astrocytes and other cells of the immune system. Studies addressing the effects of short-chain fatty acids (SCFAs) on glial function and the BBB in ischemic stroke are still scarce. Therefore, this review aims to stimulate the investigation of these associations, as well as to generate new studies on this topic that can clarify the role of SCFAs after stroke in a more robust manner.


Subject(s)
Blood-Brain Barrier , Fatty Acids, Volatile , Gastrointestinal Microbiome , Ischemic Stroke , Neuroglia , Humans , Blood-Brain Barrier/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Ischemic Stroke/metabolism , Ischemic Stroke/physiopathology , Animals , Neuroglia/metabolism , Brain-Gut Axis/physiology , Brain Ischemia/metabolism
3.
Basic Clin Pharmacol Toxicol ; 135(3): 237-249, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39020526

ABSTRACT

Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce ß-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aß aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Brain , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Animals , Amyloid beta-Peptides/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/metabolism , Disease Models, Animal
4.
Vitam Horm ; 126: 125-168, 2024.
Article in English | MEDLINE | ID: mdl-39029971

ABSTRACT

Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.


Subject(s)
Blood-Brain Barrier , Mental Disorders , Nervous System Diseases , Polycyclic Sesquiterpenes , Polycyclic Sesquiterpenes/pharmacology , Humans , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Nervous System Diseases/drug therapy , Animals , Mental Disorders/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
5.
Vitam Horm ; 126: 77-96, 2024.
Article in English | MEDLINE | ID: mdl-39029977

ABSTRACT

Sleep is a physiological process that preserves the integrity of the neuro-immune-endocrine network to maintain homeostasis. Sleep regulates the production and secretion of hormones, neurotransmitters, cytokines and other inflammatory mediators, both at the central nervous system (CNS) and at the periphery. Sleep promotes the removal of potentially toxic metabolites out of the brain through specialized systems such as the glymphatic system, as well as the expression of specific transporters in the blood-brain barrier. The blood-brain barrier maintains CNS homeostasis by selectively transporting metabolic substrates and nutrients into the brain, by regulating the efflux of metabolic waste products, and maintaining bidirectional communication between the periphery and the CNS. All those processes are disrupted during sleep loss. Brain endothelial cells express the blood-brain barrier phenotype, which arises after cell-to-cell interactions with mural cells, like pericytes, and after the release of soluble factors by astroglial endfeet. Astroglia, pericytes and brain endothelial cells respond differently to sleep loss; evidence has shown that sleep loss induces a chronic low-grade inflammatory state at the CNS, which is associated with blood-brain barrier dysfunction. In animal models, blood-brain barrier dysfunction is characterized by increased blood-brain barrier permeability, decreased tight junction protein expression and pericyte detachment from the capillary wall. Blood-brain barrier dysfunction may promote defects in brain clearance of potentially neurotoxic metabolites and byproducts of neural physiology, which may eventually contribute to neurodegenerative diseases. This chapter aims to describe the cellular and molecular mechanisms by which sleep loss modifies the function of the blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Sleep Deprivation , Blood-Brain Barrier/metabolism , Humans , Animals , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Endothelial Cells/metabolism
6.
J Mol Model ; 30(7): 200, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850372

ABSTRACT

CONTEXT: Given the diverse pathophysiological mechanisms underlying Alzheimer's disease, it is improbable that a single targeted drug will prove successful as a therapeutic strategy. Therefore, exploring various hypotheses in drug design is imperative. The sequestration of Fe(II) and Zn(II) cations stands out as a crucial mechanism based on the mitigation of reactive oxygen species. Moreover, inhibiting acetylcholinesterase represents a pivotal strategy to enhance acetylcholine levels in the synaptic cleft. This research aims to investigate the analogs of Huperzine A, documented in scientific literature, considering of these two hypotheses. Consequently, the speciation chemistry of these structures with Fe(II) and Zn(II) was scrutinized using quantum chemistry calculations, molecular docking simulations, and theoretical predictions of pharmacokinetics properties. From the pharmacokinetic properties, only two analogs, HupA-A1 and HupA-A2, exhibited a theoretical permeability across the blood-brain barrier; on the other hand, from a thermodynamic standpoint, the enantiomers of HupA-A2 showed negligible chelation values. The enantiomers with the most favorable interaction parameters were S'R'HupA-A1 (ΔGBIND = -40.0 kcal mol-1, fitness score = 35.5) and R'R'HupA-A1 (ΔGBIND = -35.5 kcal mol-1, fitness score = 22.61), being compared with HupA (ΔGBIND = -41.75 kcal mol-1, fitness score = 39.95). From this study, some prime candidates for promising drug were S'R'HupA-A1 and R'R'HupA-A1, primarily owing to their favorable thermodynamic chelating capability and potential anticholinesterase mechanism. METHODS: Quantum chemistry calculations were carried out at B3LYP/6-31G(d) level, considering the IEF-PCM(UFF) implicit solvent model for water. The coordination compounds were assessed using the Gibbs free energy variation and hard and soft acid theory. Molecular docking calculations were conducted using the GOLD program, based on the crystal structure of the acetylcholinesterase protein (PDB code = 4EY5), where the ChemScore function was employed with the active site defined as the region within a 15-Å radius around the centroid coordinates (X = -9.557583, Y = -43.910473, Z = 31.466687). Pharmacokinetic properties were predicted using SwissADME, focusing on Lipinski's rule of five.


Subject(s)
Acetylcholinesterase , Alkaloids , Alzheimer Disease , Cholinesterase Inhibitors , Molecular Docking Simulation , Sesquiterpenes , Alzheimer Disease/drug therapy , Alkaloids/chemistry , Sesquiterpenes/chemistry , Humans , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Blood-Brain Barrier/metabolism , Thermodynamics , Zinc/chemistry , Models, Molecular , Iron/chemistry , Iron/metabolism
7.
Metab Brain Dis ; 39(5): 967-984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848023

ABSTRACT

The aging of populations is a global phenomenon that follows a possible increase in the incidence of neurodegenerative diseases. Alzheimer's, Parkinson's, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, and Huntington's diseases are some neurodegenerative disorders that aging could initiate or aggravate. Recent research has indicated that intestinal microbiota dysbiosis can trigger metabolism and brain functioning, contributing to the etiopathogenesis of those neurodegenerative diseases. The intestinal microbiota and its metabolites show significant functions in various aspects, such as the immune system modulation (development and maturation), the maintenance of the intestinal barrier integrity, the modulation of neuromuscular functions in the intestine, and the facilitation of essential metabolic processes for both the microbiota and humans. The primary evidence supporting the connection between intestinal microbiota and its metabolites with neurodegenerative diseases are epidemiological observations and animal models experimentation. This paper reviews up-to-date evidence on the correlation between the microbiota-gut-brain axis and neurodegenerative diseases, with a specially focus on gut metabolites. Dysbiosis can increase inflammatory cytokines and bacterial metabolites, altering intestinal and blood-brain barrier permeability and causing neuroinflammation, thus facilitating the pathogenesis of neurodegenerative diseases. Clinical data supporting this evidence still needs to be improved. Most of the works found are descriptive and associated with the presence of phyla or species of bacteria with neurodegenerative diseases. Despite the limitations of recent research, the potential for elucidating clinical questions that have thus far eluded clarification within prevailing pathophysiological frameworks of health and disease is promising through investigation of the interplay between the host and microbiota.


Subject(s)
Brain-Gut Axis , Dysbiosis , Gastrointestinal Microbiome , Neurodegenerative Diseases , Humans , Gastrointestinal Microbiome/physiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/microbiology , Dysbiosis/metabolism , Brain-Gut Axis/physiology , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism
8.
Adv Clin Chem ; 121: 1-88, 2024.
Article in English | MEDLINE | ID: mdl-38797540

ABSTRACT

The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.


Subject(s)
Biomarkers , Blood-Brain Barrier , Blood-Brain Barrier/metabolism , Humans , Biomarkers/metabolism , Animals
9.
J Neurosci Res ; 102(5): e25340, 2024 May.
Article in English | MEDLINE | ID: mdl-38745527

ABSTRACT

The ubiquity of nanoparticles, sourced from both natural environments and human activities, presents critical challenges for public health. While offering significant potential for innovative biomedical applications-especially in enhancing drug transport across the blood-brain barrier-these particles also introduce possible hazards due to inadvertent exposure. This concise review explores the paradoxical nature of nanoparticles, emphasizing their promising applications in healthcare juxtaposed with their potential neurotoxic consequences. Through a detailed examination, we delineate the pathways through which nanoparticles can reach the brain and the subsequent health implications. There is growing evidence of a disturbing association between nanoparticle exposure and the onset of neurodegenerative conditions, highlighting the imperative for comprehensive research and strategic interventions. Gaining a deep understanding of these mechanisms and enacting protective policies are crucial steps toward reducing the health threats of nanoparticles, thereby maximizing their therapeutic advantages.


Subject(s)
Nanoparticles , Neurodegenerative Diseases , Humans , Nanoparticles/toxicity , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain/metabolism , Environmental Exposure/adverse effects
10.
Neurochem Res ; 49(7): 1851-1862, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733521

ABSTRACT

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.


Subject(s)
Alzheimer Disease , Aquaporin 4 , Astrocytes , Streptozocin , Astrocytes/metabolism , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Male , Aquaporin 4/metabolism , Connexin 43/metabolism , Blood-Brain Barrier/metabolism , Water/metabolism , Hippocampus/metabolism , Rats, Wistar , Rats , Disease Models, Animal
11.
ACS Chem Neurosci ; 15(11): 2144-2159, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38723285

ABSTRACT

The local interpretable model-agnostic explanation (LIME) method was used to interpret two machine learning models of compounds penetrating the blood-brain barrier. The classification models, Random Forest, ExtraTrees, and Deep Residual Network, were trained and validated using the blood-brain barrier penetration dataset, which shows the penetrability of compounds in the blood-brain barrier. LIME was able to create explanations for such penetrability, highlighting the most important substructures of molecules that affect drug penetration in the barrier. The simple and intuitive outputs prove the applicability of this explainable model to interpreting the permeability of compounds across the blood-brain barrier in terms of molecular features. LIME explanations were filtered with a weight equal to or greater than 0.1 to obtain only the most relevant explanations. The results showed several structures that are important for blood-brain barrier penetration. In general, it was found that some compounds with nitrogenous substructures are more likely to permeate the blood-brain barrier. The application of these structural explanations may help the pharmaceutical industry and potential drug synthesis research groups to synthesize active molecules more rationally.


Subject(s)
Blood-Brain Barrier , Machine Learning , Blood-Brain Barrier/metabolism , Humans , Biological Transport/physiology , Permeability
12.
CNS Neurol Disord Drug Targets ; 23(12): 1499-1515, 2024.
Article in English | MEDLINE | ID: mdl-38712373

ABSTRACT

BACKGROUND: In response to inflammation and other stressors, tryptophan is catalyzed by Tryptophan 2,3-Dioxygenase (TDO), which leads to activation of the kynurenine pathway. Sepsis is a serious condition in which the body responds improperly to an infection, and the brain is the inflammation target in this condition. OBJECTIVE: This study aimed to determine if the induction of TDO contributes to the permeability of the Blood-Brain Barrier (BBB), mortality, neuroinflammation, oxidative stress, and mitochondrial dysfunction, besides long-term behavioral alterations in a preclinical model of sepsis. METHODS: Male Wistar rats with two months of age were submitted to the sepsis model using Cecal Ligation and Perforation (CLP). The rats received allopurinol (Allo, 20 mg/kg, gavage), a TDO inhibitor, or a vehicle once a day for seven days. RESULTS: Sepsis induction increased BBB permeability, IL-6 level, neutrophil infiltrate, nitric oxide formation, and oxidative stress, resulting in energy impairment in 24h after CLP and Allo administration restored these parameters. Regarding memory, Allo restored short-term memory impairment and decreased depressive behavior. However, no change in survival rate was verified. CONCLUSION: In summary, TDO inhibition effectively prevented depressive behavior and memory impairment 10 days after CLP by reducing acute BBB permeability, neuroinflammation, oxidative stress, and mitochondrial alteration.


Subject(s)
Allopurinol , Blood-Brain Barrier , Depression , Oxidative Stress , Sepsis , Tryptophan Oxygenase , Animals , Male , Rats , Allopurinol/pharmacology , Allopurinol/therapeutic use , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Depression/drug therapy , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Memory/drug effects , Memory Disorders/drug therapy , Oxidative Stress/drug effects , Rats, Wistar , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , Tryptophan Oxygenase/metabolism , Tryptophan Oxygenase/antagonists & inhibitors
13.
PLoS One ; 19(4): e0302031, 2024.
Article in English | MEDLINE | ID: mdl-38603692

ABSTRACT

Chronic neuroinflammation is characterized by increased blood-brain barrier (BBB) permeability, leading to molecular changes in the central nervous system that can be explored with biomarkers of active neuroinflammatory processes. Magnetic resonance imaging (MRI) has contributed to detecting lesions and permeability of the BBB. Ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents to improve MRI observations. Therefore, we validate the interaction of peptide-88 with laminin, vectorized on USPIO, to explore BBB molecular alterations occurring during neuroinflammation as a potential tool for use in MRI. The specific labeling of NPS-P88 was verified in endothelial cells (hCMEC/D3) and astrocytes (T98G) under inflammation induced by interleukin 1ß (IL-1ß) for 3 and 24 hours. IL-1ß for 3 hours in hCMEC/D3 cells increased their co-localization with NPS-P88, compared with controls. At 24 hours, no significant differences were observed between groups. In T98G cells, NPS-P88 showed similar nonspecific labeling among treatments. These results indicate that NPS-P88 has a higher affinity towards brain endothelial cells than astrocytes under inflammation. This affinity decreases over time with reduced laminin expression. In vivo results suggest that following a 30-minute post-injection, there is an increased presence of NPS-P88 in the blood and brain, diminishing over time. Lastly, EAE animals displayed a significant accumulation of NPS-P88 in MRI, primarily in the cortex, attributed to inflammation and disruption of the BBB. Altogether, these results revealed NPS-P88 as a biomarker to evaluate changes in the BBB due to neuroinflammation by MRI in biological models targeting laminin.


Subject(s)
Blood-Brain Barrier , Laminin , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Laminin/metabolism , Neuroinflammatory Diseases , Endothelial Cells/metabolism , Inflammation/diagnostic imaging , Inflammation/metabolism , Magnetic Resonance Imaging/methods
14.
Purinergic Signal ; 20(5): 487-507, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38460075

ABSTRACT

The pathophysiology of Parkinson's disease (PD) is marked by degeneration of dopaminergic neurons in the substantia nigra. With advent of COVID-19, which is closely associated with generalized inflammation and multiple organ dysfunctions, the PD patients may develop severe conditions of disease leading to exacerbated degeneration. This condition is caused by the excessive release of pro-inflammatory markers, called cytokine storm, that is capable of triggering neurodegenerative conditions by affecting the blood-brain barrier (BBB). A possible SARS-CoV-2 infection, in serious cases, may compromise the immune system by triggering a hyperstimulation of the neuroimmune response, similar to the pathological processes found in PD. From this perspective, the inflammatory scenario triggers oxidative stress and, consequently, cellular dysfunction in the nervous tissue. The P2X7R seems to be the key mediator of the neuroinflammatory process, as it acts by increasing the concentration of ATP, allowing the influx of Ca2+ and the occurrence of mutations in the α-synuclein protein, causing activation of this receptor. Thus, modulation of the purinergic system may have therapeutic potential on the effects of PD, as well as on the damage caused by inflammation of the BBB, which may be able to mitigate the neurodegeneration caused by diseases. Considering all the processes of neuroinflammation, oxidative stress, and mitochondrial dysfunction that PD propose, we can conclude that the P2X7 antagonist acts in the prevention of viral diseases, and it also controls purinergic receptors formed by multi-target compounds directed to self-amplification circuits and, therefore, may be a viable strategy to obtain the desired disease-modifying effect. Thus, purinergic system receptor modulations have a high therapeutic potential for neurodegenerative diseases such as PD.


Subject(s)
COVID-19 , Parkinson Disease , SARS-CoV-2 , Humans , COVID-19/metabolism , COVID-19/complications , Parkinson Disease/metabolism , Oxidative Stress/physiology , Pandemics , Animals , Blood-Brain Barrier/metabolism , Receptors, Purinergic P2X7/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/complications
15.
Mol Neurobiol ; 61(8): 5142-5160, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38172288

ABSTRACT

Alzheimer's disease (AD) is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and within the walls of cerebral vessels. The hippocampus-a complex brain structure with a pivotal role in learning and memory-is implicated in this disease. However, there is limited data on vascular changes during AD pathological degeneration in this susceptible structure, which has distinctive vascular traits. Our aim was to evaluate vascular alterations in the hippocampus of AD patients and PDAPP-J20 mice-a model of AD-and to determine the impact of Aß40 and Aß42 on endothelial cell activation. We found a loss of physical astrocyte-endothelium interaction in the hippocampus of individuals with AD as compared to non-AD donors, along with reduced vascular density. Astrocyte-endothelial interactions and levels of the tight junction protein occludin were altered early in PDAPP-J20 mice, preceding any signs of morphological changes or disruption of the blood-brain barrier in these mice. At later stages, PDAPP-J20 mice exhibited decreased vascular density in the hippocampus and leakage of fluorescent tracers, indicating dysfunction of the vasculature and the BBB. In vitro studies showed that soluble Aß40 exposure in human brain microvascular endothelial cells (HBMEC) was sufficient to induce NFκB translocation to the nucleus, which may be linked with an observed reduction in occludin levels. The inhibition of the membrane receptor for advanced glycation end products (RAGE) prevented these changes in HBMEC. Additional results suggest that Aß42 indirectly affects the endothelium by inducing astrocytic factors. Furthermore, our results from human and mouse brain samples provide evidence for the crucial involvement of the hippocampal vasculature in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Astrocytes , Hippocampus , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Humans , Hippocampus/pathology , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Male , Aged , Mice, Transgenic , Female , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Aged, 80 and over , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism , Mice , Receptor for Advanced Glycation End Products/metabolism
16.
J Chem Inf Model ; 64(7): 2368-2382, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38054399

ABSTRACT

Peptides that pass through the blood-brain barrier (BBB) not only are implicated in brain-related pathologies but also are promising therapeutic tools for treating brain diseases, e.g., as shuttles carrying active medicines across the BBB. Computational prediction of BBB-penetrating peptides (B3PPs) has emerged as an interesting approach because of its ability to screen large peptide libraries in a cost-effective manner. In this study, we present BrainPepPass, a machine learning (ML) framework that utilizes supervised manifold dimensionality reduction and extreme gradient boosting (XGB) algorithms to predict natural and chemically modified B3PPs. The results indicate that the proposed tool outperforms other classifiers, with average accuracies exceeding 94% and 98% in 10-fold cross-validation and leave-one-out cross-validation (LOOCV), respectively. In addition, accuracy values ranging from 45% to 97.05% were achieved in the independent tests. The BrainPepPass tool is available in a public repository for academic use (https://github.com/ewerton-cristhian/BrainPepPass).


Subject(s)
Blood-Brain Barrier , Peptides , Blood-Brain Barrier/metabolism , Biological Transport , Peptides/metabolism , Algorithms , Machine Learning
17.
Exp Biol Med (Maywood) ; 248(22): 2109-2119, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058025

ABSTRACT

S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.


Subject(s)
Brain Injuries , Humans , Brain Injuries/metabolism , Blood-Brain Barrier/metabolism , Astrocytes , S100 Calcium Binding Protein beta Subunit/metabolism
18.
Adv Exp Med Biol ; 1428: 149-177, 2023.
Article in English | MEDLINE | ID: mdl-37466773

ABSTRACT

Evidence from preclinical and clinical studies demonstrate that pregnancy is a physiological state capable of modifying drug disposition. Factors including increased hepatic metabolism and renal excretion are responsible for impacting disposition, and the role of membrane transporters expressed in biological barriers, including the placental- and blood-brain barriers, has received considerable attention. In this regard, the brain disposition of drugs in the mother and fetus has been the subject of studies attempting to characterize the mechanisms by which pregnancy could alter the expression of ATP-binding cassette (ABC) and solute carrier (SLC) transporters. This chapter will summarize findings of the influence of pregnancy on the maternal and fetal expression of ABC and SLC transporters in the brain and the consequences of such changes on the disposition of therapeutic drugs.


Subject(s)
ATP-Binding Cassette Transporters , Placenta , Female , Pregnancy , Humans , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Placenta/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Fetus , Blood-Brain Barrier/metabolism , Adenosine Triphosphate/metabolism
19.
Mem Inst Oswaldo Cruz ; 118: e230033, 2023.
Article in English | MEDLINE | ID: mdl-37403869

ABSTRACT

BACKGROUND: Cerebral malaria (CM) is a severe immunovasculopathy caused for Plasmodium falciparum infection, which is characterised by the sequestration of parasitised red blood cells (pRBCs) in brain microvessels. Previous studies have shown that some terpenes, such as perillyl alcohol (POH), exhibit a marked efficacy in preventing cerebrovascular inflammation, breakdown of the brain-blood barrier (BBB) and brain leucocyte accumulation in experimental CM models. OBJECTIVE: To analyse the effects of POH on the endothelium using human brain endothelial cell (HBEC) monolayers co-cultured with pRBCs. METHODOLOGY: The loss of tight junction proteins (TJPs) and features of endothelial activation, such as ICAM-1 and VCAM-1 expression were evaluated by quantitative immunofluorescence. Microvesicle (MV) release by HBEC upon stimulation by P. falciparum was evaluated by flow cytometry. Finally, the capacity of POH to revert P. falciparum-induced HBEC monolayer permeability was examined by monitoring trans-endothelial electrical resistance (TEER). FINDINGS: POH significantly prevented pRBCs-induced endothelial adhesion molecule (ICAM-1, VCAM-1) upregulation and MV release by HBEC, improved their trans-endothelial resistance, and restored their distribution of TJPs such as VE-cadherin, Occludin, and JAM-A. CONCLUSIONS: POH is a potent monoterpene that is efficient in preventing P. falciparum-pRBCs-induced changes in HBEC, namely their activation, increased permeability and alterations of integrity, all parameters of relevance to CM pathogenesis.


Subject(s)
Malaria, Cerebral , Malaria, Falciparum , Humans , Plasmodium falciparum , Intercellular Adhesion Molecule-1/metabolism , Endothelial Cells , Vascular Cell Adhesion Molecule-1/metabolism , Brain/metabolism , Brain/pathology , Malaria, Cerebral/metabolism , Malaria, Cerebral/pathology , Monoterpenes/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Endothelium, Vascular , Permeability
20.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R299-R307, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37458379

ABSTRACT

Hypertension augments while exercise training corrects the increased vesicle trafficking (transcytosis) across the blood-brain barrier (BBB) within preautonomic areas and the autonomic imbalance. There is no information on a possible mechanism(s) conditioning these effects. Knowing that Mfsd2a is the major transporter of docosahexaenoic acid (DHA) and that Mfsd2a knockout mice exhibited leaky BBB, we sought to identify its possible involvement in hypertension- and exercise-induced transcytosis across the BBB. Spontaneously hypertensive rats (SHR) and Wistar rats were submitted to treadmill training (T) or kept sedentary (S) for 4 wk. Resting hemodynamic/autonomic parameters were recorded in conscious chronically cannulated rats. BBB permeability within the hypothalamic paraventricular nucleus (PVN) was evaluated in anesthetized rats. Brains were harvested for Mfsd2a and caveolin-1 (an essential protein for vesicle formation) expression. SHR-S versus Wistar-S exhibited elevated arterial pressure (AP) and heart rate (HR), increased vasomotor sympathetic activity, reduced cardiac parasympathetic activity, greater pressure variability, reduced HR variability, and depressed baroreflex control. SHR-S also showed increased BBB permeability, reduced Mfsd2a, and increased caveolin-1 expression. SHR-T versus SHR-S exhibited increased Mfsd2a density, reduced caveolin-1 protein expression, and normalized PVN BBB permeability, which were accompanied by resting bradycardia, partial AP drop, reduced sympathetic and normalized cardiac parasympathetic activity, increased HR variability, and reduced pressure variability. No changes were observed in Wistar-T versus Wistar-S. Training is an efficient tool to rescue Mfsd2a expression, which by transporting DHA into the endothelial cell reduces caveolin-1 availability and vesicles' formation. Exercise-induced Mfsd2a normalization is an important mechanism to correct both BBB function and autonomic control in hypertensive subjects.


Subject(s)
Hypertension , Symporters , Animals , Rats , Blood-Brain Barrier/metabolism , Capillaries/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Inbred SHR , Rats, Wistar , Symporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL